/* |
|
* Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved. |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
package java.security.spec; |
|
import java.math.BigInteger; |
|
/** |
|
* This class specifies an RSA private key, as defined in the |
|
* <a href="https://tools.ietf.org/rfc/rfc8017.txt">PKCS#1 v2.2</a> standard, |
|
* using the Chinese Remainder Theorem (CRT) information values for efficiency. |
|
* |
|
* @author Jan Luehe |
|
* @since 1.2 |
|
* |
|
* |
|
* @see java.security.Key |
|
* @see java.security.KeyFactory |
|
* @see KeySpec |
|
* @see PKCS8EncodedKeySpec |
|
* @see RSAPrivateKeySpec |
|
* @see RSAPublicKeySpec |
|
*/ |
|
public class RSAPrivateCrtKeySpec extends RSAPrivateKeySpec { |
|
private final BigInteger publicExponent; |
|
private final BigInteger primeP; |
|
private final BigInteger primeQ; |
|
private final BigInteger primeExponentP; |
|
private final BigInteger primeExponentQ; |
|
private final BigInteger crtCoefficient; |
|
/** |
|
* Creates a new {@code RSAPrivateCrtKeySpec}. |
|
* |
|
* @param modulus the modulus n |
|
* @param publicExponent the public exponent e |
|
* @param privateExponent the private exponent d |
|
* @param primeP the prime factor p of n |
|
* @param primeQ the prime factor q of n |
|
* @param primeExponentP this is d mod (p-1) |
|
* @param primeExponentQ this is d mod (q-1) |
|
* @param crtCoefficient the Chinese Remainder Theorem |
|
* coefficient q-1 mod p |
|
*/ |
|
public RSAPrivateCrtKeySpec(BigInteger modulus, |
|
BigInteger publicExponent, |
|
BigInteger privateExponent, |
|
BigInteger primeP, |
|
BigInteger primeQ, |
|
BigInteger primeExponentP, |
|
BigInteger primeExponentQ, |
|
BigInteger crtCoefficient) { |
|
this(modulus, publicExponent, privateExponent, primeP, primeQ, |
|
primeExponentP, primeExponentQ, crtCoefficient, null); |
|
} |
|
/** |
|
* Creates a new {@code RSAPrivateCrtKeySpec} with additional |
|
* key parameters. |
|
* |
|
* @param modulus the modulus n |
|
* @param publicExponent the public exponent e |
|
* @param privateExponent the private exponent d |
|
* @param primeP the prime factor p of n |
|
* @param primeQ the prime factor q of n |
|
* @param primeExponentP this is d mod (p-1) |
|
* @param primeExponentQ this is d mod (q-1) |
|
* @param crtCoefficient the Chinese Remainder Theorem |
|
* coefficient q-1 mod p |
|
* @param keyParams the parameters associated with key |
|
* @since 11 |
|
*/ |
|
public RSAPrivateCrtKeySpec(BigInteger modulus, |
|
BigInteger publicExponent, |
|
BigInteger privateExponent, |
|
BigInteger primeP, |
|
BigInteger primeQ, |
|
BigInteger primeExponentP, |
|
BigInteger primeExponentQ, |
|
BigInteger crtCoefficient, |
|
AlgorithmParameterSpec keyParams) { |
|
super(modulus, privateExponent, keyParams); |
|
this.publicExponent = publicExponent; |
|
this.primeP = primeP; |
|
this.primeQ = primeQ; |
|
this.primeExponentP = primeExponentP; |
|
this.primeExponentQ = primeExponentQ; |
|
this.crtCoefficient = crtCoefficient; |
|
} |
|
/** |
|
* Returns the public exponent. |
|
* |
|
* @return the public exponent |
|
*/ |
|
public BigInteger getPublicExponent() { |
|
return this.publicExponent; |
|
} |
|
/** |
|
* Returns the primeP. |
|
|
|
* @return the primeP |
|
*/ |
|
public BigInteger getPrimeP() { |
|
return this.primeP; |
|
} |
|
/** |
|
* Returns the primeQ. |
|
* |
|
* @return the primeQ |
|
*/ |
|
public BigInteger getPrimeQ() { |
|
return this.primeQ; |
|
} |
|
/** |
|
* Returns the primeExponentP. |
|
* |
|
* @return the primeExponentP |
|
*/ |
|
public BigInteger getPrimeExponentP() { |
|
return this.primeExponentP; |
|
} |
|
/** |
|
* Returns the primeExponentQ. |
|
* |
|
* @return the primeExponentQ |
|
*/ |
|
public BigInteger getPrimeExponentQ() { |
|
return this.primeExponentQ; |
|
} |
|
/** |
|
* Returns the crtCoefficient. |
|
* |
|
* @return the crtCoefficient |
|
*/ |
|
public BigInteger getCrtCoefficient() { |
|
return this.crtCoefficient; |
|
} |
|
} |