Back to index...
/*
 * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package sun.security.util.math;
import java.math.BigInteger;
/**
 * The base interface for integers modulo a prime value. Objects of this
 * type may be either mutable or immutable, and subinterfaces can be used
 * to specify that an object is mutable or immutable. This type should never
 * be used to declare local/member variables, but it may be used for
 * formal parameters of a method. None of the methods in this interface
 * modify the value of arguments or this.
 *
 * The behavior of this interface depends on the particular implementation.
 * For example, some implementations only support a limited number of add
 * operations before each multiply operation. See the documentation of the
 * implementation for details.
 *
 * @see ImmutableIntegerModuloP
 * @see MutableIntegerModuloP
 */
public interface IntegerModuloP {
    /**
     * Get the field associated with this element.
     *
     * @return the field
     */
    IntegerFieldModuloP getField();
    /**
     * Get the canonical value of this element as a BigInteger. This value
     * will always be in the range [0, p), where p is the prime that defines
     * the field. This method performs reduction and other computation to
     * produce the result.
     *
     * @return the value as a BigInteger
     */
    BigInteger asBigInteger();
    /**
     * Return this value as a fixed (immutable) element. This method will
     * copy the underlying representation if the object is mutable.
     *
     * @return a fixed element with the same value
     */
    ImmutableIntegerModuloP fixed();
    /**
     * Return this value as a mutable element. This method will always copy
     * the underlying representation.
     *
     * @return a mutable element with the same value
     */
    MutableIntegerModuloP mutable();
    /**
     * Add this field element with the supplied element and return the result.
     *
     * @param b the sumand
     * @return this + b
     */
    ImmutableIntegerModuloP add(IntegerModuloP b);
    /**
     * Compute the additive inverse of the field element
     * @return the addditiveInverse (0 - this)
     */
    ImmutableIntegerModuloP additiveInverse();
    /**
     * Multiply this field element with the supplied element and return the
     * result.
     *
     * @param b the multiplicand
     * @return this * b
     */
    ImmutableIntegerModuloP multiply(IntegerModuloP b);
    /**
     * Perform an addition modulo a power of two and return the little-endian
     * encoding of the result. The value is (this' + b') % 2^(8 * len),
     * where this' and b' are the canonical integer values equivalent to
     * this and b.
     *
     * @param b the sumand
     * @param len the length of the desired array
     * @return a byte array of length len containing the result
     */
    default byte[] addModPowerTwo(IntegerModuloP b, int len) {
        byte[] result = new byte[len];
        addModPowerTwo(b, result);
        return result;
    }
    /**
     * Perform an addition modulo a power of two and store the little-endian
     * encoding of the result in the supplied array. The value is
     * (this' + b') % 2^(8 * result.length), where this' and b' are the
     * canonical integer values equivalent to this and b.
     *
     * @param b the sumand
     * @param result an array which stores the result upon return
     */
    void addModPowerTwo(IntegerModuloP b, byte[] result);
    /**
     * Returns the little-endian encoding of this' % 2^(8 * len), where this'
     * is the canonical integer value equivalent to this.
     *
     * @param len the length of the desired array
     * @return a byte array of length len containing the result
     */
    default byte[] asByteArray(int len) {
        byte[] result = new byte[len];
        asByteArray(result);
        return result;
    }
    /**
     * Places the little-endian encoding of this' % 2^(8 * result.length)
     * into the supplied array, where this' is the canonical integer value
     * equivalent to this.
     *
     * @param result an array which stores the result upon return
     */
    void asByteArray(byte[] result);
    /**
     * Compute the multiplicative inverse of this field element.
     *
     * @return the multiplicative inverse (1 / this)
     */
    default ImmutableIntegerModuloP multiplicativeInverse() {
        return pow(getField().getSize().subtract(BigInteger.valueOf(2)));
    }
    /**
     * Subtract the supplied element from this one and return the result.
     * @param b the subtrahend
     *
     * @return the difference (this - b)
     */
    default ImmutableIntegerModuloP subtract(IntegerModuloP b) {
        return add(b.additiveInverse());
    }
    /**
     * Calculate the square of this element and return the result. This method
     * should be used instead of a.multiply(a) because implementations may
     * include optimizations that only apply to squaring.
     *
     * @return the product (this * this)
     */
    default ImmutableIntegerModuloP square() {
        return multiply(this);
    }
    /**
     * Calculate the power this^b and return the result.
     *
     * @param b the exponent
     * @return the value of this^b
     */
    default ImmutableIntegerModuloP pow(BigInteger b) {
        //Default implementation is square and multiply
        MutableIntegerModuloP y = getField().get1().mutable();
        MutableIntegerModuloP x = mutable();
        int bitLength = b.bitLength();
        for (int bit = 0; bit < bitLength; bit++) {
            if (b.testBit(bit)) {
                // odd
                y.setProduct(x);
            }
            x.setSquare();
        }
        return y.fixed();
    }
}
Back to index...