/* |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
/* |
|
* This file is available under and governed by the GNU General Public |
|
* License version 2 only, as published by the Free Software Foundation. |
|
* However, the following notice accompanied the original version of this |
|
* file: |
|
* |
|
* Written by Doug Lea with assistance from members of JCP JSR-166 |
|
* Expert Group and released to the public domain, as explained at |
|
* http://creativecommons.org/publicdomain/zero/1.0/ |
|
*/ |
|
package java.util.concurrent; |
|
import java.util.concurrent.locks.Condition; |
|
import java.util.concurrent.locks.ReentrantLock; |
|
import java.util.AbstractQueue; |
|
import java.util.Collection; |
|
import java.util.Iterator; |
|
import java.util.NoSuchElementException; |
|
import java.lang.ref.WeakReference; |
|
import java.util.Spliterators; |
|
import java.util.Spliterator; |
|
/** |
|
* A bounded {@linkplain BlockingQueue blocking queue} backed by an |
|
* array. This queue orders elements FIFO (first-in-first-out). The |
|
* <em>head</em> of the queue is that element that has been on the |
|
* queue the longest time. The <em>tail</em> of the queue is that |
|
* element that has been on the queue the shortest time. New elements |
|
* are inserted at the tail of the queue, and the queue retrieval |
|
* operations obtain elements at the head of the queue. |
|
* |
|
* <p>This is a classic "bounded buffer", in which a |
|
* fixed-sized array holds elements inserted by producers and |
|
* extracted by consumers. Once created, the capacity cannot be |
|
* changed. Attempts to {@code put} an element into a full queue |
|
* will result in the operation blocking; attempts to {@code take} an |
|
* element from an empty queue will similarly block. |
|
* |
|
* <p>This class supports an optional fairness policy for ordering |
|
* waiting producer and consumer threads. By default, this ordering |
|
* is not guaranteed. However, a queue constructed with fairness set |
|
* to {@code true} grants threads access in FIFO order. Fairness |
|
* generally decreases throughput but reduces variability and avoids |
|
* starvation. |
|
* |
|
* <p>This class and its iterator implement all of the |
|
* <em>optional</em> methods of the {@link Collection} and {@link |
|
* Iterator} interfaces. |
|
* |
|
* <p>This class is a member of the |
|
* <a href="{@docRoot}/../technotes/guides/collections/index.html"> |
|
* Java Collections Framework</a>. |
|
* |
|
* @since 1.5 |
|
* @author Doug Lea |
|
* @param <E> the type of elements held in this collection |
|
*/ |
|
public class ArrayBlockingQueue<E> extends AbstractQueue<E> |
|
implements BlockingQueue<E>, java.io.Serializable { |
|
/** |
|
* Serialization ID. This class relies on default serialization |
|
* even for the items array, which is default-serialized, even if |
|
* it is empty. Otherwise it could not be declared final, which is |
|
* necessary here. |
|
*/ |
|
private static final long serialVersionUID = -817911632652898426L; |
|
/** The queued items */ |
|
final Object[] items; |
|
/** items index for next take, poll, peek or remove */ |
|
int takeIndex; |
|
/** items index for next put, offer, or add */ |
|
int putIndex; |
|
/** Number of elements in the queue */ |
|
int count; |
|
/* |
|
* Concurrency control uses the classic two-condition algorithm |
|
* found in any textbook. |
|
*/ |
|
/** Main lock guarding all access */ |
|
final ReentrantLock lock; |
|
/** Condition for waiting takes */ |
|
private final Condition notEmpty; |
|
/** Condition for waiting puts */ |
|
private final Condition notFull; |
|
/** |
|
* Shared state for currently active iterators, or null if there |
|
* are known not to be any. Allows queue operations to update |
|
* iterator state. |
|
*/ |
|
transient Itrs itrs = null; |
|
// Internal helper methods |
|
/** |
|
* Circularly decrement i. |
|
*/ |
|
final int dec(int i) { |
|
return ((i == 0) ? items.length : i) - 1; |
|
} |
|
/** |
|
* Returns item at index i. |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
final E itemAt(int i) { |
|
return (E) items[i]; |
|
} |
|
/** |
|
* Throws NullPointerException if argument is null. |
|
* |
|
* @param v the element |
|
*/ |
|
private static void checkNotNull(Object v) { |
|
if (v == null) |
|
throw new NullPointerException(); |
|
} |
|
/** |
|
* Inserts element at current put position, advances, and signals. |
|
* Call only when holding lock. |
|
*/ |
|
private void enqueue(E x) { |
|
// assert lock.getHoldCount() == 1; |
|
// assert items[putIndex] == null; |
|
final Object[] items = this.items; |
|
items[putIndex] = x; |
|
if (++putIndex == items.length) |
|
putIndex = 0; |
|
count++; |
|
notEmpty.signal(); |
|
} |
|
/** |
|
* Extracts element at current take position, advances, and signals. |
|
* Call only when holding lock. |
|
*/ |
|
private E dequeue() { |
|
// assert lock.getHoldCount() == 1; |
|
// assert items[takeIndex] != null; |
|
final Object[] items = this.items; |
|
@SuppressWarnings("unchecked") |
|
E x = (E) items[takeIndex]; |
|
items[takeIndex] = null; |
|
if (++takeIndex == items.length) |
|
takeIndex = 0; |
|
count--; |
|
if (itrs != null) |
|
itrs.elementDequeued(); |
|
notFull.signal(); |
|
return x; |
|
} |
|
/** |
|
* Deletes item at array index removeIndex. |
|
* Utility for remove(Object) and iterator.remove. |
|
* Call only when holding lock. |
|
*/ |
|
void removeAt(final int removeIndex) { |
|
// assert lock.getHoldCount() == 1; |
|
// assert items[removeIndex] != null; |
|
// assert removeIndex >= 0 && removeIndex < items.length; |
|
final Object[] items = this.items; |
|
if (removeIndex == takeIndex) { |
|
// removing front item; just advance |
|
items[takeIndex] = null; |
|
if (++takeIndex == items.length) |
|
takeIndex = 0; |
|
count--; |
|
if (itrs != null) |
|
itrs.elementDequeued(); |
|
} else { |
|
// an "interior" remove |
|
// slide over all others up through putIndex. |
|
final int putIndex = this.putIndex; |
|
for (int i = removeIndex;;) { |
|
int next = i + 1; |
|
if (next == items.length) |
|
next = 0; |
|
if (next != putIndex) { |
|
items[i] = items[next]; |
|
i = next; |
|
} else { |
|
items[i] = null; |
|
this.putIndex = i; |
|
break; |
|
} |
|
} |
|
count--; |
|
if (itrs != null) |
|
itrs.removedAt(removeIndex); |
|
} |
|
notFull.signal(); |
|
} |
|
/** |
|
* Creates an {@code ArrayBlockingQueue} with the given (fixed) |
|
* capacity and default access policy. |
|
* |
|
* @param capacity the capacity of this queue |
|
* @throws IllegalArgumentException if {@code capacity < 1} |
|
*/ |
|
public ArrayBlockingQueue(int capacity) { |
|
this(capacity, false); |
|
} |
|
/** |
|
* Creates an {@code ArrayBlockingQueue} with the given (fixed) |
|
* capacity and the specified access policy. |
|
* |
|
* @param capacity the capacity of this queue |
|
* @param fair if {@code true} then queue accesses for threads blocked |
|
* on insertion or removal, are processed in FIFO order; |
|
* if {@code false} the access order is unspecified. |
|
* @throws IllegalArgumentException if {@code capacity < 1} |
|
*/ |
|
public ArrayBlockingQueue(int capacity, boolean fair) { |
|
if (capacity <= 0) |
|
throw new IllegalArgumentException(); |
|
this.items = new Object[capacity]; |
|
lock = new ReentrantLock(fair); |
|
notEmpty = lock.newCondition(); |
|
notFull = lock.newCondition(); |
|
} |
|
/** |
|
* Creates an {@code ArrayBlockingQueue} with the given (fixed) |
|
* capacity, the specified access policy and initially containing the |
|
* elements of the given collection, |
|
* added in traversal order of the collection's iterator. |
|
* |
|
* @param capacity the capacity of this queue |
|
* @param fair if {@code true} then queue accesses for threads blocked |
|
* on insertion or removal, are processed in FIFO order; |
|
* if {@code false} the access order is unspecified. |
|
* @param c the collection of elements to initially contain |
|
* @throws IllegalArgumentException if {@code capacity} is less than |
|
* {@code c.size()}, or less than 1. |
|
* @throws NullPointerException if the specified collection or any |
|
* of its elements are null |
|
*/ |
|
public ArrayBlockingQueue(int capacity, boolean fair, |
|
Collection<? extends E> c) { |
|
this(capacity, fair); |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); // Lock only for visibility, not mutual exclusion |
|
try { |
|
int i = 0; |
|
try { |
|
for (E e : c) { |
|
checkNotNull(e); |
|
items[i++] = e; |
|
} |
|
} catch (ArrayIndexOutOfBoundsException ex) { |
|
throw new IllegalArgumentException(); |
|
} |
|
count = i; |
|
putIndex = (i == capacity) ? 0 : i; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* Inserts the specified element at the tail of this queue if it is |
|
* possible to do so immediately without exceeding the queue's capacity, |
|
* returning {@code true} upon success and throwing an |
|
* {@code IllegalStateException} if this queue is full. |
|
* |
|
* @param e the element to add |
|
* @return {@code true} (as specified by {@link Collection#add}) |
|
* @throws IllegalStateException if this queue is full |
|
* @throws NullPointerException if the specified element is null |
|
*/ |
|
public boolean add(E e) { |
|
return super.add(e); |
|
} |
|
/** |
|
* Inserts the specified element at the tail of this queue if it is |
|
* possible to do so immediately without exceeding the queue's capacity, |
|
* returning {@code true} upon success and {@code false} if this queue |
|
* is full. This method is generally preferable to method {@link #add}, |
|
* which can fail to insert an element only by throwing an exception. |
|
* |
|
* @throws NullPointerException if the specified element is null |
|
*/ |
|
public boolean offer(E e) { |
|
checkNotNull(e); |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
if (count == items.length) |
|
return false; |
|
else { |
|
enqueue(e); |
|
return true; |
|
} |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* Inserts the specified element at the tail of this queue, waiting |
|
* for space to become available if the queue is full. |
|
* |
|
* @throws InterruptedException {@inheritDoc} |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public void put(E e) throws InterruptedException { |
|
checkNotNull(e); |
|
final ReentrantLock lock = this.lock; |
|
lock.lockInterruptibly(); |
|
try { |
|
while (count == items.length) |
|
notFull.await(); |
|
enqueue(e); |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* Inserts the specified element at the tail of this queue, waiting |
|
* up to the specified wait time for space to become available if |
|
* the queue is full. |
|
* |
|
* @throws InterruptedException {@inheritDoc} |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public boolean offer(E e, long timeout, TimeUnit unit) |
|
throws InterruptedException { |
|
checkNotNull(e); |
|
long nanos = unit.toNanos(timeout); |
|
final ReentrantLock lock = this.lock; |
|
lock.lockInterruptibly(); |
|
try { |
|
while (count == items.length) { |
|
if (nanos <= 0) |
|
return false; |
|
nanos = notFull.awaitNanos(nanos); |
|
} |
|
enqueue(e); |
|
return true; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
public E poll() { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
return (count == 0) ? null : dequeue(); |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
public E take() throws InterruptedException { |
|
final ReentrantLock lock = this.lock; |
|
lock.lockInterruptibly(); |
|
try { |
|
while (count == 0) |
|
notEmpty.await(); |
|
return dequeue(); |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
public E poll(long timeout, TimeUnit unit) throws InterruptedException { |
|
long nanos = unit.toNanos(timeout); |
|
final ReentrantLock lock = this.lock; |
|
lock.lockInterruptibly(); |
|
try { |
|
while (count == 0) { |
|
if (nanos <= 0) |
|
return null; |
|
nanos = notEmpty.awaitNanos(nanos); |
|
} |
|
return dequeue(); |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
public E peek() { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
return itemAt(takeIndex); // null when queue is empty |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
// this doc comment is overridden to remove the reference to collections |
|
// greater in size than Integer.MAX_VALUE |
|
/** |
|
* Returns the number of elements in this queue. |
|
* |
|
* @return the number of elements in this queue |
|
*/ |
|
public int size() { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
return count; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
// this doc comment is a modified copy of the inherited doc comment, |
|
// without the reference to unlimited queues. |
|
/** |
|
* Returns the number of additional elements that this queue can ideally |
|
* (in the absence of memory or resource constraints) accept without |
|
* blocking. This is always equal to the initial capacity of this queue |
|
* less the current {@code size} of this queue. |
|
* |
|
* <p>Note that you <em>cannot</em> always tell if an attempt to insert |
|
* an element will succeed by inspecting {@code remainingCapacity} |
|
* because it may be the case that another thread is about to |
|
* insert or remove an element. |
|
*/ |
|
public int remainingCapacity() { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
return items.length - count; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* Removes a single instance of the specified element from this queue, |
|
* if it is present. More formally, removes an element {@code e} such |
|
* that {@code o.equals(e)}, if this queue contains one or more such |
|
* elements. |
|
* Returns {@code true} if this queue contained the specified element |
|
* (or equivalently, if this queue changed as a result of the call). |
|
* |
|
* <p>Removal of interior elements in circular array based queues |
|
* is an intrinsically slow and disruptive operation, so should |
|
* be undertaken only in exceptional circumstances, ideally |
|
* only when the queue is known not to be accessible by other |
|
* threads. |
|
* |
|
* @param o element to be removed from this queue, if present |
|
* @return {@code true} if this queue changed as a result of the call |
|
*/ |
|
public boolean remove(Object o) { |
|
if (o == null) return false; |
|
final Object[] items = this.items; |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
if (count > 0) { |
|
final int putIndex = this.putIndex; |
|
int i = takeIndex; |
|
do { |
|
if (o.equals(items[i])) { |
|
removeAt(i); |
|
return true; |
|
} |
|
if (++i == items.length) |
|
i = 0; |
|
} while (i != putIndex); |
|
} |
|
return false; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* Returns {@code true} if this queue contains the specified element. |
|
* More formally, returns {@code true} if and only if this queue contains |
|
* at least one element {@code e} such that {@code o.equals(e)}. |
|
* |
|
* @param o object to be checked for containment in this queue |
|
* @return {@code true} if this queue contains the specified element |
|
*/ |
|
public boolean contains(Object o) { |
|
if (o == null) return false; |
|
final Object[] items = this.items; |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
if (count > 0) { |
|
final int putIndex = this.putIndex; |
|
int i = takeIndex; |
|
do { |
|
if (o.equals(items[i])) |
|
return true; |
|
if (++i == items.length) |
|
i = 0; |
|
} while (i != putIndex); |
|
} |
|
return false; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* Returns an array containing all of the elements in this queue, in |
|
* proper sequence. |
|
* |
|
* <p>The returned array will be "safe" in that no references to it are |
|
* maintained by this queue. (In other words, this method must allocate |
|
* a new array). The caller is thus free to modify the returned array. |
|
* |
|
* <p>This method acts as bridge between array-based and collection-based |
|
* APIs. |
|
* |
|
* @return an array containing all of the elements in this queue |
|
*/ |
|
public Object[] toArray() { |
|
Object[] a; |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
final int count = this.count; |
|
a = new Object[count]; |
|
int n = items.length - takeIndex; |
|
if (count <= n) |
|
System.arraycopy(items, takeIndex, a, 0, count); |
|
else { |
|
System.arraycopy(items, takeIndex, a, 0, n); |
|
System.arraycopy(items, 0, a, n, count - n); |
|
} |
|
} finally { |
|
lock.unlock(); |
|
} |
|
return a; |
|
} |
|
/** |
|
* Returns an array containing all of the elements in this queue, in |
|
* proper sequence; the runtime type of the returned array is that of |
|
* the specified array. If the queue fits in the specified array, it |
|
* is returned therein. Otherwise, a new array is allocated with the |
|
* runtime type of the specified array and the size of this queue. |
|
* |
|
* <p>If this queue fits in the specified array with room to spare |
|
* (i.e., the array has more elements than this queue), the element in |
|
* the array immediately following the end of the queue is set to |
|
* {@code null}. |
|
* |
|
* <p>Like the {@link #toArray()} method, this method acts as bridge between |
|
* array-based and collection-based APIs. Further, this method allows |
|
* precise control over the runtime type of the output array, and may, |
|
* under certain circumstances, be used to save allocation costs. |
|
* |
|
* <p>Suppose {@code x} is a queue known to contain only strings. |
|
* The following code can be used to dump the queue into a newly |
|
* allocated array of {@code String}: |
|
* |
|
* <pre> {@code String[] y = x.toArray(new String[0]);}</pre> |
|
* |
|
* Note that {@code toArray(new Object[0])} is identical in function to |
|
* {@code toArray()}. |
|
* |
|
* @param a the array into which the elements of the queue are to |
|
* be stored, if it is big enough; otherwise, a new array of the |
|
* same runtime type is allocated for this purpose |
|
* @return an array containing all of the elements in this queue |
|
* @throws ArrayStoreException if the runtime type of the specified array |
|
* is not a supertype of the runtime type of every element in |
|
* this queue |
|
* @throws NullPointerException if the specified array is null |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public <T> T[] toArray(T[] a) { |
|
final Object[] items = this.items; |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
final int count = this.count; |
|
final int len = a.length; |
|
if (len < count) |
|
a = (T[])java.lang.reflect.Array.newInstance( |
|
a.getClass().getComponentType(), count); |
|
int n = items.length - takeIndex; |
|
if (count <= n) |
|
System.arraycopy(items, takeIndex, a, 0, count); |
|
else { |
|
System.arraycopy(items, takeIndex, a, 0, n); |
|
System.arraycopy(items, 0, a, n, count - n); |
|
} |
|
if (len > count) |
|
a[count] = null; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
return a; |
|
} |
|
public String toString() { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
int k = count; |
|
if (k == 0) |
|
return "[]"; |
|
final Object[] items = this.items; |
|
StringBuilder sb = new StringBuilder(); |
|
sb.append('['); |
|
for (int i = takeIndex; ; ) { |
|
Object e = items[i]; |
|
sb.append(e == this ? "(this Collection)" : e); |
|
if (--k == 0) |
|
return sb.append(']').toString(); |
|
sb.append(',').append(' '); |
|
if (++i == items.length) |
|
i = 0; |
|
} |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* Atomically removes all of the elements from this queue. |
|
* The queue will be empty after this call returns. |
|
*/ |
|
public void clear() { |
|
final Object[] items = this.items; |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
int k = count; |
|
if (k > 0) { |
|
final int putIndex = this.putIndex; |
|
int i = takeIndex; |
|
do { |
|
items[i] = null; |
|
if (++i == items.length) |
|
i = 0; |
|
} while (i != putIndex); |
|
takeIndex = putIndex; |
|
count = 0; |
|
if (itrs != null) |
|
itrs.queueIsEmpty(); |
|
for (; k > 0 && lock.hasWaiters(notFull); k--) |
|
notFull.signal(); |
|
} |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* @throws UnsupportedOperationException {@inheritDoc} |
|
* @throws ClassCastException {@inheritDoc} |
|
* @throws NullPointerException {@inheritDoc} |
|
* @throws IllegalArgumentException {@inheritDoc} |
|
*/ |
|
public int drainTo(Collection<? super E> c) { |
|
return drainTo(c, Integer.MAX_VALUE); |
|
} |
|
/** |
|
* @throws UnsupportedOperationException {@inheritDoc} |
|
* @throws ClassCastException {@inheritDoc} |
|
* @throws NullPointerException {@inheritDoc} |
|
* @throws IllegalArgumentException {@inheritDoc} |
|
*/ |
|
public int drainTo(Collection<? super E> c, int maxElements) { |
|
checkNotNull(c); |
|
if (c == this) |
|
throw new IllegalArgumentException(); |
|
if (maxElements <= 0) |
|
return 0; |
|
final Object[] items = this.items; |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
int n = Math.min(maxElements, count); |
|
int take = takeIndex; |
|
int i = 0; |
|
try { |
|
while (i < n) { |
|
@SuppressWarnings("unchecked") |
|
E x = (E) items[take]; |
|
c.add(x); |
|
items[take] = null; |
|
if (++take == items.length) |
|
take = 0; |
|
i++; |
|
} |
|
return n; |
|
} finally { |
|
// Restore invariants even if c.add() threw |
|
if (i > 0) { |
|
count -= i; |
|
takeIndex = take; |
|
if (itrs != null) { |
|
if (count == 0) |
|
itrs.queueIsEmpty(); |
|
else if (i > take) |
|
itrs.takeIndexWrapped(); |
|
} |
|
for (; i > 0 && lock.hasWaiters(notFull); i--) |
|
notFull.signal(); |
|
} |
|
} |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* Returns an iterator over the elements in this queue in proper sequence. |
|
* The elements will be returned in order from first (head) to last (tail). |
|
* |
|
* <p>The returned iterator is |
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. |
|
* |
|
* @return an iterator over the elements in this queue in proper sequence |
|
*/ |
|
public Iterator<E> iterator() { |
|
return new Itr(); |
|
} |
|
/** |
|
* Shared data between iterators and their queue, allowing queue |
|
* modifications to update iterators when elements are removed. |
|
* |
|
* This adds a lot of complexity for the sake of correctly |
|
* handling some uncommon operations, but the combination of |
|
* circular-arrays and supporting interior removes (i.e., those |
|
* not at head) would cause iterators to sometimes lose their |
|
* places and/or (re)report elements they shouldn't. To avoid |
|
* this, when a queue has one or more iterators, it keeps iterator |
|
* state consistent by: |
|
* |
|
* (1) keeping track of the number of "cycles", that is, the |
|
* number of times takeIndex has wrapped around to 0. |
|
* (2) notifying all iterators via the callback removedAt whenever |
|
* an interior element is removed (and thus other elements may |
|
* be shifted). |
|
* |
|
* These suffice to eliminate iterator inconsistencies, but |
|
* unfortunately add the secondary responsibility of maintaining |
|
* the list of iterators. We track all active iterators in a |
|
* simple linked list (accessed only when the queue's lock is |
|
* held) of weak references to Itr. The list is cleaned up using |
|
* 3 different mechanisms: |
|
* |
|
* (1) Whenever a new iterator is created, do some O(1) checking for |
|
* stale list elements. |
|
* |
|
* (2) Whenever takeIndex wraps around to 0, check for iterators |
|
* that have been unused for more than one wrap-around cycle. |
|
* |
|
* (3) Whenever the queue becomes empty, all iterators are notified |
|
* and this entire data structure is discarded. |
|
* |
|
* So in addition to the removedAt callback that is necessary for |
|
* correctness, iterators have the shutdown and takeIndexWrapped |
|
* callbacks that help remove stale iterators from the list. |
|
* |
|
* Whenever a list element is examined, it is expunged if either |
|
* the GC has determined that the iterator is discarded, or if the |
|
* iterator reports that it is "detached" (does not need any |
|
* further state updates). Overhead is maximal when takeIndex |
|
* never advances, iterators are discarded before they are |
|
* exhausted, and all removals are interior removes, in which case |
|
* all stale iterators are discovered by the GC. But even in this |
|
* case we don't increase the amortized complexity. |
|
* |
|
* Care must be taken to keep list sweeping methods from |
|
* reentrantly invoking another such method, causing subtle |
|
* corruption bugs. |
|
*/ |
|
class Itrs { |
|
/** |
|
* Node in a linked list of weak iterator references. |
|
*/ |
|
private class Node extends WeakReference<Itr> { |
|
Node next; |
|
Node(Itr iterator, Node next) { |
|
super(iterator); |
|
this.next = next; |
|
} |
|
} |
|
/** Incremented whenever takeIndex wraps around to 0 */ |
|
int cycles = 0; |
|
/** Linked list of weak iterator references */ |
|
private Node head; |
|
/** Used to expunge stale iterators */ |
|
private Node sweeper = null; |
|
private static final int SHORT_SWEEP_PROBES = 4; |
|
private static final int LONG_SWEEP_PROBES = 16; |
|
Itrs(Itr initial) { |
|
register(initial); |
|
} |
|
/** |
|
* Sweeps itrs, looking for and expunging stale iterators. |
|
* If at least one was found, tries harder to find more. |
|
* Called only from iterating thread. |
|
* |
|
* @param tryHarder whether to start in try-harder mode, because |
|
* there is known to be at least one iterator to collect |
|
*/ |
|
void doSomeSweeping(boolean tryHarder) { |
|
// assert lock.getHoldCount() == 1; |
|
// assert head != null; |
|
int probes = tryHarder ? LONG_SWEEP_PROBES : SHORT_SWEEP_PROBES; |
|
Node o, p; |
|
final Node sweeper = this.sweeper; |
|
boolean passedGo; // to limit search to one full sweep |
|
if (sweeper == null) { |
|
o = null; |
|
p = head; |
|
passedGo = true; |
|
} else { |
|
o = sweeper; |
|
p = o.next; |
|
passedGo = false; |
|
} |
|
for (; probes > 0; probes--) { |
|
if (p == null) { |
|
if (passedGo) |
|
break; |
|
o = null; |
|
p = head; |
|
passedGo = true; |
|
} |
|
final Itr it = p.get(); |
|
final Node next = p.next; |
|
if (it == null || it.isDetached()) { |
|
// found a discarded/exhausted iterator |
|
probes = LONG_SWEEP_PROBES; // "try harder" |
|
// unlink p |
|
p.clear(); |
|
p.next = null; |
|
if (o == null) { |
|
head = next; |
|
if (next == null) { |
|
// We've run out of iterators to track; retire |
|
itrs = null; |
|
return; |
|
} |
|
} |
|
else |
|
o.next = next; |
|
} else { |
|
o = p; |
|
} |
|
p = next; |
|
} |
|
this.sweeper = (p == null) ? null : o; |
|
} |
|
/** |
|
* Adds a new iterator to the linked list of tracked iterators. |
|
*/ |
|
void register(Itr itr) { |
|
// assert lock.getHoldCount() == 1; |
|
head = new Node(itr, head); |
|
} |
|
/** |
|
* Called whenever takeIndex wraps around to 0. |
|
* |
|
* Notifies all iterators, and expunges any that are now stale. |
|
*/ |
|
void takeIndexWrapped() { |
|
// assert lock.getHoldCount() == 1; |
|
cycles++; |
|
for (Node o = null, p = head; p != null;) { |
|
final Itr it = p.get(); |
|
final Node next = p.next; |
|
if (it == null || it.takeIndexWrapped()) { |
|
// unlink p |
|
// assert it == null || it.isDetached(); |
|
p.clear(); |
|
p.next = null; |
|
if (o == null) |
|
head = next; |
|
else |
|
o.next = next; |
|
} else { |
|
o = p; |
|
} |
|
p = next; |
|
} |
|
if (head == null) // no more iterators to track |
|
itrs = null; |
|
} |
|
/** |
|
* Called whenever an interior remove (not at takeIndex) occurred. |
|
* |
|
* Notifies all iterators, and expunges any that are now stale. |
|
*/ |
|
void removedAt(int removedIndex) { |
|
for (Node o = null, p = head; p != null;) { |
|
final Itr it = p.get(); |
|
final Node next = p.next; |
|
if (it == null || it.removedAt(removedIndex)) { |
|
// unlink p |
|
// assert it == null || it.isDetached(); |
|
p.clear(); |
|
p.next = null; |
|
if (o == null) |
|
head = next; |
|
else |
|
o.next = next; |
|
} else { |
|
o = p; |
|
} |
|
p = next; |
|
} |
|
if (head == null) // no more iterators to track |
|
itrs = null; |
|
} |
|
/** |
|
* Called whenever the queue becomes empty. |
|
* |
|
* Notifies all active iterators that the queue is empty, |
|
* clears all weak refs, and unlinks the itrs datastructure. |
|
*/ |
|
void queueIsEmpty() { |
|
// assert lock.getHoldCount() == 1; |
|
for (Node p = head; p != null; p = p.next) { |
|
Itr it = p.get(); |
|
if (it != null) { |
|
p.clear(); |
|
it.shutdown(); |
|
} |
|
} |
|
head = null; |
|
itrs = null; |
|
} |
|
/** |
|
* Called whenever an element has been dequeued (at takeIndex). |
|
*/ |
|
void elementDequeued() { |
|
// assert lock.getHoldCount() == 1; |
|
if (count == 0) |
|
queueIsEmpty(); |
|
else if (takeIndex == 0) |
|
takeIndexWrapped(); |
|
} |
|
} |
|
/** |
|
* Iterator for ArrayBlockingQueue. |
|
* |
|
* To maintain weak consistency with respect to puts and takes, we |
|
* read ahead one slot, so as to not report hasNext true but then |
|
* not have an element to return. |
|
* |
|
* We switch into "detached" mode (allowing prompt unlinking from |
|
* itrs without help from the GC) when all indices are negative, or |
|
* when hasNext returns false for the first time. This allows the |
|
* iterator to track concurrent updates completely accurately, |
|
* except for the corner case of the user calling Iterator.remove() |
|
* after hasNext() returned false. Even in this case, we ensure |
|
* that we don't remove the wrong element by keeping track of the |
|
* expected element to remove, in lastItem. Yes, we may fail to |
|
* remove lastItem from the queue if it moved due to an interleaved |
|
* interior remove while in detached mode. |
|
*/ |
|
private class Itr implements Iterator<E> { |
|
/** Index to look for new nextItem; NONE at end */ |
|
private int cursor; |
|
/** Element to be returned by next call to next(); null if none */ |
|
private E nextItem; |
|
/** Index of nextItem; NONE if none, REMOVED if removed elsewhere */ |
|
private int nextIndex; |
|
/** Last element returned; null if none or not detached. */ |
|
private E lastItem; |
|
/** Index of lastItem, NONE if none, REMOVED if removed elsewhere */ |
|
private int lastRet; |
|
/** Previous value of takeIndex, or DETACHED when detached */ |
|
private int prevTakeIndex; |
|
/** Previous value of iters.cycles */ |
|
private int prevCycles; |
|
/** Special index value indicating "not available" or "undefined" */ |
|
private static final int NONE = -1; |
|
/** |
|
* Special index value indicating "removed elsewhere", that is, |
|
* removed by some operation other than a call to this.remove(). |
|
*/ |
|
private static final int REMOVED = -2; |
|
/** Special value for prevTakeIndex indicating "detached mode" */ |
|
private static final int DETACHED = -3; |
|
Itr() { |
|
// assert lock.getHoldCount() == 0; |
|
lastRet = NONE; |
|
final ReentrantLock lock = ArrayBlockingQueue.this.lock; |
|
lock.lock(); |
|
try { |
|
if (count == 0) { |
|
// assert itrs == null; |
|
cursor = NONE; |
|
nextIndex = NONE; |
|
prevTakeIndex = DETACHED; |
|
} else { |
|
final int takeIndex = ArrayBlockingQueue.this.takeIndex; |
|
prevTakeIndex = takeIndex; |
|
nextItem = itemAt(nextIndex = takeIndex); |
|
cursor = incCursor(takeIndex); |
|
if (itrs == null) { |
|
itrs = new Itrs(this); |
|
} else { |
|
itrs.register(this); // in this order |
|
itrs.doSomeSweeping(false); |
|
} |
|
prevCycles = itrs.cycles; |
|
// assert takeIndex >= 0; |
|
// assert prevTakeIndex == takeIndex; |
|
// assert nextIndex >= 0; |
|
// assert nextItem != null; |
|
} |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
boolean isDetached() { |
|
// assert lock.getHoldCount() == 1; |
|
return prevTakeIndex < 0; |
|
} |
|
private int incCursor(int index) { |
|
// assert lock.getHoldCount() == 1; |
|
if (++index == items.length) |
|
index = 0; |
|
if (index == putIndex) |
|
index = NONE; |
|
return index; |
|
} |
|
/** |
|
* Returns true if index is invalidated by the given number of |
|
* dequeues, starting from prevTakeIndex. |
|
*/ |
|
private boolean invalidated(int index, int prevTakeIndex, |
|
long dequeues, int length) { |
|
if (index < 0) |
|
return false; |
|
int distance = index - prevTakeIndex; |
|
if (distance < 0) |
|
distance += length; |
|
return dequeues > distance; |
|
} |
|
/** |
|
* Adjusts indices to incorporate all dequeues since the last |
|
* operation on this iterator. Call only from iterating thread. |
|
*/ |
|
private void incorporateDequeues() { |
|
// assert lock.getHoldCount() == 1; |
|
// assert itrs != null; |
|
// assert !isDetached(); |
|
// assert count > 0; |
|
final int cycles = itrs.cycles; |
|
final int takeIndex = ArrayBlockingQueue.this.takeIndex; |
|
final int prevCycles = this.prevCycles; |
|
final int prevTakeIndex = this.prevTakeIndex; |
|
if (cycles != prevCycles || takeIndex != prevTakeIndex) { |
|
final int len = items.length; |
|
// how far takeIndex has advanced since the previous |
|
// operation of this iterator |
|
long dequeues = (cycles - prevCycles) * len |
|
+ (takeIndex - prevTakeIndex); |
|
// Check indices for invalidation |
|
if (invalidated(lastRet, prevTakeIndex, dequeues, len)) |
|
lastRet = REMOVED; |
|
if (invalidated(nextIndex, prevTakeIndex, dequeues, len)) |
|
nextIndex = REMOVED; |
|
if (invalidated(cursor, prevTakeIndex, dequeues, len)) |
|
cursor = takeIndex; |
|
if (cursor < 0 && nextIndex < 0 && lastRet < 0) |
|
detach(); |
|
else { |
|
this.prevCycles = cycles; |
|
this.prevTakeIndex = takeIndex; |
|
} |
|
} |
|
} |
|
/** |
|
* Called when itrs should stop tracking this iterator, either |
|
* because there are no more indices to update (cursor < 0 && |
|
* nextIndex < 0 && lastRet < 0) or as a special exception, when |
|
* lastRet >= 0, because hasNext() is about to return false for the |
|
* first time. Call only from iterating thread. |
|
*/ |
|
private void detach() { |
|
// Switch to detached mode |
|
// assert lock.getHoldCount() == 1; |
|
// assert cursor == NONE; |
|
// assert nextIndex < 0; |
|
// assert lastRet < 0 || nextItem == null; |
|
// assert lastRet < 0 ^ lastItem != null; |
|
if (prevTakeIndex >= 0) { |
|
// assert itrs != null; |
|
prevTakeIndex = DETACHED; |
|
// try to unlink from itrs (but not too hard) |
|
itrs.doSomeSweeping(true); |
|
} |
|
} |
|
/** |
|
* For performance reasons, we would like not to acquire a lock in |
|
* hasNext in the common case. To allow for this, we only access |
|
* fields (i.e. nextItem) that are not modified by update operations |
|
* triggered by queue modifications. |
|
*/ |
|
public boolean hasNext() { |
|
// assert lock.getHoldCount() == 0; |
|
if (nextItem != null) |
|
return true; |
|
noNext(); |
|
return false; |
|
} |
|
private void noNext() { |
|
final ReentrantLock lock = ArrayBlockingQueue.this.lock; |
|
lock.lock(); |
|
try { |
|
// assert cursor == NONE; |
|
// assert nextIndex == NONE; |
|
if (!isDetached()) { |
|
// assert lastRet >= 0; |
|
incorporateDequeues(); // might update lastRet |
|
if (lastRet >= 0) { |
|
lastItem = itemAt(lastRet); |
|
// assert lastItem != null; |
|
detach(); |
|
} |
|
} |
|
// assert isDetached(); |
|
// assert lastRet < 0 ^ lastItem != null; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
public E next() { |
|
// assert lock.getHoldCount() == 0; |
|
final E x = nextItem; |
|
if (x == null) |
|
throw new NoSuchElementException(); |
|
final ReentrantLock lock = ArrayBlockingQueue.this.lock; |
|
lock.lock(); |
|
try { |
|
if (!isDetached()) |
|
incorporateDequeues(); |
|
// assert nextIndex != NONE; |
|
// assert lastItem == null; |
|
lastRet = nextIndex; |
|
final int cursor = this.cursor; |
|
if (cursor >= 0) { |
|
nextItem = itemAt(nextIndex = cursor); |
|
// assert nextItem != null; |
|
this.cursor = incCursor(cursor); |
|
} else { |
|
nextIndex = NONE; |
|
nextItem = null; |
|
} |
|
} finally { |
|
lock.unlock(); |
|
} |
|
return x; |
|
} |
|
public void remove() { |
|
// assert lock.getHoldCount() == 0; |
|
final ReentrantLock lock = ArrayBlockingQueue.this.lock; |
|
lock.lock(); |
|
try { |
|
if (!isDetached()) |
|
incorporateDequeues(); // might update lastRet or detach |
|
final int lastRet = this.lastRet; |
|
this.lastRet = NONE; |
|
if (lastRet >= 0) { |
|
if (!isDetached()) |
|
removeAt(lastRet); |
|
else { |
|
final E lastItem = this.lastItem; |
|
// assert lastItem != null; |
|
this.lastItem = null; |
|
if (itemAt(lastRet) == lastItem) |
|
removeAt(lastRet); |
|
} |
|
} else if (lastRet == NONE) |
|
throw new IllegalStateException(); |
|
// else lastRet == REMOVED and the last returned element was |
|
// previously asynchronously removed via an operation other |
|
// than this.remove(), so nothing to do. |
|
if (cursor < 0 && nextIndex < 0) |
|
detach(); |
|
} finally { |
|
lock.unlock(); |
|
// assert lastRet == NONE; |
|
// assert lastItem == null; |
|
} |
|
} |
|
/** |
|
* Called to notify the iterator that the queue is empty, or that it |
|
* has fallen hopelessly behind, so that it should abandon any |
|
* further iteration, except possibly to return one more element |
|
* from next(), as promised by returning true from hasNext(). |
|
*/ |
|
void shutdown() { |
|
// assert lock.getHoldCount() == 1; |
|
cursor = NONE; |
|
if (nextIndex >= 0) |
|
nextIndex = REMOVED; |
|
if (lastRet >= 0) { |
|
lastRet = REMOVED; |
|
lastItem = null; |
|
} |
|
prevTakeIndex = DETACHED; |
|
// Don't set nextItem to null because we must continue to be |
|
// able to return it on next(). |
|
// |
|
// Caller will unlink from itrs when convenient. |
|
} |
|
private int distance(int index, int prevTakeIndex, int length) { |
|
int distance = index - prevTakeIndex; |
|
if (distance < 0) |
|
distance += length; |
|
return distance; |
|
} |
|
/** |
|
* Called whenever an interior remove (not at takeIndex) occurred. |
|
* |
|
* @return true if this iterator should be unlinked from itrs |
|
*/ |
|
boolean removedAt(int removedIndex) { |
|
// assert lock.getHoldCount() == 1; |
|
if (isDetached()) |
|
return true; |
|
final int cycles = itrs.cycles; |
|
final int takeIndex = ArrayBlockingQueue.this.takeIndex; |
|
final int prevCycles = this.prevCycles; |
|
final int prevTakeIndex = this.prevTakeIndex; |
|
final int len = items.length; |
|
int cycleDiff = cycles - prevCycles; |
|
if (removedIndex < takeIndex) |
|
cycleDiff++; |
|
final int removedDistance = |
|
(cycleDiff * len) + (removedIndex - prevTakeIndex); |
|
// assert removedDistance >= 0; |
|
int cursor = this.cursor; |
|
if (cursor >= 0) { |
|
int x = distance(cursor, prevTakeIndex, len); |
|
if (x == removedDistance) { |
|
if (cursor == putIndex) |
|
this.cursor = cursor = NONE; |
|
} |
|
else if (x > removedDistance) { |
|
// assert cursor != prevTakeIndex; |
|
this.cursor = cursor = dec(cursor); |
|
} |
|
} |
|
int lastRet = this.lastRet; |
|
if (lastRet >= 0) { |
|
int x = distance(lastRet, prevTakeIndex, len); |
|
if (x == removedDistance) |
|
this.lastRet = lastRet = REMOVED; |
|
else if (x > removedDistance) |
|
this.lastRet = lastRet = dec(lastRet); |
|
} |
|
int nextIndex = this.nextIndex; |
|
if (nextIndex >= 0) { |
|
int x = distance(nextIndex, prevTakeIndex, len); |
|
if (x == removedDistance) |
|
this.nextIndex = nextIndex = REMOVED; |
|
else if (x > removedDistance) |
|
this.nextIndex = nextIndex = dec(nextIndex); |
|
} |
|
else if (cursor < 0 && nextIndex < 0 && lastRet < 0) { |
|
this.prevTakeIndex = DETACHED; |
|
return true; |
|
} |
|
return false; |
|
} |
|
/** |
|
* Called whenever takeIndex wraps around to zero. |
|
* |
|
* @return true if this iterator should be unlinked from itrs |
|
*/ |
|
boolean takeIndexWrapped() { |
|
// assert lock.getHoldCount() == 1; |
|
if (isDetached()) |
|
return true; |
|
if (itrs.cycles - prevCycles > 1) { |
|
// All the elements that existed at the time of the last |
|
// operation are gone, so abandon further iteration. |
|
shutdown(); |
|
return true; |
|
} |
|
return false; |
|
} |
|
// /** Uncomment for debugging. */ |
|
// public String toString() { |
|
// return ("cursor=" + cursor + " " + |
|
// "nextIndex=" + nextIndex + " " + |
|
// "lastRet=" + lastRet + " " + |
|
// "nextItem=" + nextItem + " " + |
|
// "lastItem=" + lastItem + " " + |
|
// "prevCycles=" + prevCycles + " " + |
|
// "prevTakeIndex=" + prevTakeIndex + " " + |
|
// "size()=" + size() + " " + |
|
// "remainingCapacity()=" + remainingCapacity()); |
|
// } |
|
} |
|
/** |
|
* Returns a {@link Spliterator} over the elements in this queue. |
|
* |
|
* <p>The returned spliterator is |
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. |
|
* |
|
* <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT}, |
|
* {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}. |
|
* |
|
* @implNote |
|
* The {@code Spliterator} implements {@code trySplit} to permit limited |
|
* parallelism. |
|
* |
|
* @return a {@code Spliterator} over the elements in this queue |
|
* @since 1.8 |
|
*/ |
|
public Spliterator<E> spliterator() { |
|
return Spliterators.spliterator |
|
(this, Spliterator.ORDERED | Spliterator.NONNULL | |
|
Spliterator.CONCURRENT); |
|
} |
|
/** |
|
* Deserializes this queue and then checks some invariants. |
|
* |
|
* @param s the input stream |
|
* @throws ClassNotFoundException if the class of a serialized object |
|
* could not be found |
|
* @throws java.io.InvalidObjectException if invariants are violated |
|
* @throws java.io.IOException if an I/O error occurs |
|
*/ |
|
private void readObject(java.io.ObjectInputStream s) |
|
throws java.io.IOException, ClassNotFoundException { |
|
// Read in items array and various fields |
|
s.defaultReadObject(); |
|
// Check invariants over count and index fields. Note that |
|
// if putIndex==takeIndex, count can be either 0 or items.length. |
|
if (items.length == 0 || |
|
takeIndex < 0 || takeIndex >= items.length || |
|
putIndex < 0 || putIndex >= items.length || |
|
count < 0 || count > items.length || |
|
Math.floorMod(putIndex - takeIndex, items.length) != |
|
Math.floorMod(count, items.length)) { |
|
throw new java.io.InvalidObjectException("invariants violated"); |
|
} |
|
} |
|
} |