/* |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
/* |
|
* This file is available under and governed by the GNU General Public |
|
* License version 2 only, as published by the Free Software Foundation. |
|
* However, the following notice accompanied the original version of this |
|
* file: |
|
* |
|
* Written by Doug Lea with assistance from members of JCP JSR-166 |
|
* Expert Group and released to the public domain, as explained at |
|
* http://creativecommons.org/publicdomain/zero/1.0/ |
|
*/ |
|
package java.util.concurrent; |
|
import java.util.AbstractQueue; |
|
import java.util.Collection; |
|
import java.util.Iterator; |
|
import java.util.NoSuchElementException; |
|
import java.util.Objects; |
|
import java.util.Spliterator; |
|
import java.util.Spliterators; |
|
import java.util.concurrent.atomic.AtomicInteger; |
|
import java.util.concurrent.locks.Condition; |
|
import java.util.concurrent.locks.ReentrantLock; |
|
import java.util.function.Consumer; |
|
import java.util.function.Predicate; |
|
/** |
|
* An optionally-bounded {@linkplain BlockingQueue blocking queue} based on |
|
* linked nodes. |
|
* This queue orders elements FIFO (first-in-first-out). |
|
* The <em>head</em> of the queue is that element that has been on the |
|
* queue the longest time. |
|
* The <em>tail</em> of the queue is that element that has been on the |
|
* queue the shortest time. New elements |
|
* are inserted at the tail of the queue, and the queue retrieval |
|
* operations obtain elements at the head of the queue. |
|
* Linked queues typically have higher throughput than array-based queues but |
|
* less predictable performance in most concurrent applications. |
|
* |
|
* <p>The optional capacity bound constructor argument serves as a |
|
* way to prevent excessive queue expansion. The capacity, if unspecified, |
|
* is equal to {@link Integer#MAX_VALUE}. Linked nodes are |
|
* dynamically created upon each insertion unless this would bring the |
|
* queue above capacity. |
|
* |
|
* <p>This class and its iterator implement all of the <em>optional</em> |
|
* methods of the {@link Collection} and {@link Iterator} interfaces. |
|
* |
|
* <p>This class is a member of the |
|
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework"> |
|
* Java Collections Framework</a>. |
|
* |
|
* @since 1.5 |
|
* @author Doug Lea |
|
* @param <E> the type of elements held in this queue |
|
*/ |
|
public class LinkedBlockingQueue<E> extends AbstractQueue<E> |
|
implements BlockingQueue<E>, java.io.Serializable { |
|
private static final long serialVersionUID = -6903933977591709194L; |
|
/* |
|
* A variant of the "two lock queue" algorithm. The putLock gates |
|
* entry to put (and offer), and has an associated condition for |
|
* waiting puts. Similarly for the takeLock. The "count" field |
|
* that they both rely on is maintained as an atomic to avoid |
|
* needing to get both locks in most cases. Also, to minimize need |
|
* for puts to get takeLock and vice-versa, cascading notifies are |
|
* used. When a put notices that it has enabled at least one take, |
|
* it signals taker. That taker in turn signals others if more |
|
* items have been entered since the signal. And symmetrically for |
|
* takes signalling puts. Operations such as remove(Object) and |
|
* iterators acquire both locks. |
|
* |
|
* Visibility between writers and readers is provided as follows: |
|
* |
|
* Whenever an element is enqueued, the putLock is acquired and |
|
* count updated. A subsequent reader guarantees visibility to the |
|
* enqueued Node by either acquiring the putLock (via fullyLock) |
|
* or by acquiring the takeLock, and then reading n = count.get(); |
|
* this gives visibility to the first n items. |
|
* |
|
* To implement weakly consistent iterators, it appears we need to |
|
* keep all Nodes GC-reachable from a predecessor dequeued Node. |
|
* That would cause two problems: |
|
* - allow a rogue Iterator to cause unbounded memory retention |
|
* - cause cross-generational linking of old Nodes to new Nodes if |
|
* a Node was tenured while live, which generational GCs have a |
|
* hard time dealing with, causing repeated major collections. |
|
* However, only non-deleted Nodes need to be reachable from |
|
* dequeued Nodes, and reachability does not necessarily have to |
|
* be of the kind understood by the GC. We use the trick of |
|
* linking a Node that has just been dequeued to itself. Such a |
|
* self-link implicitly means to advance to head.next. |
|
*/ |
|
/** |
|
* Linked list node class. |
|
*/ |
|
static class Node<E> { |
|
E item; |
|
/** |
|
* One of: |
|
* - the real successor Node |
|
* - this Node, meaning the successor is head.next |
|
* - null, meaning there is no successor (this is the last node) |
|
*/ |
|
Node<E> next; |
|
Node(E x) { item = x; } |
|
} |
|
/** The capacity bound, or Integer.MAX_VALUE if none */ |
|
private final int capacity; |
|
/** Current number of elements */ |
|
private final AtomicInteger count = new AtomicInteger(); |
|
/** |
|
* Head of linked list. |
|
* Invariant: head.item == null |
|
*/ |
|
transient Node<E> head; |
|
/** |
|
* Tail of linked list. |
|
* Invariant: last.next == null |
|
*/ |
|
private transient Node<E> last; |
|
/** Lock held by take, poll, etc */ |
|
private final ReentrantLock takeLock = new ReentrantLock(); |
|
/** Wait queue for waiting takes */ |
|
private final Condition notEmpty = takeLock.newCondition(); |
|
/** Lock held by put, offer, etc */ |
|
private final ReentrantLock putLock = new ReentrantLock(); |
|
/** Wait queue for waiting puts */ |
|
private final Condition notFull = putLock.newCondition(); |
|
/** |
|
* Signals a waiting take. Called only from put/offer (which do not |
|
* otherwise ordinarily lock takeLock.) |
|
*/ |
|
private void signalNotEmpty() { |
|
final ReentrantLock takeLock = this.takeLock; |
|
takeLock.lock(); |
|
try { |
|
notEmpty.signal(); |
|
} finally { |
|
takeLock.unlock(); |
|
} |
|
} |
|
/** |
|
* Signals a waiting put. Called only from take/poll. |
|
*/ |
|
private void signalNotFull() { |
|
final ReentrantLock putLock = this.putLock; |
|
putLock.lock(); |
|
try { |
|
notFull.signal(); |
|
} finally { |
|
putLock.unlock(); |
|
} |
|
} |
|
/** |
|
* Links node at end of queue. |
|
* |
|
* @param node the node |
|
*/ |
|
private void enqueue(Node<E> node) { |
|
// assert putLock.isHeldByCurrentThread(); |
|
// assert last.next == null; |
|
last = last.next = node; |
|
} |
|
/** |
|
* Removes a node from head of queue. |
|
* |
|
* @return the node |
|
*/ |
|
private E dequeue() { |
|
// assert takeLock.isHeldByCurrentThread(); |
|
// assert head.item == null; |
|
Node<E> h = head; |
|
Node<E> first = h.next; |
|
h.next = h; // help GC |
|
head = first; |
|
E x = first.item; |
|
first.item = null; |
|
return x; |
|
} |
|
/** |
|
* Locks to prevent both puts and takes. |
|
*/ |
|
void fullyLock() { |
|
putLock.lock(); |
|
takeLock.lock(); |
|
} |
|
/** |
|
* Unlocks to allow both puts and takes. |
|
*/ |
|
void fullyUnlock() { |
|
takeLock.unlock(); |
|
putLock.unlock(); |
|
} |
|
/** |
|
* Creates a {@code LinkedBlockingQueue} with a capacity of |
|
* {@link Integer#MAX_VALUE}. |
|
*/ |
|
public LinkedBlockingQueue() { |
|
this(Integer.MAX_VALUE); |
|
} |
|
/** |
|
* Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity. |
|
* |
|
* @param capacity the capacity of this queue |
|
* @throws IllegalArgumentException if {@code capacity} is not greater |
|
* than zero |
|
*/ |
|
public LinkedBlockingQueue(int capacity) { |
|
if (capacity <= 0) throw new IllegalArgumentException(); |
|
this.capacity = capacity; |
|
last = head = new Node<E>(null); |
|
} |
|
/** |
|
* Creates a {@code LinkedBlockingQueue} with a capacity of |
|
* {@link Integer#MAX_VALUE}, initially containing the elements of the |
|
* given collection, |
|
* added in traversal order of the collection's iterator. |
|
* |
|
* @param c the collection of elements to initially contain |
|
* @throws NullPointerException if the specified collection or any |
|
* of its elements are null |
|
*/ |
|
public LinkedBlockingQueue(Collection<? extends E> c) { |
|
this(Integer.MAX_VALUE); |
|
final ReentrantLock putLock = this.putLock; |
|
putLock.lock(); // Never contended, but necessary for visibility |
|
try { |
|
int n = 0; |
|
for (E e : c) { |
|
if (e == null) |
|
throw new NullPointerException(); |
|
if (n == capacity) |
|
throw new IllegalStateException("Queue full"); |
|
enqueue(new Node<E>(e)); |
|
++n; |
|
} |
|
count.set(n); |
|
} finally { |
|
putLock.unlock(); |
|
} |
|
} |
|
// this doc comment is overridden to remove the reference to collections |
|
// greater in size than Integer.MAX_VALUE |
|
/** |
|
* Returns the number of elements in this queue. |
|
* |
|
* @return the number of elements in this queue |
|
*/ |
|
public int size() { |
|
return count.get(); |
|
} |
|
// this doc comment is a modified copy of the inherited doc comment, |
|
// without the reference to unlimited queues. |
|
/** |
|
* Returns the number of additional elements that this queue can ideally |
|
* (in the absence of memory or resource constraints) accept without |
|
* blocking. This is always equal to the initial capacity of this queue |
|
* less the current {@code size} of this queue. |
|
* |
|
* <p>Note that you <em>cannot</em> always tell if an attempt to insert |
|
* an element will succeed by inspecting {@code remainingCapacity} |
|
* because it may be the case that another thread is about to |
|
* insert or remove an element. |
|
*/ |
|
public int remainingCapacity() { |
|
return capacity - count.get(); |
|
} |
|
/** |
|
* Inserts the specified element at the tail of this queue, waiting if |
|
* necessary for space to become available. |
|
* |
|
* @throws InterruptedException {@inheritDoc} |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public void put(E e) throws InterruptedException { |
|
if (e == null) throw new NullPointerException(); |
|
final int c; |
|
final Node<E> node = new Node<E>(e); |
|
final ReentrantLock putLock = this.putLock; |
|
final AtomicInteger count = this.count; |
|
putLock.lockInterruptibly(); |
|
try { |
|
/* |
|
* Note that count is used in wait guard even though it is |
|
* not protected by lock. This works because count can |
|
* only decrease at this point (all other puts are shut |
|
* out by lock), and we (or some other waiting put) are |
|
* signalled if it ever changes from capacity. Similarly |
|
* for all other uses of count in other wait guards. |
|
*/ |
|
while (count.get() == capacity) { |
|
notFull.await(); |
|
} |
|
enqueue(node); |
|
c = count.getAndIncrement(); |
|
if (c + 1 < capacity) |
|
notFull.signal(); |
|
} finally { |
|
putLock.unlock(); |
|
} |
|
if (c == 0) |
|
signalNotEmpty(); |
|
} |
|
/** |
|
* Inserts the specified element at the tail of this queue, waiting if |
|
* necessary up to the specified wait time for space to become available. |
|
* |
|
* @return {@code true} if successful, or {@code false} if |
|
* the specified waiting time elapses before space is available |
|
* @throws InterruptedException {@inheritDoc} |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public boolean offer(E e, long timeout, TimeUnit unit) |
|
throws InterruptedException { |
|
if (e == null) throw new NullPointerException(); |
|
long nanos = unit.toNanos(timeout); |
|
final int c; |
|
final ReentrantLock putLock = this.putLock; |
|
final AtomicInteger count = this.count; |
|
putLock.lockInterruptibly(); |
|
try { |
|
while (count.get() == capacity) { |
|
if (nanos <= 0L) |
|
return false; |
|
nanos = notFull.awaitNanos(nanos); |
|
} |
|
enqueue(new Node<E>(e)); |
|
c = count.getAndIncrement(); |
|
if (c + 1 < capacity) |
|
notFull.signal(); |
|
} finally { |
|
putLock.unlock(); |
|
} |
|
if (c == 0) |
|
signalNotEmpty(); |
|
return true; |
|
} |
|
/** |
|
* Inserts the specified element at the tail of this queue if it is |
|
* possible to do so immediately without exceeding the queue's capacity, |
|
* returning {@code true} upon success and {@code false} if this queue |
|
* is full. |
|
* When using a capacity-restricted queue, this method is generally |
|
* preferable to method {@link BlockingQueue#add add}, which can fail to |
|
* insert an element only by throwing an exception. |
|
* |
|
* @throws NullPointerException if the specified element is null |
|
*/ |
|
public boolean offer(E e) { |
|
if (e == null) throw new NullPointerException(); |
|
final AtomicInteger count = this.count; |
|
if (count.get() == capacity) |
|
return false; |
|
final int c; |
|
final Node<E> node = new Node<E>(e); |
|
final ReentrantLock putLock = this.putLock; |
|
putLock.lock(); |
|
try { |
|
if (count.get() == capacity) |
|
return false; |
|
enqueue(node); |
|
c = count.getAndIncrement(); |
|
if (c + 1 < capacity) |
|
notFull.signal(); |
|
} finally { |
|
putLock.unlock(); |
|
} |
|
if (c == 0) |
|
signalNotEmpty(); |
|
return true; |
|
} |
|
public E take() throws InterruptedException { |
|
final E x; |
|
final int c; |
|
final AtomicInteger count = this.count; |
|
final ReentrantLock takeLock = this.takeLock; |
|
takeLock.lockInterruptibly(); |
|
try { |
|
while (count.get() == 0) { |
|
notEmpty.await(); |
|
} |
|
x = dequeue(); |
|
c = count.getAndDecrement(); |
|
if (c > 1) |
|
notEmpty.signal(); |
|
} finally { |
|
takeLock.unlock(); |
|
} |
|
if (c == capacity) |
|
signalNotFull(); |
|
return x; |
|
} |
|
public E poll(long timeout, TimeUnit unit) throws InterruptedException { |
|
final E x; |
|
final int c; |
|
long nanos = unit.toNanos(timeout); |
|
final AtomicInteger count = this.count; |
|
final ReentrantLock takeLock = this.takeLock; |
|
takeLock.lockInterruptibly(); |
|
try { |
|
while (count.get() == 0) { |
|
if (nanos <= 0L) |
|
return null; |
|
nanos = notEmpty.awaitNanos(nanos); |
|
} |
|
x = dequeue(); |
|
c = count.getAndDecrement(); |
|
if (c > 1) |
|
notEmpty.signal(); |
|
} finally { |
|
takeLock.unlock(); |
|
} |
|
if (c == capacity) |
|
signalNotFull(); |
|
return x; |
|
} |
|
public E poll() { |
|
final AtomicInteger count = this.count; |
|
if (count.get() == 0) |
|
return null; |
|
final E x; |
|
final int c; |
|
final ReentrantLock takeLock = this.takeLock; |
|
takeLock.lock(); |
|
try { |
|
if (count.get() == 0) |
|
return null; |
|
x = dequeue(); |
|
c = count.getAndDecrement(); |
|
if (c > 1) |
|
notEmpty.signal(); |
|
} finally { |
|
takeLock.unlock(); |
|
} |
|
if (c == capacity) |
|
signalNotFull(); |
|
return x; |
|
} |
|
public E peek() { |
|
final AtomicInteger count = this.count; |
|
if (count.get() == 0) |
|
return null; |
|
final ReentrantLock takeLock = this.takeLock; |
|
takeLock.lock(); |
|
try { |
|
return (count.get() > 0) ? head.next.item : null; |
|
} finally { |
|
takeLock.unlock(); |
|
} |
|
} |
|
/** |
|
* Unlinks interior Node p with predecessor pred. |
|
*/ |
|
void unlink(Node<E> p, Node<E> pred) { |
|
// assert putLock.isHeldByCurrentThread(); |
|
// assert takeLock.isHeldByCurrentThread(); |
|
// p.next is not changed, to allow iterators that are |
|
// traversing p to maintain their weak-consistency guarantee. |
|
p.item = null; |
|
pred.next = p.next; |
|
if (last == p) |
|
last = pred; |
|
if (count.getAndDecrement() == capacity) |
|
notFull.signal(); |
|
} |
|
/** |
|
* Removes a single instance of the specified element from this queue, |
|
* if it is present. More formally, removes an element {@code e} such |
|
* that {@code o.equals(e)}, if this queue contains one or more such |
|
* elements. |
|
* Returns {@code true} if this queue contained the specified element |
|
* (or equivalently, if this queue changed as a result of the call). |
|
* |
|
* @param o element to be removed from this queue, if present |
|
* @return {@code true} if this queue changed as a result of the call |
|
*/ |
|
public boolean remove(Object o) { |
|
if (o == null) return false; |
|
fullyLock(); |
|
try { |
|
for (Node<E> pred = head, p = pred.next; |
|
p != null; |
|
pred = p, p = p.next) { |
|
if (o.equals(p.item)) { |
|
unlink(p, pred); |
|
return true; |
|
} |
|
} |
|
return false; |
|
} finally { |
|
fullyUnlock(); |
|
} |
|
} |
|
/** |
|
* Returns {@code true} if this queue contains the specified element. |
|
* More formally, returns {@code true} if and only if this queue contains |
|
* at least one element {@code e} such that {@code o.equals(e)}. |
|
* |
|
* @param o object to be checked for containment in this queue |
|
* @return {@code true} if this queue contains the specified element |
|
*/ |
|
public boolean contains(Object o) { |
|
if (o == null) return false; |
|
fullyLock(); |
|
try { |
|
for (Node<E> p = head.next; p != null; p = p.next) |
|
if (o.equals(p.item)) |
|
return true; |
|
return false; |
|
} finally { |
|
fullyUnlock(); |
|
} |
|
} |
|
/** |
|
* Returns an array containing all of the elements in this queue, in |
|
* proper sequence. |
|
* |
|
* <p>The returned array will be "safe" in that no references to it are |
|
* maintained by this queue. (In other words, this method must allocate |
|
* a new array). The caller is thus free to modify the returned array. |
|
* |
|
* <p>This method acts as bridge between array-based and collection-based |
|
* APIs. |
|
* |
|
* @return an array containing all of the elements in this queue |
|
*/ |
|
public Object[] toArray() { |
|
fullyLock(); |
|
try { |
|
int size = count.get(); |
|
Object[] a = new Object[size]; |
|
int k = 0; |
|
for (Node<E> p = head.next; p != null; p = p.next) |
|
a[k++] = p.item; |
|
return a; |
|
} finally { |
|
fullyUnlock(); |
|
} |
|
} |
|
/** |
|
* Returns an array containing all of the elements in this queue, in |
|
* proper sequence; the runtime type of the returned array is that of |
|
* the specified array. If the queue fits in the specified array, it |
|
* is returned therein. Otherwise, a new array is allocated with the |
|
* runtime type of the specified array and the size of this queue. |
|
* |
|
* <p>If this queue fits in the specified array with room to spare |
|
* (i.e., the array has more elements than this queue), the element in |
|
* the array immediately following the end of the queue is set to |
|
* {@code null}. |
|
* |
|
* <p>Like the {@link #toArray()} method, this method acts as bridge between |
|
* array-based and collection-based APIs. Further, this method allows |
|
* precise control over the runtime type of the output array, and may, |
|
* under certain circumstances, be used to save allocation costs. |
|
* |
|
* <p>Suppose {@code x} is a queue known to contain only strings. |
|
* The following code can be used to dump the queue into a newly |
|
* allocated array of {@code String}: |
|
* |
|
* <pre> {@code String[] y = x.toArray(new String[0]);}</pre> |
|
* |
|
* Note that {@code toArray(new Object[0])} is identical in function to |
|
* {@code toArray()}. |
|
* |
|
* @param a the array into which the elements of the queue are to |
|
* be stored, if it is big enough; otherwise, a new array of the |
|
* same runtime type is allocated for this purpose |
|
* @return an array containing all of the elements in this queue |
|
* @throws ArrayStoreException if the runtime type of the specified array |
|
* is not a supertype of the runtime type of every element in |
|
* this queue |
|
* @throws NullPointerException if the specified array is null |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public <T> T[] toArray(T[] a) { |
|
fullyLock(); |
|
try { |
|
int size = count.get(); |
|
if (a.length < size) |
|
a = (T[])java.lang.reflect.Array.newInstance |
|
(a.getClass().getComponentType(), size); |
|
int k = 0; |
|
for (Node<E> p = head.next; p != null; p = p.next) |
|
a[k++] = (T)p.item; |
|
if (a.length > k) |
|
a[k] = null; |
|
return a; |
|
} finally { |
|
fullyUnlock(); |
|
} |
|
} |
|
public String toString() { |
|
return Helpers.collectionToString(this); |
|
} |
|
/** |
|
* Atomically removes all of the elements from this queue. |
|
* The queue will be empty after this call returns. |
|
*/ |
|
public void clear() { |
|
fullyLock(); |
|
try { |
|
for (Node<E> p, h = head; (p = h.next) != null; h = p) { |
|
h.next = h; |
|
p.item = null; |
|
} |
|
head = last; |
|
// assert head.item == null && head.next == null; |
|
if (count.getAndSet(0) == capacity) |
|
notFull.signal(); |
|
} finally { |
|
fullyUnlock(); |
|
} |
|
} |
|
/** |
|
* @throws UnsupportedOperationException {@inheritDoc} |
|
* @throws ClassCastException {@inheritDoc} |
|
* @throws NullPointerException {@inheritDoc} |
|
* @throws IllegalArgumentException {@inheritDoc} |
|
*/ |
|
public int drainTo(Collection<? super E> c) { |
|
return drainTo(c, Integer.MAX_VALUE); |
|
} |
|
/** |
|
* @throws UnsupportedOperationException {@inheritDoc} |
|
* @throws ClassCastException {@inheritDoc} |
|
* @throws NullPointerException {@inheritDoc} |
|
* @throws IllegalArgumentException {@inheritDoc} |
|
*/ |
|
public int drainTo(Collection<? super E> c, int maxElements) { |
|
Objects.requireNonNull(c); |
|
if (c == this) |
|
throw new IllegalArgumentException(); |
|
if (maxElements <= 0) |
|
return 0; |
|
boolean signalNotFull = false; |
|
final ReentrantLock takeLock = this.takeLock; |
|
takeLock.lock(); |
|
try { |
|
int n = Math.min(maxElements, count.get()); |
|
// count.get provides visibility to first n Nodes |
|
Node<E> h = head; |
|
int i = 0; |
|
try { |
|
while (i < n) { |
|
Node<E> p = h.next; |
|
c.add(p.item); |
|
p.item = null; |
|
h.next = h; |
|
h = p; |
|
++i; |
|
} |
|
return n; |
|
} finally { |
|
// Restore invariants even if c.add() threw |
|
if (i > 0) { |
|
// assert h.item == null; |
|
head = h; |
|
signalNotFull = (count.getAndAdd(-i) == capacity); |
|
} |
|
} |
|
} finally { |
|
takeLock.unlock(); |
|
if (signalNotFull) |
|
signalNotFull(); |
|
} |
|
} |
|
/** |
|
* Used for any element traversal that is not entirely under lock. |
|
* Such traversals must handle both: |
|
* - dequeued nodes (p.next == p) |
|
* - (possibly multiple) interior removed nodes (p.item == null) |
|
*/ |
|
Node<E> succ(Node<E> p) { |
|
if (p == (p = p.next)) |
|
p = head.next; |
|
return p; |
|
} |
|
/** |
|
* Returns an iterator over the elements in this queue in proper sequence. |
|
* The elements will be returned in order from first (head) to last (tail). |
|
* |
|
* <p>The returned iterator is |
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. |
|
* |
|
* @return an iterator over the elements in this queue in proper sequence |
|
*/ |
|
public Iterator<E> iterator() { |
|
return new Itr(); |
|
} |
|
/** |
|
* Weakly-consistent iterator. |
|
* |
|
* Lazily updated ancestor field provides expected O(1) remove(), |
|
* but still O(n) in the worst case, whenever the saved ancestor |
|
* is concurrently deleted. |
|
*/ |
|
private class Itr implements Iterator<E> { |
|
private Node<E> next; // Node holding nextItem |
|
private E nextItem; // next item to hand out |
|
private Node<E> lastRet; |
|
private Node<E> ancestor; // Helps unlink lastRet on remove() |
|
Itr() { |
|
fullyLock(); |
|
try { |
|
if ((next = head.next) != null) |
|
nextItem = next.item; |
|
} finally { |
|
fullyUnlock(); |
|
} |
|
} |
|
public boolean hasNext() { |
|
return next != null; |
|
} |
|
public E next() { |
|
Node<E> p; |
|
if ((p = next) == null) |
|
throw new NoSuchElementException(); |
|
lastRet = p; |
|
E x = nextItem; |
|
fullyLock(); |
|
try { |
|
E e = null; |
|
for (p = p.next; p != null && (e = p.item) == null; ) |
|
p = succ(p); |
|
next = p; |
|
nextItem = e; |
|
} finally { |
|
fullyUnlock(); |
|
} |
|
return x; |
|
} |
|
public void forEachRemaining(Consumer<? super E> action) { |
|
// A variant of forEachFrom |
|
Objects.requireNonNull(action); |
|
Node<E> p; |
|
if ((p = next) == null) return; |
|
lastRet = p; |
|
next = null; |
|
final int batchSize = 64; |
|
Object[] es = null; |
|
int n, len = 1; |
|
do { |
|
fullyLock(); |
|
try { |
|
if (es == null) { |
|
p = p.next; |
|
for (Node<E> q = p; q != null; q = succ(q)) |
|
if (q.item != null && ++len == batchSize) |
|
break; |
|
es = new Object[len]; |
|
es[0] = nextItem; |
|
nextItem = null; |
|
n = 1; |
|
} else |
|
n = 0; |
|
for (; p != null && n < len; p = succ(p)) |
|
if ((es[n] = p.item) != null) { |
|
lastRet = p; |
|
n++; |
|
} |
|
} finally { |
|
fullyUnlock(); |
|
} |
|
for (int i = 0; i < n; i++) { |
|
@SuppressWarnings("unchecked") E e = (E) es[i]; |
|
action.accept(e); |
|
} |
|
} while (n > 0 && p != null); |
|
} |
|
public void remove() { |
|
Node<E> p = lastRet; |
|
if (p == null) |
|
throw new IllegalStateException(); |
|
lastRet = null; |
|
fullyLock(); |
|
try { |
|
if (p.item != null) { |
|
if (ancestor == null) |
|
ancestor = head; |
|
ancestor = findPred(p, ancestor); |
|
unlink(p, ancestor); |
|
} |
|
} finally { |
|
fullyUnlock(); |
|
} |
|
} |
|
} |
|
/** |
|
* A customized variant of Spliterators.IteratorSpliterator. |
|
* Keep this class in sync with (very similar) LBDSpliterator. |
|
*/ |
|
private final class LBQSpliterator implements Spliterator<E> { |
|
static final int MAX_BATCH = 1 << 25; // max batch array size; |
|
Node<E> current; // current node; null until initialized |
|
int batch; // batch size for splits |
|
boolean exhausted; // true when no more nodes |
|
long est = size(); // size estimate |
|
LBQSpliterator() {} |
|
public long estimateSize() { return est; } |
|
public Spliterator<E> trySplit() { |
|
Node<E> h; |
|
if (!exhausted && |
|
((h = current) != null || (h = head.next) != null) |
|
&& h.next != null) { |
|
int n = batch = Math.min(batch + 1, MAX_BATCH); |
|
Object[] a = new Object[n]; |
|
int i = 0; |
|
Node<E> p = current; |
|
fullyLock(); |
|
try { |
|
if (p != null || (p = head.next) != null) |
|
for (; p != null && i < n; p = succ(p)) |
|
if ((a[i] = p.item) != null) |
|
i++; |
|
} finally { |
|
fullyUnlock(); |
|
} |
|
if ((current = p) == null) { |
|
est = 0L; |
|
exhausted = true; |
|
} |
|
else if ((est -= i) < 0L) |
|
est = 0L; |
|
if (i > 0) |
|
return Spliterators.spliterator |
|
(a, 0, i, (Spliterator.ORDERED | |
|
Spliterator.NONNULL | |
|
Spliterator.CONCURRENT)); |
|
} |
|
return null; |
|
} |
|
public boolean tryAdvance(Consumer<? super E> action) { |
|
Objects.requireNonNull(action); |
|
if (!exhausted) { |
|
E e = null; |
|
fullyLock(); |
|
try { |
|
Node<E> p; |
|
if ((p = current) != null || (p = head.next) != null) |
|
do { |
|
e = p.item; |
|
p = succ(p); |
|
} while (e == null && p != null); |
|
if ((current = p) == null) |
|
exhausted = true; |
|
} finally { |
|
fullyUnlock(); |
|
} |
|
if (e != null) { |
|
action.accept(e); |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
public void forEachRemaining(Consumer<? super E> action) { |
|
Objects.requireNonNull(action); |
|
if (!exhausted) { |
|
exhausted = true; |
|
Node<E> p = current; |
|
current = null; |
|
forEachFrom(action, p); |
|
} |
|
} |
|
public int characteristics() { |
|
return (Spliterator.ORDERED | |
|
Spliterator.NONNULL | |
|
Spliterator.CONCURRENT); |
|
} |
|
} |
|
/** |
|
* Returns a {@link Spliterator} over the elements in this queue. |
|
* |
|
* <p>The returned spliterator is |
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. |
|
* |
|
* <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT}, |
|
* {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}. |
|
* |
|
* @implNote |
|
* The {@code Spliterator} implements {@code trySplit} to permit limited |
|
* parallelism. |
|
* |
|
* @return a {@code Spliterator} over the elements in this queue |
|
* @since 1.8 |
|
*/ |
|
public Spliterator<E> spliterator() { |
|
return new LBQSpliterator(); |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public void forEach(Consumer<? super E> action) { |
|
Objects.requireNonNull(action); |
|
forEachFrom(action, null); |
|
} |
|
/** |
|
* Runs action on each element found during a traversal starting at p. |
|
* If p is null, traversal starts at head. |
|
*/ |
|
void forEachFrom(Consumer<? super E> action, Node<E> p) { |
|
// Extract batches of elements while holding the lock; then |
|
// run the action on the elements while not |
|
final int batchSize = 64; // max number of elements per batch |
|
Object[] es = null; // container for batch of elements |
|
int n, len = 0; |
|
do { |
|
fullyLock(); |
|
try { |
|
if (es == null) { |
|
if (p == null) p = head.next; |
|
for (Node<E> q = p; q != null; q = succ(q)) |
|
if (q.item != null && ++len == batchSize) |
|
break; |
|
es = new Object[len]; |
|
} |
|
for (n = 0; p != null && n < len; p = succ(p)) |
|
if ((es[n] = p.item) != null) |
|
n++; |
|
} finally { |
|
fullyUnlock(); |
|
} |
|
for (int i = 0; i < n; i++) { |
|
@SuppressWarnings("unchecked") E e = (E) es[i]; |
|
action.accept(e); |
|
} |
|
} while (n > 0 && p != null); |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public boolean removeIf(Predicate<? super E> filter) { |
|
Objects.requireNonNull(filter); |
|
return bulkRemove(filter); |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public boolean removeAll(Collection<?> c) { |
|
Objects.requireNonNull(c); |
|
return bulkRemove(e -> c.contains(e)); |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public boolean retainAll(Collection<?> c) { |
|
Objects.requireNonNull(c); |
|
return bulkRemove(e -> !c.contains(e)); |
|
} |
|
/** |
|
* Returns the predecessor of live node p, given a node that was |
|
* once a live ancestor of p (or head); allows unlinking of p. |
|
*/ |
|
Node<E> findPred(Node<E> p, Node<E> ancestor) { |
|
// assert p.item != null; |
|
if (ancestor.item == null) |
|
ancestor = head; |
|
// Fails with NPE if precondition not satisfied |
|
for (Node<E> q; (q = ancestor.next) != p; ) |
|
ancestor = q; |
|
return ancestor; |
|
} |
|
/** Implementation of bulk remove methods. */ |
|
@SuppressWarnings("unchecked") |
|
private boolean bulkRemove(Predicate<? super E> filter) { |
|
boolean removed = false; |
|
Node<E> p = null, ancestor = head; |
|
Node<E>[] nodes = null; |
|
int n, len = 0; |
|
do { |
|
// 1. Extract batch of up to 64 elements while holding the lock. |
|
fullyLock(); |
|
try { |
|
if (nodes == null) { // first batch; initialize |
|
p = head.next; |
|
for (Node<E> q = p; q != null; q = succ(q)) |
|
if (q.item != null && ++len == 64) |
|
break; |
|
nodes = (Node<E>[]) new Node<?>[len]; |
|
} |
|
for (n = 0; p != null && n < len; p = succ(p)) |
|
nodes[n++] = p; |
|
} finally { |
|
fullyUnlock(); |
|
} |
|
// 2. Run the filter on the elements while lock is free. |
|
long deathRow = 0L; // "bitset" of size 64 |
|
for (int i = 0; i < n; i++) { |
|
final E e; |
|
if ((e = nodes[i].item) != null && filter.test(e)) |
|
deathRow |= 1L << i; |
|
} |
|
// 3. Remove any filtered elements while holding the lock. |
|
if (deathRow != 0) { |
|
fullyLock(); |
|
try { |
|
for (int i = 0; i < n; i++) { |
|
final Node<E> q; |
|
if ((deathRow & (1L << i)) != 0L |
|
&& (q = nodes[i]).item != null) { |
|
ancestor = findPred(q, ancestor); |
|
unlink(q, ancestor); |
|
removed = true; |
|
} |
|
nodes[i] = null; // help GC |
|
} |
|
} finally { |
|
fullyUnlock(); |
|
} |
|
} |
|
} while (n > 0 && p != null); |
|
return removed; |
|
} |
|
/** |
|
* Saves this queue to a stream (that is, serializes it). |
|
* |
|
* @param s the stream |
|
* @throws java.io.IOException if an I/O error occurs |
|
* @serialData The capacity is emitted (int), followed by all of |
|
* its elements (each an {@code Object}) in the proper order, |
|
* followed by a null |
|
*/ |
|
private void writeObject(java.io.ObjectOutputStream s) |
|
throws java.io.IOException { |
|
fullyLock(); |
|
try { |
|
// Write out any hidden stuff, plus capacity |
|
s.defaultWriteObject(); |
|
// Write out all elements in the proper order. |
|
for (Node<E> p = head.next; p != null; p = p.next) |
|
s.writeObject(p.item); |
|
// Use trailing null as sentinel |
|
s.writeObject(null); |
|
} finally { |
|
fullyUnlock(); |
|
} |
|
} |
|
/** |
|
* Reconstitutes this queue from a stream (that is, deserializes it). |
|
* @param s the stream |
|
* @throws ClassNotFoundException if the class of a serialized object |
|
* could not be found |
|
* @throws java.io.IOException if an I/O error occurs |
|
*/ |
|
private void readObject(java.io.ObjectInputStream s) |
|
throws java.io.IOException, ClassNotFoundException { |
|
// Read in capacity, and any hidden stuff |
|
s.defaultReadObject(); |
|
count.set(0); |
|
last = head = new Node<E>(null); |
|
// Read in all elements and place in queue |
|
for (;;) { |
|
@SuppressWarnings("unchecked") |
|
E item = (E)s.readObject(); |
|
if (item == null) |
|
break; |
|
add(item); |
|
} |
|
} |
|
} |