/* | 
|
 * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved. | 
|
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | 
|
 * | 
|
 * This code is free software; you can redistribute it and/or modify it | 
|
 * under the terms of the GNU General Public License version 2 only, as | 
|
 * published by the Free Software Foundation.  Oracle designates this | 
|
 * particular file as subject to the "Classpath" exception as provided | 
|
 * by Oracle in the LICENSE file that accompanied this code. | 
|
 * | 
|
 * This code is distributed in the hope that it will be useful, but WITHOUT | 
|
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|
 * version 2 for more details (a copy is included in the LICENSE file that | 
|
 * accompanied this code). | 
|
 * | 
|
 * You should have received a copy of the GNU General Public License version | 
|
 * 2 along with this work; if not, write to the Free Software Foundation, | 
|
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
|
 * | 
|
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | 
|
 * or visit www.oracle.com if you need additional information or have any | 
|
 * questions. | 
|
*/  | 
|
package java.security.spec;  | 
|
import java.math.BigInteger;  | 
|
/**  | 
|
* This class specifies an RSA private key, as defined in the  | 
|
* <a href="https://tools.ietf.org/rfc/rfc8017.txt">PKCS#1 v2.2</a> standard,  | 
|
* using the Chinese Remainder Theorem (CRT) information values for efficiency.  | 
|
*  | 
|
* @author Jan Luehe  | 
|
*  | 
|
*  | 
|
* @see java.security.Key  | 
|
* @see java.security.KeyFactory  | 
|
* @see KeySpec  | 
|
* @see PKCS8EncodedKeySpec  | 
|
* @see RSAPrivateKeySpec  | 
|
* @see RSAPublicKeySpec  | 
|
*/  | 
|
public class RSAPrivateCrtKeySpec extends RSAPrivateKeySpec {  | 
|
private final BigInteger publicExponent;  | 
|
private final BigInteger primeP;  | 
|
private final BigInteger primeQ;  | 
|
private final BigInteger primeExponentP;  | 
|
private final BigInteger primeExponentQ;  | 
|
private final BigInteger crtCoefficient;  | 
|
   /** | 
|
    * Creates a new {@code RSAPrivateCrtKeySpec}. | 
|
    * | 
|
    * @param modulus the modulus n | 
|
    * @param publicExponent the public exponent e | 
|
    * @param privateExponent the private exponent d | 
|
    * @param primeP the prime factor p of n | 
|
    * @param primeQ the prime factor q of n | 
|
    * @param primeExponentP this is d mod (p-1) | 
|
    * @param primeExponentQ this is d mod (q-1) | 
|
    * @param crtCoefficient the Chinese Remainder Theorem | 
|
    * coefficient q-1 mod p | 
|
*/  | 
|
public RSAPrivateCrtKeySpec(BigInteger modulus,  | 
|
BigInteger publicExponent,  | 
|
BigInteger privateExponent,  | 
|
BigInteger primeP,  | 
|
BigInteger primeQ,  | 
|
BigInteger primeExponentP,  | 
|
BigInteger primeExponentQ,  | 
|
BigInteger crtCoefficient) {  | 
|
this(modulus, publicExponent, privateExponent, primeP, primeQ,  | 
|
primeExponentP, primeExponentQ, crtCoefficient, null);  | 
|
}  | 
|
   /** | 
|
    * Creates a new {@code RSAPrivateCrtKeySpec} with additional | 
|
    * key parameters. | 
|
    * | 
|
    * @param modulus the modulus n | 
|
    * @param publicExponent the public exponent e | 
|
    * @param privateExponent the private exponent d | 
|
    * @param primeP the prime factor p of n | 
|
    * @param primeQ the prime factor q of n | 
|
    * @param primeExponentP this is d mod (p-1) | 
|
    * @param primeExponentQ this is d mod (q-1) | 
|
    * @param crtCoefficient the Chinese Remainder Theorem | 
|
    * coefficient q-1 mod p | 
|
    * @param keyParams the parameters associated with key | 
|
    * @since 8 | 
|
*/  | 
|
public RSAPrivateCrtKeySpec(BigInteger modulus,  | 
|
BigInteger publicExponent,  | 
|
BigInteger privateExponent,  | 
|
BigInteger primeP,  | 
|
BigInteger primeQ,  | 
|
BigInteger primeExponentP,  | 
|
BigInteger primeExponentQ,  | 
|
BigInteger crtCoefficient,  | 
|
AlgorithmParameterSpec keyParams) {  | 
|
super(modulus, privateExponent, keyParams);  | 
|
this.publicExponent = publicExponent;  | 
|
this.primeP = primeP;  | 
|
this.primeQ = primeQ;  | 
|
this.primeExponentP = primeExponentP;  | 
|
this.primeExponentQ = primeExponentQ;  | 
|
this.crtCoefficient = crtCoefficient;  | 
|
}  | 
|
    /** | 
|
     * Returns the public exponent. | 
|
     * | 
|
     * @return the public exponent | 
|
*/  | 
|
public BigInteger getPublicExponent() {  | 
|
return this.publicExponent;  | 
|
}  | 
|
    /** | 
|
     * Returns the primeP. | 
|
 | 
|
     * @return the primeP | 
|
*/  | 
|
public BigInteger getPrimeP() {  | 
|
return this.primeP;  | 
|
}  | 
|
    /** | 
|
     * Returns the primeQ. | 
|
     * | 
|
     * @return the primeQ | 
|
*/  | 
|
public BigInteger getPrimeQ() {  | 
|
return this.primeQ;  | 
|
}  | 
|
    /** | 
|
     * Returns the primeExponentP. | 
|
     * | 
|
     * @return the primeExponentP | 
|
*/  | 
|
public BigInteger getPrimeExponentP() {  | 
|
return this.primeExponentP;  | 
|
}  | 
|
    /** | 
|
     * Returns the primeExponentQ. | 
|
     * | 
|
     * @return the primeExponentQ | 
|
*/  | 
|
public BigInteger getPrimeExponentQ() {  | 
|
return this.primeExponentQ;  | 
|
}  | 
|
    /** | 
|
     * Returns the crtCoefficient. | 
|
     * | 
|
     * @return the crtCoefficient | 
|
*/  | 
|
public BigInteger getCrtCoefficient() {  | 
|
return this.crtCoefficient;  | 
|
}  | 
|
}  |