/* | 
|
 * Copyright (c) 1997, 2003, Oracle and/or its affiliates. All rights reserved. | 
|
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | 
|
 * | 
|
 * This code is free software; you can redistribute it and/or modify it | 
|
 * under the terms of the GNU General Public License version 2 only, as | 
|
 * published by the Free Software Foundation.  Oracle designates this | 
|
 * particular file as subject to the "Classpath" exception as provided | 
|
 * by Oracle in the LICENSE file that accompanied this code. | 
|
 * | 
|
 * This code is distributed in the hope that it will be useful, but WITHOUT | 
|
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|
 * version 2 for more details (a copy is included in the LICENSE file that | 
|
 * accompanied this code). | 
|
 * | 
|
 * You should have received a copy of the GNU General Public License version | 
|
 * 2 along with this work; if not, write to the Free Software Foundation, | 
|
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
|
 * | 
|
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | 
|
 * or visit www.oracle.com if you need additional information or have any | 
|
 * questions. | 
|
*/  | 
|
package java.awt.geom;  | 
|
import java.util.*;  | 
|
/** | 
|
 * A utility class to iterate over the path segments of an arc | 
|
 * through the PathIterator interface. | 
|
 * | 
|
 * @author      Jim Graham | 
|
*/  | 
|
class ArcIterator implements PathIterator {  | 
|
double x, y, w, h, angStRad, increment, cv;  | 
|
AffineTransform affine;  | 
|
int index;  | 
|
int arcSegs;  | 
|
int lineSegs;  | 
|
ArcIterator(Arc2D a, AffineTransform at) {  | 
|
this.w = a.getWidth() / 2;  | 
|
this.h = a.getHeight() / 2;  | 
|
this.x = a.getX() + w;  | 
|
this.y = a.getY() + h;  | 
|
this.angStRad = -Math.toRadians(a.getAngleStart());  | 
|
this.affine = at;  | 
|
double ext = -a.getAngleExtent();  | 
|
if (ext >= 360.0 || ext <= -360) {  | 
|
arcSegs = 4;  | 
|
this.increment = Math.PI / 2;  | 
|
            // btan(Math.PI / 2); | 
|
this.cv = 0.5522847498307933;  | 
|
if (ext < 0) {  | 
|
increment = -increment;  | 
|
cv = -cv;  | 
|
}  | 
|
        } else { | 
|
arcSegs = (int) Math.ceil(Math.abs(ext) / 90.0);  | 
|
this.increment = Math.toRadians(ext / arcSegs);  | 
|
this.cv = btan(increment);  | 
|
if (cv == 0) {  | 
|
arcSegs = 0;  | 
|
}  | 
|
}  | 
|
        switch (a.getArcType()) { | 
|
case Arc2D.OPEN:  | 
|
lineSegs = 0;  | 
|
break;  | 
|
case Arc2D.CHORD:  | 
|
lineSegs = 1;  | 
|
break;  | 
|
case Arc2D.PIE:  | 
|
lineSegs = 2;  | 
|
break;  | 
|
}  | 
|
if (w < 0 || h < 0) {  | 
|
arcSegs = lineSegs = -1;  | 
|
}  | 
|
}  | 
|
    /** | 
|
     * Return the winding rule for determining the insideness of the | 
|
     * path. | 
|
     * @see #WIND_EVEN_ODD | 
|
     * @see #WIND_NON_ZERO | 
|
*/  | 
|
    public int getWindingRule() { | 
|
return WIND_NON_ZERO;  | 
|
}  | 
|
    /** | 
|
     * Tests if there are more points to read. | 
|
     * @return true if there are more points to read | 
|
*/  | 
|
    public boolean isDone() { | 
|
return index > arcSegs + lineSegs;  | 
|
}  | 
|
    /** | 
|
     * Moves the iterator to the next segment of the path forwards | 
|
     * along the primary direction of traversal as long as there are | 
|
     * more points in that direction. | 
|
*/  | 
|
    public void next() { | 
|
index++;  | 
|
}  | 
|
    /* | 
|
     * btan computes the length (k) of the control segments at | 
|
     * the beginning and end of a cubic bezier that approximates | 
|
     * a segment of an arc with extent less than or equal to | 
|
     * 90 degrees.  This length (k) will be used to generate the | 
|
     * 2 bezier control points for such a segment. | 
|
     * | 
|
     *   Assumptions: | 
|
     *     a) arc is centered on 0,0 with radius of 1.0 | 
|
     *     b) arc extent is less than 90 degrees | 
|
     *     c) control points should preserve tangent | 
|
     *     d) control segments should have equal length | 
|
     * | 
|
     *   Initial data: | 
|
     *     start angle: ang1 | 
|
     *     end angle:   ang2 = ang1 + extent | 
|
     *     start point: P1 = (x1, y1) = (cos(ang1), sin(ang1)) | 
|
     *     end point:   P4 = (x4, y4) = (cos(ang2), sin(ang2)) | 
|
     * | 
|
     *   Control points: | 
|
     *     P2 = (x2, y2) | 
|
     *     | x2 = x1 - k * sin(ang1) = cos(ang1) - k * sin(ang1) | 
|
     *     | y2 = y1 + k * cos(ang1) = sin(ang1) + k * cos(ang1) | 
|
     * | 
|
     *     P3 = (x3, y3) | 
|
     *     | x3 = x4 + k * sin(ang2) = cos(ang2) + k * sin(ang2) | 
|
     *     | y3 = y4 - k * cos(ang2) = sin(ang2) - k * cos(ang2) | 
|
     * | 
|
     * The formula for this length (k) can be found using the | 
|
     * following derivations: | 
|
     * | 
|
     *   Midpoints: | 
|
     *     a) bezier (t = 1/2) | 
|
     *        bPm = P1 * (1-t)^3 + | 
|
     *              3 * P2 * t * (1-t)^2 + | 
|
     *              3 * P3 * t^2 * (1-t) + | 
|
     *              P4 * t^3 = | 
|
     *            = (P1 + 3P2 + 3P3 + P4)/8 | 
|
     * | 
|
     *     b) arc | 
|
     *        aPm = (cos((ang1 + ang2)/2), sin((ang1 + ang2)/2)) | 
|
     * | 
|
     *   Let angb = (ang2 - ang1)/2; angb is half of the angle | 
|
     *   between ang1 and ang2. | 
|
     * | 
|
     *   Solve the equation bPm == aPm | 
|
     * | 
|
     *     a) For xm coord: | 
|
     *        x1 + 3*x2 + 3*x3 + x4 = 8*cos((ang1 + ang2)/2) | 
|
     * | 
|
     *        cos(ang1) + 3*cos(ang1) - 3*k*sin(ang1) + | 
|
     *        3*cos(ang2) + 3*k*sin(ang2) + cos(ang2) = | 
|
     *        = 8*cos((ang1 + ang2)/2) | 
|
     * | 
|
     *        4*cos(ang1) + 4*cos(ang2) + 3*k*(sin(ang2) - sin(ang1)) = | 
|
     *        = 8*cos((ang1 + ang2)/2) | 
|
     * | 
|
     *        8*cos((ang1 + ang2)/2)*cos((ang2 - ang1)/2) + | 
|
     *        6*k*sin((ang2 - ang1)/2)*cos((ang1 + ang2)/2) = | 
|
     *        = 8*cos((ang1 + ang2)/2) | 
|
     * | 
|
     *        4*cos(angb) + 3*k*sin(angb) = 4 | 
|
     * | 
|
     *        k = 4 / 3 * (1 - cos(angb)) / sin(angb) | 
|
     * | 
|
     *     b) For ym coord we derive the same formula. | 
|
     * | 
|
     * Since this formula can generate "NaN" values for small | 
|
     * angles, we will derive a safer form that does not involve | 
|
     * dividing by very small values: | 
|
     *     (1 - cos(angb)) / sin(angb) = | 
|
     *     = (1 - cos(angb))*(1 + cos(angb)) / sin(angb)*(1 + cos(angb)) = | 
|
     *     = (1 - cos(angb)^2) / sin(angb)*(1 + cos(angb)) = | 
|
     *     = sin(angb)^2 / sin(angb)*(1 + cos(angb)) = | 
|
     *     = sin(angb) / (1 + cos(angb)) | 
|
     * | 
|
*/  | 
|
    private static double btan(double increment) { | 
|
increment /= 2.0;  | 
|
return 4.0 / 3.0 * Math.sin(increment) / (1.0 + Math.cos(increment));  | 
|
}  | 
|
    /** | 
|
     * Returns the coordinates and type of the current path segment in | 
|
     * the iteration. | 
|
     * The return value is the path segment type: | 
|
     * SEG_MOVETO, SEG_LINETO, SEG_QUADTO, SEG_CUBICTO, or SEG_CLOSE. | 
|
     * A float array of length 6 must be passed in and may be used to | 
|
     * store the coordinates of the point(s). | 
|
     * Each point is stored as a pair of float x,y coordinates. | 
|
     * SEG_MOVETO and SEG_LINETO types will return one point, | 
|
     * SEG_QUADTO will return two points, | 
|
     * SEG_CUBICTO will return 3 points | 
|
     * and SEG_CLOSE will not return any points. | 
|
     * @see #SEG_MOVETO | 
|
     * @see #SEG_LINETO | 
|
     * @see #SEG_QUADTO | 
|
     * @see #SEG_CUBICTO | 
|
     * @see #SEG_CLOSE | 
|
*/  | 
|
    public int currentSegment(float[] coords) { | 
|
if (isDone()) {  | 
|
throw new NoSuchElementException("arc iterator out of bounds");  | 
|
}  | 
|
double angle = angStRad;  | 
|
if (index == 0) {  | 
|
coords[0] = (float) (x + Math.cos(angle) * w);  | 
|
coords[1] = (float) (y + Math.sin(angle) * h);  | 
|
if (affine != null) {  | 
|
affine.transform(coords, 0, coords, 0, 1);  | 
|
}  | 
|
return SEG_MOVETO;  | 
|
}  | 
|
if (index > arcSegs) {  | 
|
if (index == arcSegs + lineSegs) {  | 
|
return SEG_CLOSE;  | 
|
}  | 
|
coords[0] = (float) x;  | 
|
coords[1] = (float) y;  | 
|
if (affine != null) {  | 
|
affine.transform(coords, 0, coords, 0, 1);  | 
|
}  | 
|
return SEG_LINETO;  | 
|
}  | 
|
angle += increment * (index - 1);  | 
|
double relx = Math.cos(angle);  | 
|
double rely = Math.sin(angle);  | 
|
coords[0] = (float) (x + (relx - cv * rely) * w);  | 
|
coords[1] = (float) (y + (rely + cv * relx) * h);  | 
|
angle += increment;  | 
|
relx = Math.cos(angle);  | 
|
rely = Math.sin(angle);  | 
|
coords[2] = (float) (x + (relx + cv * rely) * w);  | 
|
coords[3] = (float) (y + (rely - cv * relx) * h);  | 
|
coords[4] = (float) (x + relx * w);  | 
|
coords[5] = (float) (y + rely * h);  | 
|
if (affine != null) {  | 
|
affine.transform(coords, 0, coords, 0, 3);  | 
|
}  | 
|
return SEG_CUBICTO;  | 
|
}  | 
|
    /** | 
|
     * Returns the coordinates and type of the current path segment in | 
|
     * the iteration. | 
|
     * The return value is the path segment type: | 
|
     * SEG_MOVETO, SEG_LINETO, SEG_QUADTO, SEG_CUBICTO, or SEG_CLOSE. | 
|
     * A double array of length 6 must be passed in and may be used to | 
|
     * store the coordinates of the point(s). | 
|
     * Each point is stored as a pair of double x,y coordinates. | 
|
     * SEG_MOVETO and SEG_LINETO types will return one point, | 
|
     * SEG_QUADTO will return two points, | 
|
     * SEG_CUBICTO will return 3 points | 
|
     * and SEG_CLOSE will not return any points. | 
|
     * @see #SEG_MOVETO | 
|
     * @see #SEG_LINETO | 
|
     * @see #SEG_QUADTO | 
|
     * @see #SEG_CUBICTO | 
|
     * @see #SEG_CLOSE | 
|
*/  | 
|
    public int currentSegment(double[] coords) { | 
|
if (isDone()) {  | 
|
throw new NoSuchElementException("arc iterator out of bounds");  | 
|
}  | 
|
double angle = angStRad;  | 
|
if (index == 0) {  | 
|
coords[0] = x + Math.cos(angle) * w;  | 
|
coords[1] = y + Math.sin(angle) * h;  | 
|
if (affine != null) {  | 
|
affine.transform(coords, 0, coords, 0, 1);  | 
|
}  | 
|
return SEG_MOVETO;  | 
|
}  | 
|
if (index > arcSegs) {  | 
|
if (index == arcSegs + lineSegs) {  | 
|
return SEG_CLOSE;  | 
|
}  | 
|
coords[0] = x;  | 
|
coords[1] = y;  | 
|
if (affine != null) {  | 
|
affine.transform(coords, 0, coords, 0, 1);  | 
|
}  | 
|
return SEG_LINETO;  | 
|
}  | 
|
angle += increment * (index - 1);  | 
|
double relx = Math.cos(angle);  | 
|
double rely = Math.sin(angle);  | 
|
coords[0] = x + (relx - cv * rely) * w;  | 
|
coords[1] = y + (rely + cv * relx) * h;  | 
|
angle += increment;  | 
|
relx = Math.cos(angle);  | 
|
rely = Math.sin(angle);  | 
|
coords[2] = x + (relx + cv * rely) * w;  | 
|
coords[3] = y + (rely - cv * relx) * h;  | 
|
coords[4] = x + relx * w;  | 
|
coords[5] = y + rely * h;  | 
|
if (affine != null) {  | 
|
affine.transform(coords, 0, coords, 0, 3);  | 
|
}  | 
|
return SEG_CUBICTO;  | 
|
}  | 
|
}  |