/* |
|
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
package java.util; |
|
import java.util.function.Consumer; |
|
/** |
|
* This class provides a skeletal implementation of the {@link List} |
|
* interface to minimize the effort required to implement this interface |
|
* backed by a "random access" data store (such as an array). For sequential |
|
* access data (such as a linked list), {@link AbstractSequentialList} should |
|
* be used in preference to this class. |
|
* |
|
* <p>To implement an unmodifiable list, the programmer needs only to extend |
|
* this class and provide implementations for the {@link #get(int)} and |
|
* {@link List#size() size()} methods. |
|
* |
|
* <p>To implement a modifiable list, the programmer must additionally |
|
* override the {@link #set(int, Object) set(int, E)} method (which otherwise |
|
* throws an {@code UnsupportedOperationException}). If the list is |
|
* variable-size the programmer must additionally override the |
|
* {@link #add(int, Object) add(int, E)} and {@link #remove(int)} methods. |
|
* |
|
* <p>The programmer should generally provide a void (no argument) and collection |
|
* constructor, as per the recommendation in the {@link Collection} interface |
|
* specification. |
|
* |
|
* <p>Unlike the other abstract collection implementations, the programmer does |
|
* <i>not</i> have to provide an iterator implementation; the iterator and |
|
* list iterator are implemented by this class, on top of the "random access" |
|
* methods: |
|
* {@link #get(int)}, |
|
* {@link #set(int, Object) set(int, E)}, |
|
* {@link #add(int, Object) add(int, E)} and |
|
* {@link #remove(int)}. |
|
* |
|
* <p>The documentation for each non-abstract method in this class describes its |
|
* implementation in detail. Each of these methods may be overridden if the |
|
* collection being implemented admits a more efficient implementation. |
|
* |
|
* <p>This class is a member of the |
|
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework"> |
|
* Java Collections Framework</a>. |
|
* |
|
* @author Josh Bloch |
|
* @author Neal Gafter |
|
* @since 1.2 |
|
*/ |
|
public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> { |
|
/** |
|
* Sole constructor. (For invocation by subclass constructors, typically |
|
* implicit.) |
|
*/ |
|
protected AbstractList() { |
|
} |
|
/** |
|
* Appends the specified element to the end of this list (optional |
|
* operation). |
|
* |
|
* <p>Lists that support this operation may place limitations on what |
|
* elements may be added to this list. In particular, some |
|
* lists will refuse to add null elements, and others will impose |
|
* restrictions on the type of elements that may be added. List |
|
* classes should clearly specify in their documentation any restrictions |
|
* on what elements may be added. |
|
* |
|
* @implSpec |
|
* This implementation calls {@code add(size(), e)}. |
|
* |
|
* <p>Note that this implementation throws an |
|
* {@code UnsupportedOperationException} unless |
|
* {@link #add(int, Object) add(int, E)} is overridden. |
|
* |
|
* @param e element to be appended to this list |
|
* @return {@code true} (as specified by {@link Collection#add}) |
|
* @throws UnsupportedOperationException if the {@code add} operation |
|
* is not supported by this list |
|
* @throws ClassCastException if the class of the specified element |
|
* prevents it from being added to this list |
|
* @throws NullPointerException if the specified element is null and this |
|
* list does not permit null elements |
|
* @throws IllegalArgumentException if some property of this element |
|
* prevents it from being added to this list |
|
*/ |
|
public boolean add(E e) { |
|
add(size(), e); |
|
return true; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
*/ |
|
public abstract E get(int index); |
|
/** |
|
* {@inheritDoc} |
|
* |
|
* @implSpec |
|
* This implementation always throws an |
|
* {@code UnsupportedOperationException}. |
|
* |
|
* @throws UnsupportedOperationException {@inheritDoc} |
|
* @throws ClassCastException {@inheritDoc} |
|
* @throws NullPointerException {@inheritDoc} |
|
* @throws IllegalArgumentException {@inheritDoc} |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
*/ |
|
public E set(int index, E element) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* |
|
* @implSpec |
|
* This implementation always throws an |
|
* {@code UnsupportedOperationException}. |
|
* |
|
* @throws UnsupportedOperationException {@inheritDoc} |
|
* @throws ClassCastException {@inheritDoc} |
|
* @throws NullPointerException {@inheritDoc} |
|
* @throws IllegalArgumentException {@inheritDoc} |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
*/ |
|
public void add(int index, E element) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* |
|
* @implSpec |
|
* This implementation always throws an |
|
* {@code UnsupportedOperationException}. |
|
* |
|
* @throws UnsupportedOperationException {@inheritDoc} |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
*/ |
|
public E remove(int index) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
// Search Operations |
|
/** |
|
* {@inheritDoc} |
|
* |
|
* @implSpec |
|
* This implementation first gets a list iterator (with |
|
* {@code listIterator()}). Then, it iterates over the list until the |
|
* specified element is found or the end of the list is reached. |
|
* |
|
* @throws ClassCastException {@inheritDoc} |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public int indexOf(Object o) { |
|
ListIterator<E> it = listIterator(); |
|
if (o==null) { |
|
while (it.hasNext()) |
|
if (it.next()==null) |
|
return it.previousIndex(); |
|
} else { |
|
while (it.hasNext()) |
|
if (o.equals(it.next())) |
|
return it.previousIndex(); |
|
} |
|
return -1; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* |
|
* @implSpec |
|
* This implementation first gets a list iterator that points to the end |
|
* of the list (with {@code listIterator(size())}). Then, it iterates |
|
* backwards over the list until the specified element is found, or the |
|
* beginning of the list is reached. |
|
* |
|
* @throws ClassCastException {@inheritDoc} |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public int lastIndexOf(Object o) { |
|
ListIterator<E> it = listIterator(size()); |
|
if (o==null) { |
|
while (it.hasPrevious()) |
|
if (it.previous()==null) |
|
return it.nextIndex(); |
|
} else { |
|
while (it.hasPrevious()) |
|
if (o.equals(it.previous())) |
|
return it.nextIndex(); |
|
} |
|
return -1; |
|
} |
|
// Bulk Operations |
|
/** |
|
* Removes all of the elements from this list (optional operation). |
|
* The list will be empty after this call returns. |
|
* |
|
* @implSpec |
|
* This implementation calls {@code removeRange(0, size())}. |
|
* |
|
* <p>Note that this implementation throws an |
|
* {@code UnsupportedOperationException} unless {@code remove(int |
|
* index)} or {@code removeRange(int fromIndex, int toIndex)} is |
|
* overridden. |
|
* |
|
* @throws UnsupportedOperationException if the {@code clear} operation |
|
* is not supported by this list |
|
*/ |
|
public void clear() { |
|
removeRange(0, size()); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* |
|
* @implSpec |
|
* This implementation gets an iterator over the specified collection |
|
* and iterates over it, inserting the elements obtained from the |
|
* iterator into this list at the appropriate position, one at a time, |
|
* using {@code add(int, E)}. |
|
* Many implementations will override this method for efficiency. |
|
* |
|
* <p>Note that this implementation throws an |
|
* {@code UnsupportedOperationException} unless |
|
* {@link #add(int, Object) add(int, E)} is overridden. |
|
* |
|
* @throws UnsupportedOperationException {@inheritDoc} |
|
* @throws ClassCastException {@inheritDoc} |
|
* @throws NullPointerException {@inheritDoc} |
|
* @throws IllegalArgumentException {@inheritDoc} |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
*/ |
|
public boolean addAll(int index, Collection<? extends E> c) { |
|
rangeCheckForAdd(index); |
|
boolean modified = false; |
|
for (E e : c) { |
|
add(index++, e); |
|
modified = true; |
|
} |
|
return modified; |
|
} |
|
// Iterators |
|
/** |
|
* Returns an iterator over the elements in this list in proper sequence. |
|
* |
|
* @implSpec |
|
* This implementation returns a straightforward implementation of the |
|
* iterator interface, relying on the backing list's {@code size()}, |
|
* {@code get(int)}, and {@code remove(int)} methods. |
|
* |
|
* <p>Note that the iterator returned by this method will throw an |
|
* {@link UnsupportedOperationException} in response to its |
|
* {@code remove} method unless the list's {@code remove(int)} method is |
|
* overridden. |
|
* |
|
* <p>This implementation can be made to throw runtime exceptions in the |
|
* face of concurrent modification, as described in the specification |
|
* for the (protected) {@link #modCount} field. |
|
* |
|
* @return an iterator over the elements in this list in proper sequence |
|
*/ |
|
public Iterator<E> iterator() { |
|
return new Itr(); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* |
|
* @implSpec |
|
* This implementation returns {@code listIterator(0)}. |
|
* |
|
* @see #listIterator(int) |
|
*/ |
|
public ListIterator<E> listIterator() { |
|
return listIterator(0); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* |
|
* @implSpec |
|
* This implementation returns a straightforward implementation of the |
|
* {@code ListIterator} interface that extends the implementation of the |
|
* {@code Iterator} interface returned by the {@code iterator()} method. |
|
* The {@code ListIterator} implementation relies on the backing list's |
|
* {@code get(int)}, {@code set(int, E)}, {@code add(int, E)} |
|
* and {@code remove(int)} methods. |
|
* |
|
* <p>Note that the list iterator returned by this implementation will |
|
* throw an {@link UnsupportedOperationException} in response to its |
|
* {@code remove}, {@code set} and {@code add} methods unless the |
|
* list's {@code remove(int)}, {@code set(int, E)}, and |
|
* {@code add(int, E)} methods are overridden. |
|
* |
|
* <p>This implementation can be made to throw runtime exceptions in the |
|
* face of concurrent modification, as described in the specification for |
|
* the (protected) {@link #modCount} field. |
|
* |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
*/ |
|
public ListIterator<E> listIterator(final int index) { |
|
rangeCheckForAdd(index); |
|
return new ListItr(index); |
|
} |
|
private class Itr implements Iterator<E> { |
|
/** |
|
* Index of element to be returned by subsequent call to next. |
|
*/ |
|
int cursor = 0; |
|
/** |
|
* Index of element returned by most recent call to next or |
|
* previous. Reset to -1 if this element is deleted by a call |
|
* to remove. |
|
*/ |
|
int lastRet = -1; |
|
/** |
|
* The modCount value that the iterator believes that the backing |
|
* List should have. If this expectation is violated, the iterator |
|
* has detected concurrent modification. |
|
*/ |
|
int expectedModCount = modCount; |
|
public boolean hasNext() { |
|
return cursor != size(); |
|
} |
|
public E next() { |
|
checkForComodification(); |
|
try { |
|
int i = cursor; |
|
E next = get(i); |
|
lastRet = i; |
|
cursor = i + 1; |
|
return next; |
|
} catch (IndexOutOfBoundsException e) { |
|
checkForComodification(); |
|
throw new NoSuchElementException(); |
|
} |
|
} |
|
public void remove() { |
|
if (lastRet < 0) |
|
throw new IllegalStateException(); |
|
checkForComodification(); |
|
try { |
|
AbstractList.this.remove(lastRet); |
|
if (lastRet < cursor) |
|
cursor--; |
|
lastRet = -1; |
|
expectedModCount = modCount; |
|
} catch (IndexOutOfBoundsException e) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
final void checkForComodification() { |
|
if (modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
private class ListItr extends Itr implements ListIterator<E> { |
|
ListItr(int index) { |
|
cursor = index; |
|
} |
|
public boolean hasPrevious() { |
|
return cursor != 0; |
|
} |
|
public E previous() { |
|
checkForComodification(); |
|
try { |
|
int i = cursor - 1; |
|
E previous = get(i); |
|
lastRet = cursor = i; |
|
return previous; |
|
} catch (IndexOutOfBoundsException e) { |
|
checkForComodification(); |
|
throw new NoSuchElementException(); |
|
} |
|
} |
|
public int nextIndex() { |
|
return cursor; |
|
} |
|
public int previousIndex() { |
|
return cursor-1; |
|
} |
|
public void set(E e) { |
|
if (lastRet < 0) |
|
throw new IllegalStateException(); |
|
checkForComodification(); |
|
try { |
|
AbstractList.this.set(lastRet, e); |
|
expectedModCount = modCount; |
|
} catch (IndexOutOfBoundsException ex) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
public void add(E e) { |
|
checkForComodification(); |
|
try { |
|
int i = cursor; |
|
AbstractList.this.add(i, e); |
|
lastRet = -1; |
|
cursor = i + 1; |
|
expectedModCount = modCount; |
|
} catch (IndexOutOfBoundsException ex) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* |
|
* @implSpec |
|
* This implementation returns a list that subclasses |
|
* {@code AbstractList}. The subclass stores, in private fields, the |
|
* size of the subList (which can change over its lifetime), and the |
|
* expected {@code modCount} value of the backing list. There are two |
|
* variants of the subclass, one of which implements {@code RandomAccess}. |
|
* If this list implements {@code RandomAccess} the returned list will |
|
* be an instance of the subclass that implements {@code RandomAccess}. |
|
* |
|
* <p>The subclass's {@code set(int, E)}, {@code get(int)}, |
|
* {@code add(int, E)}, {@code remove(int)}, {@code addAll(int, |
|
* Collection)} and {@code removeRange(int, int)} methods all |
|
* delegate to the corresponding methods on the backing abstract list, |
|
* after bounds-checking the index and adjusting for the offset. The |
|
* {@code addAll(Collection c)} method merely returns {@code addAll(size, |
|
* c)}. |
|
* |
|
* <p>The {@code listIterator(int)} method returns a "wrapper object" |
|
* over a list iterator on the backing list, which is created with the |
|
* corresponding method on the backing list. The {@code iterator} method |
|
* merely returns {@code listIterator()}, and the {@code size} method |
|
* merely returns the subclass's {@code size} field. |
|
* |
|
* <p>All methods first check to see if the actual {@code modCount} of |
|
* the backing list is equal to its expected value, and throw a |
|
* {@code ConcurrentModificationException} if it is not. |
|
* |
|
* @throws IndexOutOfBoundsException if an endpoint index value is out of range |
|
* {@code (fromIndex < 0 || toIndex > size)} |
|
* @throws IllegalArgumentException if the endpoint indices are out of order |
|
* {@code (fromIndex > toIndex)} |
|
*/ |
|
public List<E> subList(int fromIndex, int toIndex) { |
|
subListRangeCheck(fromIndex, toIndex, size()); |
|
return (this instanceof RandomAccess ? |
|
new RandomAccessSubList<>(this, fromIndex, toIndex) : |
|
new SubList<>(this, fromIndex, toIndex)); |
|
} |
|
static void subListRangeCheck(int fromIndex, int toIndex, int size) { |
|
if (fromIndex < 0) |
|
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex); |
|
if (toIndex > size) |
|
throw new IndexOutOfBoundsException("toIndex = " + toIndex); |
|
if (fromIndex > toIndex) |
|
throw new IllegalArgumentException("fromIndex(" + fromIndex + |
|
") > toIndex(" + toIndex + ")"); |
|
} |
|
// Comparison and hashing |
|
/** |
|
* Compares the specified object with this list for equality. Returns |
|
* {@code true} if and only if the specified object is also a list, both |
|
* lists have the same size, and all corresponding pairs of elements in |
|
* the two lists are <i>equal</i>. (Two elements {@code e1} and |
|
* {@code e2} are <i>equal</i> if {@code (e1==null ? e2==null : |
|
* e1.equals(e2))}.) In other words, two lists are defined to be |
|
* equal if they contain the same elements in the same order. |
|
* |
|
* @implSpec |
|
* This implementation first checks if the specified object is this |
|
* list. If so, it returns {@code true}; if not, it checks if the |
|
* specified object is a list. If not, it returns {@code false}; if so, |
|
* it iterates over both lists, comparing corresponding pairs of elements. |
|
* If any comparison returns {@code false}, this method returns |
|
* {@code false}. If either iterator runs out of elements before the |
|
* other it returns {@code false} (as the lists are of unequal length); |
|
* otherwise it returns {@code true} when the iterations complete. |
|
* |
|
* @param o the object to be compared for equality with this list |
|
* @return {@code true} if the specified object is equal to this list |
|
*/ |
|
public boolean equals(Object o) { |
|
if (o == this) |
|
return true; |
|
if (!(o instanceof List)) |
|
return false; |
|
ListIterator<E> e1 = listIterator(); |
|
ListIterator<?> e2 = ((List<?>) o).listIterator(); |
|
while (e1.hasNext() && e2.hasNext()) { |
|
E o1 = e1.next(); |
|
Object o2 = e2.next(); |
|
if (!(o1==null ? o2==null : o1.equals(o2))) |
|
return false; |
|
} |
|
return !(e1.hasNext() || e2.hasNext()); |
|
} |
|
/** |
|
* Returns the hash code value for this list. |
|
* |
|
* @implSpec |
|
* This implementation uses exactly the code that is used to define the |
|
* list hash function in the documentation for the {@link List#hashCode} |
|
* method. |
|
* |
|
* @return the hash code value for this list |
|
*/ |
|
public int hashCode() { |
|
int hashCode = 1; |
|
for (E e : this) |
|
hashCode = 31*hashCode + (e==null ? 0 : e.hashCode()); |
|
return hashCode; |
|
} |
|
/** |
|
* Removes from this list all of the elements whose index is between |
|
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. |
|
* Shifts any succeeding elements to the left (reduces their index). |
|
* This call shortens the list by {@code (toIndex - fromIndex)} elements. |
|
* (If {@code toIndex==fromIndex}, this operation has no effect.) |
|
* |
|
* <p>This method is called by the {@code clear} operation on this list |
|
* and its subLists. Overriding this method to take advantage of |
|
* the internals of the list implementation can <i>substantially</i> |
|
* improve the performance of the {@code clear} operation on this list |
|
* and its subLists. |
|
* |
|
* @implSpec |
|
* This implementation gets a list iterator positioned before |
|
* {@code fromIndex}, and repeatedly calls {@code ListIterator.next} |
|
* followed by {@code ListIterator.remove} until the entire range has |
|
* been removed. <b>Note: if {@code ListIterator.remove} requires linear |
|
* time, this implementation requires quadratic time.</b> |
|
* |
|
* @param fromIndex index of first element to be removed |
|
* @param toIndex index after last element to be removed |
|
*/ |
|
protected void removeRange(int fromIndex, int toIndex) { |
|
ListIterator<E> it = listIterator(fromIndex); |
|
for (int i=0, n=toIndex-fromIndex; i<n; i++) { |
|
it.next(); |
|
it.remove(); |
|
} |
|
} |
|
/** |
|
* The number of times this list has been <i>structurally modified</i>. |
|
* Structural modifications are those that change the size of the |
|
* list, or otherwise perturb it in such a fashion that iterations in |
|
* progress may yield incorrect results. |
|
* |
|
* <p>This field is used by the iterator and list iterator implementation |
|
* returned by the {@code iterator} and {@code listIterator} methods. |
|
* If the value of this field changes unexpectedly, the iterator (or list |
|
* iterator) will throw a {@code ConcurrentModificationException} in |
|
* response to the {@code next}, {@code remove}, {@code previous}, |
|
* {@code set} or {@code add} operations. This provides |
|
* <i>fail-fast</i> behavior, rather than non-deterministic behavior in |
|
* the face of concurrent modification during iteration. |
|
* |
|
* <p><b>Use of this field by subclasses is optional.</b> If a subclass |
|
* wishes to provide fail-fast iterators (and list iterators), then it |
|
* merely has to increment this field in its {@code add(int, E)} and |
|
* {@code remove(int)} methods (and any other methods that it overrides |
|
* that result in structural modifications to the list). A single call to |
|
* {@code add(int, E)} or {@code remove(int)} must add no more than |
|
* one to this field, or the iterators (and list iterators) will throw |
|
* bogus {@code ConcurrentModificationExceptions}. If an implementation |
|
* does not wish to provide fail-fast iterators, this field may be |
|
* ignored. |
|
*/ |
|
protected transient int modCount = 0; |
|
private void rangeCheckForAdd(int index) { |
|
if (index < 0 || index > size()) |
|
throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); |
|
} |
|
private String outOfBoundsMsg(int index) { |
|
return "Index: "+index+", Size: "+size(); |
|
} |
|
/** |
|
* An index-based split-by-two, lazily initialized Spliterator covering |
|
* a List that access elements via {@link List#get}. |
|
* |
|
* If access results in an IndexOutOfBoundsException then a |
|
* ConcurrentModificationException is thrown instead (since the list has |
|
* been structurally modified while traversing). |
|
* |
|
* If the List is an instance of AbstractList then concurrent modification |
|
* checking is performed using the AbstractList's modCount field. |
|
*/ |
|
static final class RandomAccessSpliterator<E> implements Spliterator<E> { |
|
private final List<E> list; |
|
private int index; // current index, modified on advance/split |
|
private int fence; // -1 until used; then one past last index |
|
// The following fields are valid if covering an AbstractList |
|
private final AbstractList<E> alist; |
|
private int expectedModCount; // initialized when fence set |
|
RandomAccessSpliterator(List<E> list) { |
|
assert list instanceof RandomAccess; |
|
this.list = list; |
|
this.index = 0; |
|
this.fence = -1; |
|
this.alist = list instanceof AbstractList ? (AbstractList<E>) list : null; |
|
this.expectedModCount = alist != null ? alist.modCount : 0; |
|
} |
|
/** Create new spliterator covering the given range */ |
|
private RandomAccessSpliterator(RandomAccessSpliterator<E> parent, |
|
int origin, int fence) { |
|
this.list = parent.list; |
|
this.index = origin; |
|
this.fence = fence; |
|
this.alist = parent.alist; |
|
this.expectedModCount = parent.expectedModCount; |
|
} |
|
private int getFence() { // initialize fence to size on first use |
|
int hi; |
|
List<E> lst = list; |
|
if ((hi = fence) < 0) { |
|
if (alist != null) { |
|
expectedModCount = alist.modCount; |
|
} |
|
hi = fence = lst.size(); |
|
} |
|
return hi; |
|
} |
|
public Spliterator<E> trySplit() { |
|
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; |
|
return (lo >= mid) ? null : // divide range in half unless too small |
|
new RandomAccessSpliterator<>(this, lo, index = mid); |
|
} |
|
public boolean tryAdvance(Consumer<? super E> action) { |
|
if (action == null) |
|
throw new NullPointerException(); |
|
int hi = getFence(), i = index; |
|
if (i < hi) { |
|
index = i + 1; |
|
action.accept(get(list, i)); |
|
checkAbstractListModCount(alist, expectedModCount); |
|
return true; |
|
} |
|
return false; |
|
} |
|
public void forEachRemaining(Consumer<? super E> action) { |
|
Objects.requireNonNull(action); |
|
List<E> lst = list; |
|
int hi = getFence(); |
|
int i = index; |
|
index = hi; |
|
for (; i < hi; i++) { |
|
action.accept(get(lst, i)); |
|
} |
|
checkAbstractListModCount(alist, expectedModCount); |
|
} |
|
public long estimateSize() { |
|
return (long) (getFence() - index); |
|
} |
|
public int characteristics() { |
|
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; |
|
} |
|
private static <E> E get(List<E> list, int i) { |
|
try { |
|
return list.get(i); |
|
} catch (IndexOutOfBoundsException ex) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
static void checkAbstractListModCount(AbstractList<?> alist, int expectedModCount) { |
|
if (alist != null && alist.modCount != expectedModCount) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
} |
|
private static class SubList<E> extends AbstractList<E> { |
|
private final AbstractList<E> root; |
|
private final SubList<E> parent; |
|
private final int offset; |
|
protected int size; |
|
/** |
|
* Constructs a sublist of an arbitrary AbstractList, which is |
|
* not a SubList itself. |
|
*/ |
|
public SubList(AbstractList<E> root, int fromIndex, int toIndex) { |
|
this.root = root; |
|
this.parent = null; |
|
this.offset = fromIndex; |
|
this.size = toIndex - fromIndex; |
|
this.modCount = root.modCount; |
|
} |
|
/** |
|
* Constructs a sublist of another SubList. |
|
*/ |
|
protected SubList(SubList<E> parent, int fromIndex, int toIndex) { |
|
this.root = parent.root; |
|
this.parent = parent; |
|
this.offset = parent.offset + fromIndex; |
|
this.size = toIndex - fromIndex; |
|
this.modCount = root.modCount; |
|
} |
|
public E set(int index, E element) { |
|
Objects.checkIndex(index, size); |
|
checkForComodification(); |
|
return root.set(offset + index, element); |
|
} |
|
public E get(int index) { |
|
Objects.checkIndex(index, size); |
|
checkForComodification(); |
|
return root.get(offset + index); |
|
} |
|
public int size() { |
|
checkForComodification(); |
|
return size; |
|
} |
|
public void add(int index, E element) { |
|
rangeCheckForAdd(index); |
|
checkForComodification(); |
|
root.add(offset + index, element); |
|
updateSizeAndModCount(1); |
|
} |
|
public E remove(int index) { |
|
Objects.checkIndex(index, size); |
|
checkForComodification(); |
|
E result = root.remove(offset + index); |
|
updateSizeAndModCount(-1); |
|
return result; |
|
} |
|
protected void removeRange(int fromIndex, int toIndex) { |
|
checkForComodification(); |
|
root.removeRange(offset + fromIndex, offset + toIndex); |
|
updateSizeAndModCount(fromIndex - toIndex); |
|
} |
|
public boolean addAll(Collection<? extends E> c) { |
|
return addAll(size, c); |
|
} |
|
public boolean addAll(int index, Collection<? extends E> c) { |
|
rangeCheckForAdd(index); |
|
int cSize = c.size(); |
|
if (cSize==0) |
|
return false; |
|
checkForComodification(); |
|
root.addAll(offset + index, c); |
|
updateSizeAndModCount(cSize); |
|
return true; |
|
} |
|
public Iterator<E> iterator() { |
|
return listIterator(); |
|
} |
|
public ListIterator<E> listIterator(int index) { |
|
checkForComodification(); |
|
rangeCheckForAdd(index); |
|
return new ListIterator<E>() { |
|
private final ListIterator<E> i = |
|
root.listIterator(offset + index); |
|
public boolean hasNext() { |
|
return nextIndex() < size; |
|
} |
|
public E next() { |
|
if (hasNext()) |
|
return i.next(); |
|
else |
|
throw new NoSuchElementException(); |
|
} |
|
public boolean hasPrevious() { |
|
return previousIndex() >= 0; |
|
} |
|
public E previous() { |
|
if (hasPrevious()) |
|
return i.previous(); |
|
else |
|
throw new NoSuchElementException(); |
|
} |
|
public int nextIndex() { |
|
return i.nextIndex() - offset; |
|
} |
|
public int previousIndex() { |
|
return i.previousIndex() - offset; |
|
} |
|
public void remove() { |
|
i.remove(); |
|
updateSizeAndModCount(-1); |
|
} |
|
public void set(E e) { |
|
i.set(e); |
|
} |
|
public void add(E e) { |
|
i.add(e); |
|
updateSizeAndModCount(1); |
|
} |
|
}; |
|
} |
|
public List<E> subList(int fromIndex, int toIndex) { |
|
subListRangeCheck(fromIndex, toIndex, size); |
|
return new SubList<>(this, fromIndex, toIndex); |
|
} |
|
private void rangeCheckForAdd(int index) { |
|
if (index < 0 || index > size) |
|
throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); |
|
} |
|
private String outOfBoundsMsg(int index) { |
|
return "Index: "+index+", Size: "+size; |
|
} |
|
private void checkForComodification() { |
|
if (root.modCount != this.modCount) |
|
throw new ConcurrentModificationException(); |
|
} |
|
private void updateSizeAndModCount(int sizeChange) { |
|
SubList<E> slist = this; |
|
do { |
|
slist.size += sizeChange; |
|
slist.modCount = root.modCount; |
|
slist = slist.parent; |
|
} while (slist != null); |
|
} |
|
} |
|
private static class RandomAccessSubList<E> |
|
extends SubList<E> implements RandomAccess { |
|
/** |
|
* Constructs a sublist of an arbitrary AbstractList, which is |
|
* not a RandomAccessSubList itself. |
|
*/ |
|
RandomAccessSubList(AbstractList<E> root, |
|
int fromIndex, int toIndex) { |
|
super(root, fromIndex, toIndex); |
|
} |
|
/** |
|
* Constructs a sublist of another RandomAccessSubList. |
|
*/ |
|
RandomAccessSubList(RandomAccessSubList<E> parent, |
|
int fromIndex, int toIndex) { |
|
super(parent, fromIndex, toIndex); |
|
} |
|
public List<E> subList(int fromIndex, int toIndex) { |
|
subListRangeCheck(fromIndex, toIndex, size); |
|
return new RandomAccessSubList<>(this, fromIndex, toIndex); |
|
} |
|
} |
|
} |