/* |
|
* Copyright (c) 2012, 2021, Oracle and/or its affiliates. All rights reserved. |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
package java.util.stream; |
|
import java.util.Objects; |
|
import java.util.Spliterator; |
|
import java.util.function.IntFunction; |
|
import java.util.function.Supplier; |
|
/** |
|
* Abstract base class for "pipeline" classes, which are the core |
|
* implementations of the Stream interface and its primitive specializations. |
|
* Manages construction and evaluation of stream pipelines. |
|
* |
|
* <p>An {@code AbstractPipeline} represents an initial portion of a stream |
|
* pipeline, encapsulating a stream source and zero or more intermediate |
|
* operations. The individual {@code AbstractPipeline} objects are often |
|
* referred to as <em>stages</em>, where each stage describes either the stream |
|
* source or an intermediate operation. |
|
* |
|
* <p>A concrete intermediate stage is generally built from an |
|
* {@code AbstractPipeline}, a shape-specific pipeline class which extends it |
|
* (e.g., {@code IntPipeline}) which is also abstract, and an operation-specific |
|
* concrete class which extends that. {@code AbstractPipeline} contains most of |
|
* the mechanics of evaluating the pipeline, and implements methods that will be |
|
* used by the operation; the shape-specific classes add helper methods for |
|
* dealing with collection of results into the appropriate shape-specific |
|
* containers. |
|
* |
|
* <p>After chaining a new intermediate operation, or executing a terminal |
|
* operation, the stream is considered to be consumed, and no more intermediate |
|
* or terminal operations are permitted on this stream instance. |
|
* |
|
* @implNote |
|
* <p>For sequential streams, and parallel streams without |
|
* <a href="package-summary.html#StreamOps">stateful intermediate |
|
* operations</a>, parallel streams, pipeline evaluation is done in a single |
|
* pass that "jams" all the operations together. For parallel streams with |
|
* stateful operations, execution is divided into segments, where each |
|
* stateful operations marks the end of a segment, and each segment is |
|
* evaluated separately and the result used as the input to the next |
|
* segment. In all cases, the source data is not consumed until a terminal |
|
* operation begins. |
|
* |
|
* @param <E_IN> type of input elements |
|
* @param <E_OUT> type of output elements |
|
* @param <S> type of the subclass implementing {@code BaseStream} |
|
* @since 1.8 |
|
*/ |
|
abstract class AbstractPipeline<E_IN, E_OUT, S extends BaseStream<E_OUT, S>> |
|
extends PipelineHelper<E_OUT> implements BaseStream<E_OUT, S> { |
|
private static final String MSG_STREAM_LINKED = "stream has already been operated upon or closed"; |
|
private static final String MSG_CONSUMED = "source already consumed or closed"; |
|
/** |
|
* Backlink to the head of the pipeline chain (self if this is the source |
|
* stage). |
|
*/ |
|
@SuppressWarnings("rawtypes") |
|
private final AbstractPipeline sourceStage; |
|
/** |
|
* The "upstream" pipeline, or null if this is the source stage. |
|
*/ |
|
@SuppressWarnings("rawtypes") |
|
private final AbstractPipeline previousStage; |
|
/** |
|
* The operation flags for the intermediate operation represented by this |
|
* pipeline object. |
|
*/ |
|
protected final int sourceOrOpFlags; |
|
/** |
|
* The next stage in the pipeline, or null if this is the last stage. |
|
* Effectively final at the point of linking to the next pipeline. |
|
*/ |
|
@SuppressWarnings("rawtypes") |
|
private AbstractPipeline nextStage; |
|
/** |
|
* The number of intermediate operations between this pipeline object |
|
* and the stream source if sequential, or the previous stateful if parallel. |
|
* Valid at the point of pipeline preparation for evaluation. |
|
*/ |
|
private int depth; |
|
/** |
|
* The combined source and operation flags for the source and all operations |
|
* up to and including the operation represented by this pipeline object. |
|
* Valid at the point of pipeline preparation for evaluation. |
|
*/ |
|
private int combinedFlags; |
|
/** |
|
* The source spliterator. Only valid for the head pipeline. |
|
* Before the pipeline is consumed if non-null then {@code sourceSupplier} |
|
* must be null. After the pipeline is consumed if non-null then is set to |
|
* null. |
|
*/ |
|
private Spliterator<?> sourceSpliterator; |
|
/** |
|
* The source supplier. Only valid for the head pipeline. Before the |
|
* pipeline is consumed if non-null then {@code sourceSpliterator} must be |
|
* null. After the pipeline is consumed if non-null then is set to null. |
|
*/ |
|
private Supplier<? extends Spliterator<?>> sourceSupplier; |
|
/** |
|
* True if this pipeline has been linked or consumed |
|
*/ |
|
private boolean linkedOrConsumed; |
|
/** |
|
* True if there are any stateful ops in the pipeline; only valid for the |
|
* source stage. |
|
*/ |
|
private boolean sourceAnyStateful; |
|
private Runnable sourceCloseAction; |
|
/** |
|
* True if pipeline is parallel, otherwise the pipeline is sequential; only |
|
* valid for the source stage. |
|
*/ |
|
private boolean parallel; |
|
/** |
|
* Constructor for the head of a stream pipeline. |
|
* |
|
* @param source {@code Supplier<Spliterator>} describing the stream source |
|
* @param sourceFlags The source flags for the stream source, described in |
|
* {@link StreamOpFlag} |
|
* @param parallel True if the pipeline is parallel |
|
*/ |
|
AbstractPipeline(Supplier<? extends Spliterator<?>> source, |
|
int sourceFlags, boolean parallel) { |
|
this.previousStage = null; |
|
this.sourceSupplier = source; |
|
this.sourceStage = this; |
|
this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK; |
|
// The following is an optimization of: |
|
// StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE); |
|
this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE; |
|
this.depth = 0; |
|
this.parallel = parallel; |
|
} |
|
/** |
|
* Constructor for the head of a stream pipeline. |
|
* |
|
* @param source {@code Spliterator} describing the stream source |
|
* @param sourceFlags the source flags for the stream source, described in |
|
* {@link StreamOpFlag} |
|
* @param parallel {@code true} if the pipeline is parallel |
|
*/ |
|
AbstractPipeline(Spliterator<?> source, |
|
int sourceFlags, boolean parallel) { |
|
this.previousStage = null; |
|
this.sourceSpliterator = source; |
|
this.sourceStage = this; |
|
this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK; |
|
// The following is an optimization of: |
|
// StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE); |
|
this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE; |
|
this.depth = 0; |
|
this.parallel = parallel; |
|
} |
|
/** |
|
* Constructor for appending an intermediate operation stage onto an |
|
* existing pipeline. |
|
* |
|
* @param previousStage the upstream pipeline stage |
|
* @param opFlags the operation flags for the new stage, described in |
|
* {@link StreamOpFlag} |
|
*/ |
|
AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags) { |
|
if (previousStage.linkedOrConsumed) |
|
throw new IllegalStateException(MSG_STREAM_LINKED); |
|
previousStage.linkedOrConsumed = true; |
|
previousStage.nextStage = this; |
|
this.previousStage = previousStage; |
|
this.sourceOrOpFlags = opFlags & StreamOpFlag.OP_MASK; |
|
this.combinedFlags = StreamOpFlag.combineOpFlags(opFlags, previousStage.combinedFlags); |
|
this.sourceStage = previousStage.sourceStage; |
|
if (opIsStateful()) |
|
sourceStage.sourceAnyStateful = true; |
|
this.depth = previousStage.depth + 1; |
|
} |
|
// Terminal evaluation methods |
|
/** |
|
* Evaluate the pipeline with a terminal operation to produce a result. |
|
* |
|
* @param <R> the type of result |
|
* @param terminalOp the terminal operation to be applied to the pipeline. |
|
* @return the result |
|
*/ |
|
final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) { |
|
assert getOutputShape() == terminalOp.inputShape(); |
|
if (linkedOrConsumed) |
|
throw new IllegalStateException(MSG_STREAM_LINKED); |
|
linkedOrConsumed = true; |
|
return isParallel() |
|
? terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags())) |
|
: terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags())); |
|
} |
|
/** |
|
* Collect the elements output from the pipeline stage. |
|
* |
|
* @param generator the array generator to be used to create array instances |
|
* @return a flat array-backed Node that holds the collected output elements |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
final Node<E_OUT> evaluateToArrayNode(IntFunction<E_OUT[]> generator) { |
|
if (linkedOrConsumed) |
|
throw new IllegalStateException(MSG_STREAM_LINKED); |
|
linkedOrConsumed = true; |
|
// If the last intermediate operation is stateful then |
|
// evaluate directly to avoid an extra collection step |
|
if (isParallel() && previousStage != null && opIsStateful()) { |
|
// Set the depth of this, last, pipeline stage to zero to slice the |
|
// pipeline such that this operation will not be included in the |
|
// upstream slice and upstream operations will not be included |
|
// in this slice |
|
depth = 0; |
|
return opEvaluateParallel(previousStage, previousStage.sourceSpliterator(0), generator); |
|
} |
|
else { |
|
return evaluate(sourceSpliterator(0), true, generator); |
|
} |
|
} |
|
/** |
|
* Gets the source stage spliterator if this pipeline stage is the source |
|
* stage. The pipeline is consumed after this method is called and |
|
* returns successfully. |
|
* |
|
* @return the source stage spliterator |
|
* @throws IllegalStateException if this pipeline stage is not the source |
|
* stage. |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
final Spliterator<E_OUT> sourceStageSpliterator() { |
|
if (this != sourceStage) |
|
throw new IllegalStateException(); |
|
if (linkedOrConsumed) |
|
throw new IllegalStateException(MSG_STREAM_LINKED); |
|
linkedOrConsumed = true; |
|
if (sourceStage.sourceSpliterator != null) { |
|
@SuppressWarnings("unchecked") |
|
Spliterator<E_OUT> s = sourceStage.sourceSpliterator; |
|
sourceStage.sourceSpliterator = null; |
|
return s; |
|
} |
|
else if (sourceStage.sourceSupplier != null) { |
|
@SuppressWarnings("unchecked") |
|
Spliterator<E_OUT> s = (Spliterator<E_OUT>) sourceStage.sourceSupplier.get(); |
|
sourceStage.sourceSupplier = null; |
|
return s; |
|
} |
|
else { |
|
throw new IllegalStateException(MSG_CONSUMED); |
|
} |
|
} |
|
// BaseStream |
|
@Override |
|
@SuppressWarnings("unchecked") |
|
public final S sequential() { |
|
sourceStage.parallel = false; |
|
return (S) this; |
|
} |
|
@Override |
|
@SuppressWarnings("unchecked") |
|
public final S parallel() { |
|
sourceStage.parallel = true; |
|
return (S) this; |
|
} |
|
@Override |
|
public void close() { |
|
linkedOrConsumed = true; |
|
sourceSupplier = null; |
|
sourceSpliterator = null; |
|
if (sourceStage.sourceCloseAction != null) { |
|
Runnable closeAction = sourceStage.sourceCloseAction; |
|
sourceStage.sourceCloseAction = null; |
|
closeAction.run(); |
|
} |
|
} |
|
@Override |
|
@SuppressWarnings("unchecked") |
|
public S onClose(Runnable closeHandler) { |
|
if (linkedOrConsumed) |
|
throw new IllegalStateException(MSG_STREAM_LINKED); |
|
Objects.requireNonNull(closeHandler); |
|
Runnable existingHandler = sourceStage.sourceCloseAction; |
|
sourceStage.sourceCloseAction = |
|
(existingHandler == null) |
|
? closeHandler |
|
: Streams.composeWithExceptions(existingHandler, closeHandler); |
|
return (S) this; |
|
} |
|
// Primitive specialization use co-variant overrides, hence is not final |
|
@Override |
|
@SuppressWarnings("unchecked") |
|
public Spliterator<E_OUT> spliterator() { |
|
if (linkedOrConsumed) |
|
throw new IllegalStateException(MSG_STREAM_LINKED); |
|
linkedOrConsumed = true; |
|
if (this == sourceStage) { |
|
if (sourceStage.sourceSpliterator != null) { |
|
@SuppressWarnings("unchecked") |
|
Spliterator<E_OUT> s = (Spliterator<E_OUT>) sourceStage.sourceSpliterator; |
|
sourceStage.sourceSpliterator = null; |
|
return s; |
|
} |
|
else if (sourceStage.sourceSupplier != null) { |
|
@SuppressWarnings("unchecked") |
|
Supplier<Spliterator<E_OUT>> s = (Supplier<Spliterator<E_OUT>>) sourceStage.sourceSupplier; |
|
sourceStage.sourceSupplier = null; |
|
return lazySpliterator(s); |
|
} |
|
else { |
|
throw new IllegalStateException(MSG_CONSUMED); |
|
} |
|
} |
|
else { |
|
return wrap(this, () -> sourceSpliterator(0), isParallel()); |
|
} |
|
} |
|
@Override |
|
public final boolean isParallel() { |
|
return sourceStage.parallel; |
|
} |
|
/** |
|
* Returns the composition of stream flags of the stream source and all |
|
* intermediate operations. |
|
* |
|
* @return the composition of stream flags of the stream source and all |
|
* intermediate operations |
|
* @see StreamOpFlag |
|
*/ |
|
final int getStreamFlags() { |
|
return StreamOpFlag.toStreamFlags(combinedFlags); |
|
} |
|
/** |
|
* Get the source spliterator for this pipeline stage. For a sequential or |
|
* stateless parallel pipeline, this is the source spliterator. For a |
|
* stateful parallel pipeline, this is a spliterator describing the results |
|
* of all computations up to and including the most recent stateful |
|
* operation. |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
private Spliterator<?> sourceSpliterator(int terminalFlags) { |
|
// Get the source spliterator of the pipeline |
|
Spliterator<?> spliterator = null; |
|
if (sourceStage.sourceSpliterator != null) { |
|
spliterator = sourceStage.sourceSpliterator; |
|
sourceStage.sourceSpliterator = null; |
|
} |
|
else if (sourceStage.sourceSupplier != null) { |
|
spliterator = (Spliterator<?>) sourceStage.sourceSupplier.get(); |
|
sourceStage.sourceSupplier = null; |
|
} |
|
else { |
|
throw new IllegalStateException(MSG_CONSUMED); |
|
} |
|
if (isParallel() && sourceStage.sourceAnyStateful) { |
|
// Adapt the source spliterator, evaluating each stateful op |
|
// in the pipeline up to and including this pipeline stage. |
|
// The depth and flags of each pipeline stage are adjusted accordingly. |
|
int depth = 1; |
|
for (@SuppressWarnings("rawtypes") AbstractPipeline u = sourceStage, p = sourceStage.nextStage, e = this; |
|
u != e; |
|
u = p, p = p.nextStage) { |
|
int thisOpFlags = p.sourceOrOpFlags; |
|
if (p.opIsStateful()) { |
|
depth = 0; |
|
if (StreamOpFlag.SHORT_CIRCUIT.isKnown(thisOpFlags)) { |
|
// Clear the short circuit flag for next pipeline stage |
|
// This stage encapsulates short-circuiting, the next |
|
// stage may not have any short-circuit operations, and |
|
// if so spliterator.forEachRemaining should be used |
|
// for traversal |
|
thisOpFlags = thisOpFlags & ~StreamOpFlag.IS_SHORT_CIRCUIT; |
|
} |
|
spliterator = p.opEvaluateParallelLazy(u, spliterator); |
|
// Inject or clear SIZED on the source pipeline stage |
|
// based on the stage's spliterator |
|
thisOpFlags = spliterator.hasCharacteristics(Spliterator.SIZED) |
|
? (thisOpFlags & ~StreamOpFlag.NOT_SIZED) | StreamOpFlag.IS_SIZED |
|
: (thisOpFlags & ~StreamOpFlag.IS_SIZED) | StreamOpFlag.NOT_SIZED; |
|
} |
|
p.depth = depth++; |
|
p.combinedFlags = StreamOpFlag.combineOpFlags(thisOpFlags, u.combinedFlags); |
|
} |
|
} |
|
if (terminalFlags != 0) { |
|
// Apply flags from the terminal operation to last pipeline stage |
|
combinedFlags = StreamOpFlag.combineOpFlags(terminalFlags, combinedFlags); |
|
} |
|
return spliterator; |
|
} |
|
// PipelineHelper |
|
@Override |
|
final StreamShape getSourceShape() { |
|
@SuppressWarnings("rawtypes") |
|
AbstractPipeline p = AbstractPipeline.this; |
|
while (p.depth > 0) { |
|
p = p.previousStage; |
|
} |
|
return p.getOutputShape(); |
|
} |
|
@Override |
|
final <P_IN> long exactOutputSizeIfKnown(Spliterator<P_IN> spliterator) { |
|
int flags = getStreamAndOpFlags(); |
|
long size = StreamOpFlag.SIZED.isKnown(flags) ? spliterator.getExactSizeIfKnown() : -1; |
|
// Currently, we have no stateless SIZE_ADJUSTING intermediate operations, |
|
// so we can simply ignore SIZE_ADJUSTING in parallel streams, since adjustments |
|
// are already accounted in the input spliterator. |
|
// |
|
// If we ever have a stateless SIZE_ADJUSTING intermediate operation, |
|
// we would need step back until depth == 0, then call exactOutputSize() for |
|
// the subsequent stages. |
|
if (size != -1 && StreamOpFlag.SIZE_ADJUSTING.isKnown(flags) && !isParallel()) { |
|
// Skip the source stage as it's never SIZE_ADJUSTING |
|
for (AbstractPipeline<?, ?, ?> stage = sourceStage.nextStage; stage != null; stage = stage.nextStage) { |
|
size = stage.exactOutputSize(size); |
|
} |
|
} |
|
return size; |
|
} |
|
/** |
|
* Returns the exact output size of the pipeline given the exact size reported by the previous stage. |
|
* |
|
* @param previousSize the exact size reported by the previous stage |
|
* @return the output size of this stage |
|
*/ |
|
long exactOutputSize(long previousSize) { |
|
return previousSize; |
|
} |
|
@Override |
|
final <P_IN, S extends Sink<E_OUT>> S wrapAndCopyInto(S sink, Spliterator<P_IN> spliterator) { |
|
copyInto(wrapSink(Objects.requireNonNull(sink)), spliterator); |
|
return sink; |
|
} |
|
@Override |
|
final <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) { |
|
Objects.requireNonNull(wrappedSink); |
|
if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) { |
|
wrappedSink.begin(spliterator.getExactSizeIfKnown()); |
|
spliterator.forEachRemaining(wrappedSink); |
|
wrappedSink.end(); |
|
} |
|
else { |
|
copyIntoWithCancel(wrappedSink, spliterator); |
|
} |
|
} |
|
@Override |
|
@SuppressWarnings("unchecked") |
|
final <P_IN> boolean copyIntoWithCancel(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) { |
|
@SuppressWarnings({"rawtypes","unchecked"}) |
|
AbstractPipeline p = AbstractPipeline.this; |
|
while (p.depth > 0) { |
|
p = p.previousStage; |
|
} |
|
wrappedSink.begin(spliterator.getExactSizeIfKnown()); |
|
boolean cancelled = p.forEachWithCancel(spliterator, wrappedSink); |
|
wrappedSink.end(); |
|
return cancelled; |
|
} |
|
@Override |
|
final int getStreamAndOpFlags() { |
|
return combinedFlags; |
|
} |
|
final boolean isOrdered() { |
|
return StreamOpFlag.ORDERED.isKnown(combinedFlags); |
|
} |
|
@Override |
|
@SuppressWarnings("unchecked") |
|
final <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) { |
|
Objects.requireNonNull(sink); |
|
for ( @SuppressWarnings("rawtypes") AbstractPipeline p=AbstractPipeline.this; p.depth > 0; p=p.previousStage) { |
|
sink = p.opWrapSink(p.previousStage.combinedFlags, sink); |
|
} |
|
return (Sink<P_IN>) sink; |
|
} |
|
@Override |
|
@SuppressWarnings("unchecked") |
|
final <P_IN> Spliterator<E_OUT> wrapSpliterator(Spliterator<P_IN> sourceSpliterator) { |
|
if (depth == 0) { |
|
return (Spliterator<E_OUT>) sourceSpliterator; |
|
} |
|
else { |
|
return wrap(this, () -> sourceSpliterator, isParallel()); |
|
} |
|
} |
|
@Override |
|
@SuppressWarnings("unchecked") |
|
final <P_IN> Node<E_OUT> evaluate(Spliterator<P_IN> spliterator, |
|
boolean flatten, |
|
IntFunction<E_OUT[]> generator) { |
|
if (isParallel()) { |
|
// @@@ Optimize if op of this pipeline stage is a stateful op |
|
return evaluateToNode(this, spliterator, flatten, generator); |
|
} |
|
else { |
|
Node.Builder<E_OUT> nb = makeNodeBuilder( |
|
exactOutputSizeIfKnown(spliterator), generator); |
|
return wrapAndCopyInto(nb, spliterator).build(); |
|
} |
|
} |
|
// Shape-specific abstract methods, implemented by XxxPipeline classes |
|
/** |
|
* Get the output shape of the pipeline. If the pipeline is the head, |
|
* then it's output shape corresponds to the shape of the source. |
|
* Otherwise, it's output shape corresponds to the output shape of the |
|
* associated operation. |
|
* |
|
* @return the output shape |
|
*/ |
|
abstract StreamShape getOutputShape(); |
|
/** |
|
* Collect elements output from a pipeline into a Node that holds elements |
|
* of this shape. |
|
* |
|
* @param helper the pipeline helper describing the pipeline stages |
|
* @param spliterator the source spliterator |
|
* @param flattenTree true if the returned node should be flattened |
|
* @param generator the array generator |
|
* @return a Node holding the output of the pipeline |
|
*/ |
|
abstract <P_IN> Node<E_OUT> evaluateToNode(PipelineHelper<E_OUT> helper, |
|
Spliterator<P_IN> spliterator, |
|
boolean flattenTree, |
|
IntFunction<E_OUT[]> generator); |
|
/** |
|
* Create a spliterator that wraps a source spliterator, compatible with |
|
* this stream shape, and operations associated with a {@link |
|
* PipelineHelper}. |
|
* |
|
* @param ph the pipeline helper describing the pipeline stages |
|
* @param supplier the supplier of a spliterator |
|
* @return a wrapping spliterator compatible with this shape |
|
*/ |
|
abstract <P_IN> Spliterator<E_OUT> wrap(PipelineHelper<E_OUT> ph, |
|
Supplier<Spliterator<P_IN>> supplier, |
|
boolean isParallel); |
|
/** |
|
* Create a lazy spliterator that wraps and obtains the supplied the |
|
* spliterator when a method is invoked on the lazy spliterator. |
|
* @param supplier the supplier of a spliterator |
|
*/ |
|
abstract Spliterator<E_OUT> lazySpliterator(Supplier<? extends Spliterator<E_OUT>> supplier); |
|
/** |
|
* Traverse the elements of a spliterator compatible with this stream shape, |
|
* pushing those elements into a sink. If the sink requests cancellation, |
|
* no further elements will be pulled or pushed. |
|
* |
|
* @param spliterator the spliterator to pull elements from |
|
* @param sink the sink to push elements to |
|
* @return true if the cancellation was requested |
|
*/ |
|
abstract boolean forEachWithCancel(Spliterator<E_OUT> spliterator, Sink<E_OUT> sink); |
|
/** |
|
* Make a node builder compatible with this stream shape. |
|
* |
|
* @param exactSizeIfKnown if {@literal >=0}, then a node builder will be |
|
* created that has a fixed capacity of at most sizeIfKnown elements. If |
|
* {@literal < 0}, then the node builder has an unfixed capacity. A fixed |
|
* capacity node builder will throw exceptions if an element is added after |
|
* builder has reached capacity, or is built before the builder has reached |
|
* capacity. |
|
* |
|
* @param generator the array generator to be used to create instances of a |
|
* T[] array. For implementations supporting primitive nodes, this parameter |
|
* may be ignored. |
|
* @return a node builder |
|
*/ |
|
@Override |
|
abstract Node.Builder<E_OUT> makeNodeBuilder(long exactSizeIfKnown, |
|
IntFunction<E_OUT[]> generator); |
|
// Op-specific abstract methods, implemented by the operation class |
|
/** |
|
* Returns whether this operation is stateful or not. If it is stateful, |
|
* then the method |
|
* {@link #opEvaluateParallel(PipelineHelper, java.util.Spliterator, java.util.function.IntFunction)} |
|
* must be overridden. |
|
* |
|
* @return {@code true} if this operation is stateful |
|
*/ |
|
abstract boolean opIsStateful(); |
|
/** |
|
* Accepts a {@code Sink} which will receive the results of this operation, |
|
* and return a {@code Sink} which accepts elements of the input type of |
|
* this operation and which performs the operation, passing the results to |
|
* the provided {@code Sink}. |
|
* |
|
* @apiNote |
|
* The implementation may use the {@code flags} parameter to optimize the |
|
* sink wrapping. For example, if the input is already {@code DISTINCT}, |
|
* the implementation for the {@code Stream#distinct()} method could just |
|
* return the sink it was passed. |
|
* |
|
* @param flags The combined stream and operation flags up to, but not |
|
* including, this operation |
|
* @param sink sink to which elements should be sent after processing |
|
* @return a sink which accepts elements, perform the operation upon |
|
* each element, and passes the results (if any) to the provided |
|
* {@code Sink}. |
|
*/ |
|
abstract Sink<E_IN> opWrapSink(int flags, Sink<E_OUT> sink); |
|
/** |
|
* Performs a parallel evaluation of the operation using the specified |
|
* {@code PipelineHelper} which describes the upstream intermediate |
|
* operations. Only called on stateful operations. If {@link |
|
* #opIsStateful()} returns true then implementations must override the |
|
* default implementation. |
|
* |
|
* @implSpec The default implementation always throw |
|
* {@code UnsupportedOperationException}. |
|
* |
|
* @param helper the pipeline helper describing the pipeline stages |
|
* @param spliterator the source {@code Spliterator} |
|
* @param generator the array generator |
|
* @return a {@code Node} describing the result of the evaluation |
|
*/ |
|
<P_IN> Node<E_OUT> opEvaluateParallel(PipelineHelper<E_OUT> helper, |
|
Spliterator<P_IN> spliterator, |
|
IntFunction<E_OUT[]> generator) { |
|
throw new UnsupportedOperationException("Parallel evaluation is not supported"); |
|
} |
|
/** |
|
* Returns a {@code Spliterator} describing a parallel evaluation of the |
|
* operation, using the specified {@code PipelineHelper} which describes the |
|
* upstream intermediate operations. Only called on stateful operations. |
|
* It is not necessary (though acceptable) to do a full computation of the |
|
* result here; it is preferable, if possible, to describe the result via a |
|
* lazily evaluated spliterator. |
|
* |
|
* @implSpec The default implementation behaves as if: |
|
* <pre>{@code |
|
* return evaluateParallel(helper, i -> (E_OUT[]) new |
|
* Object[i]).spliterator(); |
|
* }</pre> |
|
* and is suitable for implementations that cannot do better than a full |
|
* synchronous evaluation. |
|
* |
|
* @param helper the pipeline helper |
|
* @param spliterator the source {@code Spliterator} |
|
* @return a {@code Spliterator} describing the result of the evaluation |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
<P_IN> Spliterator<E_OUT> opEvaluateParallelLazy(PipelineHelper<E_OUT> helper, |
|
Spliterator<P_IN> spliterator) { |
|
return opEvaluateParallel(helper, spliterator, i -> (E_OUT[]) new Object[i]).spliterator(); |
|
} |
|
} |