/* |
|
* Copyright (c) 2006, 2013, Oracle and/or its affiliates. All rights reserved. |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
package java.awt; |
|
import java.awt.MultipleGradientPaint.CycleMethod; |
|
import java.awt.MultipleGradientPaint.ColorSpaceType; |
|
import java.awt.color.ColorSpace; |
|
import java.awt.geom.AffineTransform; |
|
import java.awt.geom.NoninvertibleTransformException; |
|
import java.awt.geom.Rectangle2D; |
|
import java.awt.image.ColorModel; |
|
import java.awt.image.DataBuffer; |
|
import java.awt.image.DataBufferInt; |
|
import java.awt.image.DirectColorModel; |
|
import java.awt.image.Raster; |
|
import java.awt.image.SinglePixelPackedSampleModel; |
|
import java.awt.image.WritableRaster; |
|
import java.lang.ref.SoftReference; |
|
import java.lang.ref.WeakReference; |
|
import java.util.Arrays; |
|
/** |
|
* This is the superclass for all PaintContexts which use a multiple color |
|
* gradient to fill in their raster. It provides the actual color |
|
* interpolation functionality. Subclasses only have to deal with using |
|
* the gradient to fill pixels in a raster. |
|
* |
|
* @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans |
|
*/ |
|
abstract class MultipleGradientPaintContext implements PaintContext { |
|
/** |
|
* The PaintContext's ColorModel. This is ARGB if colors are not all |
|
* opaque, otherwise it is RGB. |
|
*/ |
|
protected ColorModel model; |
|
/** Color model used if gradient colors are all opaque. */ |
|
private static ColorModel xrgbmodel = |
|
new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff); |
|
/** The cached ColorModel. */ |
|
protected static ColorModel cachedModel; |
|
/** The cached raster, which is reusable among instances. */ |
|
protected static WeakReference<Raster> cached; |
|
/** Raster is reused whenever possible. */ |
|
protected Raster saved; |
|
/** The method to use when painting out of the gradient bounds. */ |
|
protected CycleMethod cycleMethod; |
|
/** The ColorSpace in which to perform the interpolation */ |
|
protected ColorSpaceType colorSpace; |
|
/** Elements of the inverse transform matrix. */ |
|
protected float a00, a01, a10, a11, a02, a12; |
|
/** |
|
* This boolean specifies whether we are in simple lookup mode, where an |
|
* input value between 0 and 1 may be used to directly index into a single |
|
* array of gradient colors. If this boolean value is false, then we have |
|
* to use a 2-step process where we have to determine which gradient array |
|
* we fall into, then determine the index into that array. |
|
*/ |
|
protected boolean isSimpleLookup; |
|
/** |
|
* Size of gradients array for scaling the 0-1 index when looking up |
|
* colors the fast way. |
|
*/ |
|
protected int fastGradientArraySize; |
|
/** |
|
* Array which contains the interpolated color values for each interval, |
|
* used by calculateSingleArrayGradient(). It is protected for possible |
|
* direct access by subclasses. |
|
*/ |
|
protected int[] gradient; |
|
/** |
|
* Array of gradient arrays, one array for each interval. Used by |
|
* calculateMultipleArrayGradient(). |
|
*/ |
|
private int[][] gradients; |
|
/** Normalized intervals array. */ |
|
private float[] normalizedIntervals; |
|
/** Fractions array. */ |
|
private float[] fractions; |
|
/** Used to determine if gradient colors are all opaque. */ |
|
private int transparencyTest; |
|
/** Color space conversion lookup tables. */ |
|
private static final int SRGBtoLinearRGB[] = new int[256]; |
|
private static final int LinearRGBtoSRGB[] = new int[256]; |
|
static { |
|
// build the tables |
|
for (int k = 0; k < 256; k++) { |
|
SRGBtoLinearRGB[k] = convertSRGBtoLinearRGB(k); |
|
LinearRGBtoSRGB[k] = convertLinearRGBtoSRGB(k); |
|
} |
|
} |
|
/** |
|
* Constant number of max colors between any 2 arbitrary colors. |
|
* Used for creating and indexing gradients arrays. |
|
*/ |
|
protected static final int GRADIENT_SIZE = 256; |
|
protected static final int GRADIENT_SIZE_INDEX = GRADIENT_SIZE -1; |
|
/** |
|
* Maximum length of the fast single-array. If the estimated array size |
|
* is greater than this, switch over to the slow lookup method. |
|
* No particular reason for choosing this number, but it seems to provide |
|
* satisfactory performance for the common case (fast lookup). |
|
*/ |
|
private static final int MAX_GRADIENT_ARRAY_SIZE = 5000; |
|
/** |
|
* Constructor for MultipleGradientPaintContext superclass. |
|
*/ |
|
protected MultipleGradientPaintContext(MultipleGradientPaint mgp, |
|
ColorModel cm, |
|
Rectangle deviceBounds, |
|
Rectangle2D userBounds, |
|
AffineTransform t, |
|
RenderingHints hints, |
|
float[] fractions, |
|
Color[] colors, |
|
CycleMethod cycleMethod, |
|
ColorSpaceType colorSpace) |
|
{ |
|
if (deviceBounds == null) { |
|
throw new NullPointerException("Device bounds cannot be null"); |
|
} |
|
if (userBounds == null) { |
|
throw new NullPointerException("User bounds cannot be null"); |
|
} |
|
if (t == null) { |
|
throw new NullPointerException("Transform cannot be null"); |
|
} |
|
if (hints == null) { |
|
throw new NullPointerException("RenderingHints cannot be null"); |
|
} |
|
// The inverse transform is needed to go from device to user space. |
|
// Get all the components of the inverse transform matrix. |
|
AffineTransform tInv; |
|
try { |
|
// the following assumes that the caller has copied the incoming |
|
// transform and is not concerned about it being modified |
|
t.invert(); |
|
tInv = t; |
|
} catch (NoninvertibleTransformException e) { |
|
// just use identity transform in this case; better to show |
|
// (incorrect) results than to throw an exception and/or no-op |
|
tInv = new AffineTransform(); |
|
} |
|
double m[] = new double[6]; |
|
tInv.getMatrix(m); |
|
a00 = (float)m[0]; |
|
a10 = (float)m[1]; |
|
a01 = (float)m[2]; |
|
a11 = (float)m[3]; |
|
a02 = (float)m[4]; |
|
a12 = (float)m[5]; |
|
// copy some flags |
|
this.cycleMethod = cycleMethod; |
|
this.colorSpace = colorSpace; |
|
// we can avoid copying this array since we do not modify its values |
|
this.fractions = fractions; |
|
// note that only one of these values can ever be non-null (we either |
|
// store the fast gradient array or the slow one, but never both |
|
// at the same time) |
|
int[] gradient = |
|
(mgp.gradient != null) ? mgp.gradient.get() : null; |
|
int[][] gradients = |
|
(mgp.gradients != null) ? mgp.gradients.get() : null; |
|
if (gradient == null && gradients == null) { |
|
// we need to (re)create the appropriate values |
|
calculateLookupData(colors); |
|
// now cache the calculated values in the |
|
// MultipleGradientPaint instance for future use |
|
mgp.model = this.model; |
|
mgp.normalizedIntervals = this.normalizedIntervals; |
|
mgp.isSimpleLookup = this.isSimpleLookup; |
|
if (isSimpleLookup) { |
|
// only cache the fast array |
|
mgp.fastGradientArraySize = this.fastGradientArraySize; |
|
mgp.gradient = new SoftReference<int[]>(this.gradient); |
|
} else { |
|
// only cache the slow array |
|
mgp.gradients = new SoftReference<int[][]>(this.gradients); |
|
} |
|
} else { |
|
// use the values cached in the MultipleGradientPaint instance |
|
this.model = mgp.model; |
|
this.normalizedIntervals = mgp.normalizedIntervals; |
|
this.isSimpleLookup = mgp.isSimpleLookup; |
|
this.gradient = gradient; |
|
this.fastGradientArraySize = mgp.fastGradientArraySize; |
|
this.gradients = gradients; |
|
} |
|
} |
|
/** |
|
* This function is the meat of this class. It calculates an array of |
|
* gradient colors based on an array of fractions and color values at |
|
* those fractions. |
|
*/ |
|
private void calculateLookupData(Color[] colors) { |
|
Color[] normalizedColors; |
|
if (colorSpace == ColorSpaceType.LINEAR_RGB) { |
|
// create a new colors array |
|
normalizedColors = new Color[colors.length]; |
|
// convert the colors using the lookup table |
|
for (int i = 0; i < colors.length; i++) { |
|
int argb = colors[i].getRGB(); |
|
int a = argb >>> 24; |
|
int r = SRGBtoLinearRGB[(argb >> 16) & 0xff]; |
|
int g = SRGBtoLinearRGB[(argb >> 8) & 0xff]; |
|
int b = SRGBtoLinearRGB[(argb ) & 0xff]; |
|
normalizedColors[i] = new Color(r, g, b, a); |
|
} |
|
} else { |
|
// we can just use this array by reference since we do not |
|
// modify its values in the case of SRGB |
|
normalizedColors = colors; |
|
} |
|
// this will store the intervals (distances) between gradient stops |
|
normalizedIntervals = new float[fractions.length-1]; |
|
// convert from fractions into intervals |
|
for (int i = 0; i < normalizedIntervals.length; i++) { |
|
// interval distance is equal to the difference in positions |
|
normalizedIntervals[i] = this.fractions[i+1] - this.fractions[i]; |
|
} |
|
// initialize to be fully opaque for ANDing with colors |
|
transparencyTest = 0xff000000; |
|
// array of interpolation arrays |
|
gradients = new int[normalizedIntervals.length][]; |
|
// find smallest interval |
|
float Imin = 1; |
|
for (int i = 0; i < normalizedIntervals.length; i++) { |
|
Imin = (Imin > normalizedIntervals[i]) ? |
|
normalizedIntervals[i] : Imin; |
|
} |
|
// Estimate the size of the entire gradients array. |
|
// This is to prevent a tiny interval from causing the size of array |
|
// to explode. If the estimated size is too large, break to using |
|
// separate arrays for each interval, and using an indexing scheme at |
|
// look-up time. |
|
int estimatedSize = 0; |
|
for (int i = 0; i < normalizedIntervals.length; i++) { |
|
estimatedSize += (normalizedIntervals[i]/Imin) * GRADIENT_SIZE; |
|
} |
|
if (estimatedSize > MAX_GRADIENT_ARRAY_SIZE) { |
|
// slow method |
|
calculateMultipleArrayGradient(normalizedColors); |
|
} else { |
|
// fast method |
|
calculateSingleArrayGradient(normalizedColors, Imin); |
|
} |
|
// use the most "economical" model |
|
if ((transparencyTest >>> 24) == 0xff) { |
|
model = xrgbmodel; |
|
} else { |
|
model = ColorModel.getRGBdefault(); |
|
} |
|
} |
|
/** |
|
* FAST LOOKUP METHOD |
|
* |
|
* This method calculates the gradient color values and places them in a |
|
* single int array, gradient[]. It does this by allocating space for |
|
* each interval based on its size relative to the smallest interval in |
|
* the array. The smallest interval is allocated 255 interpolated values |
|
* (the maximum number of unique in-between colors in a 24 bit color |
|
* system), and all other intervals are allocated |
|
* size = (255 * the ratio of their size to the smallest interval). |
|
* |
|
* This scheme expedites a speedy retrieval because the colors are |
|
* distributed along the array according to their user-specified |
|
* distribution. All that is needed is a relative index from 0 to 1. |
|
* |
|
* The only problem with this method is that the possibility exists for |
|
* the array size to balloon in the case where there is a |
|
* disproportionately small gradient interval. In this case the other |
|
* intervals will be allocated huge space, but much of that data is |
|
* redundant. We thus need to use the space conserving scheme below. |
|
* |
|
* @param Imin the size of the smallest interval |
|
*/ |
|
private void calculateSingleArrayGradient(Color[] colors, float Imin) { |
|
// set the flag so we know later it is a simple (fast) lookup |
|
isSimpleLookup = true; |
|
// 2 colors to interpolate |
|
int rgb1, rgb2; |
|
//the eventual size of the single array |
|
int gradientsTot = 1; |
|
// for every interval (transition between 2 colors) |
|
for (int i = 0; i < gradients.length; i++) { |
|
// create an array whose size is based on the ratio to the |
|
// smallest interval |
|
int nGradients = (int)((normalizedIntervals[i]/Imin)*255f); |
|
gradientsTot += nGradients; |
|
gradients[i] = new int[nGradients]; |
|
// the 2 colors (keyframes) to interpolate between |
|
rgb1 = colors[i].getRGB(); |
|
rgb2 = colors[i+1].getRGB(); |
|
// fill this array with the colors in between rgb1 and rgb2 |
|
interpolate(rgb1, rgb2, gradients[i]); |
|
// if the colors are opaque, transparency should still |
|
// be 0xff000000 |
|
transparencyTest &= rgb1; |
|
transparencyTest &= rgb2; |
|
} |
|
// put all gradients in a single array |
|
gradient = new int[gradientsTot]; |
|
int curOffset = 0; |
|
for (int i = 0; i < gradients.length; i++){ |
|
System.arraycopy(gradients[i], 0, gradient, |
|
curOffset, gradients[i].length); |
|
curOffset += gradients[i].length; |
|
} |
|
gradient[gradient.length-1] = colors[colors.length-1].getRGB(); |
|
// if interpolation occurred in Linear RGB space, convert the |
|
// gradients back to sRGB using the lookup table |
|
if (colorSpace == ColorSpaceType.LINEAR_RGB) { |
|
for (int i = 0; i < gradient.length; i++) { |
|
gradient[i] = convertEntireColorLinearRGBtoSRGB(gradient[i]); |
|
} |
|
} |
|
fastGradientArraySize = gradient.length - 1; |
|
} |
|
/** |
|
* SLOW LOOKUP METHOD |
|
* |
|
* This method calculates the gradient color values for each interval and |
|
* places each into its own 255 size array. The arrays are stored in |
|
* gradients[][]. (255 is used because this is the maximum number of |
|
* unique colors between 2 arbitrary colors in a 24 bit color system.) |
|
* |
|
* This method uses the minimum amount of space (only 255 * number of |
|
* intervals), but it aggravates the lookup procedure, because now we |
|
* have to find out which interval to select, then calculate the index |
|
* within that interval. This causes a significant performance hit, |
|
* because it requires this calculation be done for every point in |
|
* the rendering loop. |
|
* |
|
* For those of you who are interested, this is a classic example of the |
|
* time-space tradeoff. |
|
*/ |
|
private void calculateMultipleArrayGradient(Color[] colors) { |
|
// set the flag so we know later it is a non-simple lookup |
|
isSimpleLookup = false; |
|
// 2 colors to interpolate |
|
int rgb1, rgb2; |
|
// for every interval (transition between 2 colors) |
|
for (int i = 0; i < gradients.length; i++){ |
|
// create an array of the maximum theoretical size for |
|
// each interval |
|
gradients[i] = new int[GRADIENT_SIZE]; |
|
// get the the 2 colors |
|
rgb1 = colors[i].getRGB(); |
|
rgb2 = colors[i+1].getRGB(); |
|
// fill this array with the colors in between rgb1 and rgb2 |
|
interpolate(rgb1, rgb2, gradients[i]); |
|
// if the colors are opaque, transparency should still |
|
// be 0xff000000 |
|
transparencyTest &= rgb1; |
|
transparencyTest &= rgb2; |
|
} |
|
// if interpolation occurred in Linear RGB space, convert the |
|
// gradients back to SRGB using the lookup table |
|
if (colorSpace == ColorSpaceType.LINEAR_RGB) { |
|
for (int j = 0; j < gradients.length; j++) { |
|
for (int i = 0; i < gradients[j].length; i++) { |
|
gradients[j][i] = |
|
convertEntireColorLinearRGBtoSRGB(gradients[j][i]); |
|
} |
|
} |
|
} |
|
} |
|
/** |
|
* Yet another helper function. This one linearly interpolates between |
|
* 2 colors, filling up the output array. |
|
* |
|
* @param rgb1 the start color |
|
* @param rgb2 the end color |
|
* @param output the output array of colors; must not be null |
|
*/ |
|
private void interpolate(int rgb1, int rgb2, int[] output) { |
|
// color components |
|
int a1, r1, g1, b1, da, dr, dg, db; |
|
// step between interpolated values |
|
float stepSize = 1.0f / output.length; |
|
// extract color components from packed integer |
|
a1 = (rgb1 >> 24) & 0xff; |
|
r1 = (rgb1 >> 16) & 0xff; |
|
g1 = (rgb1 >> 8) & 0xff; |
|
b1 = (rgb1 ) & 0xff; |
|
// calculate the total change in alpha, red, green, blue |
|
da = ((rgb2 >> 24) & 0xff) - a1; |
|
dr = ((rgb2 >> 16) & 0xff) - r1; |
|
dg = ((rgb2 >> 8) & 0xff) - g1; |
|
db = ((rgb2 ) & 0xff) - b1; |
|
// for each step in the interval calculate the in-between color by |
|
// multiplying the normalized current position by the total color |
|
// change (0.5 is added to prevent truncation round-off error) |
|
for (int i = 0; i < output.length; i++) { |
|
output[i] = |
|
(((int) ((a1 + i * da * stepSize) + 0.5) << 24)) | |
|
(((int) ((r1 + i * dr * stepSize) + 0.5) << 16)) | |
|
(((int) ((g1 + i * dg * stepSize) + 0.5) << 8)) | |
|
(((int) ((b1 + i * db * stepSize) + 0.5) )); |
|
} |
|
} |
|
/** |
|
* Yet another helper function. This one extracts the color components |
|
* of an integer RGB triple, converts them from LinearRGB to SRGB, then |
|
* recompacts them into an int. |
|
*/ |
|
private int convertEntireColorLinearRGBtoSRGB(int rgb) { |
|
// color components |
|
int a1, r1, g1, b1; |
|
// extract red, green, blue components |
|
a1 = (rgb >> 24) & 0xff; |
|
r1 = (rgb >> 16) & 0xff; |
|
g1 = (rgb >> 8) & 0xff; |
|
b1 = (rgb ) & 0xff; |
|
// use the lookup table |
|
r1 = LinearRGBtoSRGB[r1]; |
|
g1 = LinearRGBtoSRGB[g1]; |
|
b1 = LinearRGBtoSRGB[b1]; |
|
// re-compact the components |
|
return ((a1 << 24) | |
|
(r1 << 16) | |
|
(g1 << 8) | |
|
(b1 )); |
|
} |
|
/** |
|
* Helper function to index into the gradients array. This is necessary |
|
* because each interval has an array of colors with uniform size 255. |
|
* However, the color intervals are not necessarily of uniform length, so |
|
* a conversion is required. |
|
* |
|
* @param position the unmanipulated position, which will be mapped |
|
* into the range 0 to 1 |
|
* @returns integer color to display |
|
*/ |
|
protected final int indexIntoGradientsArrays(float position) { |
|
// first, manipulate position value depending on the cycle method |
|
if (cycleMethod == CycleMethod.NO_CYCLE) { |
|
if (position > 1) { |
|
// upper bound is 1 |
|
position = 1; |
|
} else if (position < 0) { |
|
// lower bound is 0 |
|
position = 0; |
|
} |
|
} else if (cycleMethod == CycleMethod.REPEAT) { |
|
// get the fractional part |
|
// (modulo behavior discards integer component) |
|
position = position - (int)position; |
|
//position should now be between -1 and 1 |
|
if (position < 0) { |
|
// force it to be in the range 0-1 |
|
position = position + 1; |
|
} |
|
} else { // cycleMethod == CycleMethod.REFLECT |
|
if (position < 0) { |
|
// take absolute value |
|
position = -position; |
|
} |
|
// get the integer part |
|
int part = (int)position; |
|
// get the fractional part |
|
position = position - part; |
|
if ((part & 1) == 1) { |
|
// integer part is odd, get reflected color instead |
|
position = 1 - position; |
|
} |
|
} |
|
// now, get the color based on this 0-1 position... |
|
if (isSimpleLookup) { |
|
// easy to compute: just scale index by array size |
|
return gradient[(int)(position * fastGradientArraySize)]; |
|
} else { |
|
// more complicated computation, to save space |
|
// for all the gradient interval arrays |
|
for (int i = 0; i < gradients.length; i++) { |
|
if (position < fractions[i+1]) { |
|
// this is the array we want |
|
float delta = position - fractions[i]; |
|
// this is the interval we want |
|
int index = (int)((delta / normalizedIntervals[i]) |
|
* (GRADIENT_SIZE_INDEX)); |
|
return gradients[i][index]; |
|
} |
|
} |
|
} |
|
return gradients[gradients.length - 1][GRADIENT_SIZE_INDEX]; |
|
} |
|
/** |
|
* Helper function to convert a color component in sRGB space to linear |
|
* RGB space. Used to build a static lookup table. |
|
*/ |
|
private static int convertSRGBtoLinearRGB(int color) { |
|
float input, output; |
|
input = color / 255.0f; |
|
if (input <= 0.04045f) { |
|
output = input / 12.92f; |
|
} else { |
|
output = (float)Math.pow((input + 0.055) / 1.055, 2.4); |
|
} |
|
return Math.round(output * 255.0f); |
|
} |
|
/** |
|
* Helper function to convert a color component in linear RGB space to |
|
* SRGB space. Used to build a static lookup table. |
|
*/ |
|
private static int convertLinearRGBtoSRGB(int color) { |
|
float input, output; |
|
input = color/255.0f; |
|
if (input <= 0.0031308) { |
|
output = input * 12.92f; |
|
} else { |
|
output = (1.055f * |
|
((float) Math.pow(input, (1.0 / 2.4)))) - 0.055f; |
|
} |
|
return Math.round(output * 255.0f); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
*/ |
|
public final Raster getRaster(int x, int y, int w, int h) { |
|
// If working raster is big enough, reuse it. Otherwise, |
|
// build a large enough new one. |
|
Raster raster = saved; |
|
if (raster == null || |
|
raster.getWidth() < w || raster.getHeight() < h) |
|
{ |
|
raster = getCachedRaster(model, w, h); |
|
saved = raster; |
|
} |
|
// Access raster internal int array. Because we use a DirectColorModel, |
|
// we know the DataBuffer is of type DataBufferInt and the SampleModel |
|
// is SinglePixelPackedSampleModel. |
|
// Adjust for initial offset in DataBuffer and also for the scanline |
|
// stride. |
|
// These calls make the DataBuffer non-acceleratable, but the |
|
// Raster is never Stable long enough to accelerate anyway... |
|
DataBufferInt rasterDB = (DataBufferInt)raster.getDataBuffer(); |
|
int[] pixels = rasterDB.getData(0); |
|
int off = rasterDB.getOffset(); |
|
int scanlineStride = ((SinglePixelPackedSampleModel) |
|
raster.getSampleModel()).getScanlineStride(); |
|
int adjust = scanlineStride - w; |
|
fillRaster(pixels, off, adjust, x, y, w, h); // delegate to subclass |
|
return raster; |
|
} |
|
protected abstract void fillRaster(int pixels[], int off, int adjust, |
|
int x, int y, int w, int h); |
|
/** |
|
* Took this cacheRaster code from GradientPaint. It appears to recycle |
|
* rasters for use by any other instance, as long as they are sufficiently |
|
* large. |
|
*/ |
|
private static synchronized Raster getCachedRaster(ColorModel cm, |
|
int w, int h) |
|
{ |
|
if (cm == cachedModel) { |
|
if (cached != null) { |
|
Raster ras = (Raster) cached.get(); |
|
if (ras != null && |
|
ras.getWidth() >= w && |
|
ras.getHeight() >= h) |
|
{ |
|
cached = null; |
|
return ras; |
|
} |
|
} |
|
} |
|
return cm.createCompatibleWritableRaster(w, h); |
|
} |
|
/** |
|
* Took this cacheRaster code from GradientPaint. It appears to recycle |
|
* rasters for use by any other instance, as long as they are sufficiently |
|
* large. |
|
*/ |
|
private static synchronized void putCachedRaster(ColorModel cm, |
|
Raster ras) |
|
{ |
|
if (cached != null) { |
|
Raster cras = (Raster) cached.get(); |
|
if (cras != null) { |
|
int cw = cras.getWidth(); |
|
int ch = cras.getHeight(); |
|
int iw = ras.getWidth(); |
|
int ih = ras.getHeight(); |
|
if (cw >= iw && ch >= ih) { |
|
return; |
|
} |
|
if (cw * ch >= iw * ih) { |
|
return; |
|
} |
|
} |
|
} |
|
cachedModel = cm; |
|
cached = new WeakReference<Raster>(ras); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
*/ |
|
public final void dispose() { |
|
if (saved != null) { |
|
putCachedRaster(model, saved); |
|
saved = null; |
|
} |
|
} |
|
/** |
|
* {@inheritDoc} |
|
*/ |
|
public final ColorModel getColorModel() { |
|
return model; |
|
} |
|
} |