/* |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
/* |
|
* This file is available under and governed by the GNU General Public |
|
* License version 2 only, as published by the Free Software Foundation. |
|
* However, the following notice accompanied the original version of this |
|
* file: |
|
* |
|
* Written by Doug Lea with assistance from members of JCP JSR-166 |
|
* Expert Group and released to the public domain, as explained at |
|
* http://creativecommons.org/publicdomain/zero/1.0/ |
|
*/ |
|
package java.util.concurrent; |
|
import java.util.AbstractQueue; |
|
import java.util.Collection; |
|
import java.util.Iterator; |
|
import java.util.NoSuchElementException; |
|
import java.util.concurrent.locks.Condition; |
|
import java.util.concurrent.locks.ReentrantLock; |
|
import java.util.Spliterator; |
|
import java.util.Spliterators; |
|
import java.util.function.Consumer; |
|
/** |
|
* An optionally-bounded {@linkplain BlockingDeque blocking deque} based on |
|
* linked nodes. |
|
* |
|
* <p>The optional capacity bound constructor argument serves as a |
|
* way to prevent excessive expansion. The capacity, if unspecified, |
|
* is equal to {@link Integer#MAX_VALUE}. Linked nodes are |
|
* dynamically created upon each insertion unless this would bring the |
|
* deque above capacity. |
|
* |
|
* <p>Most operations run in constant time (ignoring time spent |
|
* blocking). Exceptions include {@link #remove(Object) remove}, |
|
* {@link #removeFirstOccurrence removeFirstOccurrence}, {@link |
|
* #removeLastOccurrence removeLastOccurrence}, {@link #contains |
|
* contains}, {@link #iterator iterator.remove()}, and the bulk |
|
* operations, all of which run in linear time. |
|
* |
|
* <p>This class and its iterator implement all of the |
|
* <em>optional</em> methods of the {@link Collection} and {@link |
|
* Iterator} interfaces. |
|
* |
|
* <p>This class is a member of the |
|
* <a href="{@docRoot}/../technotes/guides/collections/index.html"> |
|
* Java Collections Framework</a>. |
|
* |
|
* @since 1.6 |
|
* @author Doug Lea |
|
* @param <E> the type of elements held in this collection |
|
*/ |
|
public class LinkedBlockingDeque<E> |
|
extends AbstractQueue<E> |
|
implements BlockingDeque<E>, java.io.Serializable { |
|
/* |
|
* Implemented as a simple doubly-linked list protected by a |
|
* single lock and using conditions to manage blocking. |
|
* |
|
* To implement weakly consistent iterators, it appears we need to |
|
* keep all Nodes GC-reachable from a predecessor dequeued Node. |
|
* That would cause two problems: |
|
* - allow a rogue Iterator to cause unbounded memory retention |
|
* - cause cross-generational linking of old Nodes to new Nodes if |
|
* a Node was tenured while live, which generational GCs have a |
|
* hard time dealing with, causing repeated major collections. |
|
* However, only non-deleted Nodes need to be reachable from |
|
* dequeued Nodes, and reachability does not necessarily have to |
|
* be of the kind understood by the GC. We use the trick of |
|
* linking a Node that has just been dequeued to itself. Such a |
|
* self-link implicitly means to jump to "first" (for next links) |
|
* or "last" (for prev links). |
|
*/ |
|
/* |
|
* We have "diamond" multiple interface/abstract class inheritance |
|
* here, and that introduces ambiguities. Often we want the |
|
* BlockingDeque javadoc combined with the AbstractQueue |
|
* implementation, so a lot of method specs are duplicated here. |
|
*/ |
|
private static final long serialVersionUID = -387911632671998426L; |
|
/** Doubly-linked list node class */ |
|
static final class Node<E> { |
|
/** |
|
* The item, or null if this node has been removed. |
|
*/ |
|
E item; |
|
/** |
|
* One of: |
|
* - the real predecessor Node |
|
* - this Node, meaning the predecessor is tail |
|
* - null, meaning there is no predecessor |
|
*/ |
|
Node<E> prev; |
|
/** |
|
* One of: |
|
* - the real successor Node |
|
* - this Node, meaning the successor is head |
|
* - null, meaning there is no successor |
|
*/ |
|
Node<E> next; |
|
Node(E x) { |
|
item = x; |
|
} |
|
} |
|
/** |
|
* Pointer to first node. |
|
* Invariant: (first == null && last == null) || |
|
* (first.prev == null && first.item != null) |
|
*/ |
|
transient Node<E> first; |
|
/** |
|
* Pointer to last node. |
|
* Invariant: (first == null && last == null) || |
|
* (last.next == null && last.item != null) |
|
*/ |
|
transient Node<E> last; |
|
/** Number of items in the deque */ |
|
private transient int count; |
|
/** Maximum number of items in the deque */ |
|
private final int capacity; |
|
/** Main lock guarding all access */ |
|
final ReentrantLock lock = new ReentrantLock(); |
|
/** Condition for waiting takes */ |
|
private final Condition notEmpty = lock.newCondition(); |
|
/** Condition for waiting puts */ |
|
private final Condition notFull = lock.newCondition(); |
|
/** |
|
* Creates a {@code LinkedBlockingDeque} with a capacity of |
|
* {@link Integer#MAX_VALUE}. |
|
*/ |
|
public LinkedBlockingDeque() { |
|
this(Integer.MAX_VALUE); |
|
} |
|
/** |
|
* Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity. |
|
* |
|
* @param capacity the capacity of this deque |
|
* @throws IllegalArgumentException if {@code capacity} is less than 1 |
|
*/ |
|
public LinkedBlockingDeque(int capacity) { |
|
if (capacity <= 0) throw new IllegalArgumentException(); |
|
this.capacity = capacity; |
|
} |
|
/** |
|
* Creates a {@code LinkedBlockingDeque} with a capacity of |
|
* {@link Integer#MAX_VALUE}, initially containing the elements of |
|
* the given collection, added in traversal order of the |
|
* collection's iterator. |
|
* |
|
* @param c the collection of elements to initially contain |
|
* @throws NullPointerException if the specified collection or any |
|
* of its elements are null |
|
*/ |
|
public LinkedBlockingDeque(Collection<? extends E> c) { |
|
this(Integer.MAX_VALUE); |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); // Never contended, but necessary for visibility |
|
try { |
|
for (E e : c) { |
|
if (e == null) |
|
throw new NullPointerException(); |
|
if (!linkLast(new Node<E>(e))) |
|
throw new IllegalStateException("Deque full"); |
|
} |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
// Basic linking and unlinking operations, called only while holding lock |
|
/** |
|
* Links node as first element, or returns false if full. |
|
*/ |
|
private boolean linkFirst(Node<E> node) { |
|
// assert lock.isHeldByCurrentThread(); |
|
if (count >= capacity) |
|
return false; |
|
Node<E> f = first; |
|
node.next = f; |
|
first = node; |
|
if (last == null) |
|
last = node; |
|
else |
|
f.prev = node; |
|
++count; |
|
notEmpty.signal(); |
|
return true; |
|
} |
|
/** |
|
* Links node as last element, or returns false if full. |
|
*/ |
|
private boolean linkLast(Node<E> node) { |
|
// assert lock.isHeldByCurrentThread(); |
|
if (count >= capacity) |
|
return false; |
|
Node<E> l = last; |
|
node.prev = l; |
|
last = node; |
|
if (first == null) |
|
first = node; |
|
else |
|
l.next = node; |
|
++count; |
|
notEmpty.signal(); |
|
return true; |
|
} |
|
/** |
|
* Removes and returns first element, or null if empty. |
|
*/ |
|
private E unlinkFirst() { |
|
// assert lock.isHeldByCurrentThread(); |
|
Node<E> f = first; |
|
if (f == null) |
|
return null; |
|
Node<E> n = f.next; |
|
E item = f.item; |
|
f.item = null; |
|
f.next = f; // help GC |
|
first = n; |
|
if (n == null) |
|
last = null; |
|
else |
|
n.prev = null; |
|
--count; |
|
notFull.signal(); |
|
return item; |
|
} |
|
/** |
|
* Removes and returns last element, or null if empty. |
|
*/ |
|
private E unlinkLast() { |
|
// assert lock.isHeldByCurrentThread(); |
|
Node<E> l = last; |
|
if (l == null) |
|
return null; |
|
Node<E> p = l.prev; |
|
E item = l.item; |
|
l.item = null; |
|
l.prev = l; // help GC |
|
last = p; |
|
if (p == null) |
|
first = null; |
|
else |
|
p.next = null; |
|
--count; |
|
notFull.signal(); |
|
return item; |
|
} |
|
/** |
|
* Unlinks x. |
|
*/ |
|
void unlink(Node<E> x) { |
|
// assert lock.isHeldByCurrentThread(); |
|
Node<E> p = x.prev; |
|
Node<E> n = x.next; |
|
if (p == null) { |
|
unlinkFirst(); |
|
} else if (n == null) { |
|
unlinkLast(); |
|
} else { |
|
p.next = n; |
|
n.prev = p; |
|
x.item = null; |
|
// Don't mess with x's links. They may still be in use by |
|
// an iterator. |
|
--count; |
|
notFull.signal(); |
|
} |
|
} |
|
// BlockingDeque methods |
|
/** |
|
* @throws IllegalStateException if this deque is full |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public void addFirst(E e) { |
|
if (!offerFirst(e)) |
|
throw new IllegalStateException("Deque full"); |
|
} |
|
/** |
|
* @throws IllegalStateException if this deque is full |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public void addLast(E e) { |
|
if (!offerLast(e)) |
|
throw new IllegalStateException("Deque full"); |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public boolean offerFirst(E e) { |
|
if (e == null) throw new NullPointerException(); |
|
Node<E> node = new Node<E>(e); |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
return linkFirst(node); |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public boolean offerLast(E e) { |
|
if (e == null) throw new NullPointerException(); |
|
Node<E> node = new Node<E>(e); |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
return linkLast(node); |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
* @throws InterruptedException {@inheritDoc} |
|
*/ |
|
public void putFirst(E e) throws InterruptedException { |
|
if (e == null) throw new NullPointerException(); |
|
Node<E> node = new Node<E>(e); |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
while (!linkFirst(node)) |
|
notFull.await(); |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
* @throws InterruptedException {@inheritDoc} |
|
*/ |
|
public void putLast(E e) throws InterruptedException { |
|
if (e == null) throw new NullPointerException(); |
|
Node<E> node = new Node<E>(e); |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
while (!linkLast(node)) |
|
notFull.await(); |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
* @throws InterruptedException {@inheritDoc} |
|
*/ |
|
public boolean offerFirst(E e, long timeout, TimeUnit unit) |
|
throws InterruptedException { |
|
if (e == null) throw new NullPointerException(); |
|
Node<E> node = new Node<E>(e); |
|
long nanos = unit.toNanos(timeout); |
|
final ReentrantLock lock = this.lock; |
|
lock.lockInterruptibly(); |
|
try { |
|
while (!linkFirst(node)) { |
|
if (nanos <= 0) |
|
return false; |
|
nanos = notFull.awaitNanos(nanos); |
|
} |
|
return true; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
* @throws InterruptedException {@inheritDoc} |
|
*/ |
|
public boolean offerLast(E e, long timeout, TimeUnit unit) |
|
throws InterruptedException { |
|
if (e == null) throw new NullPointerException(); |
|
Node<E> node = new Node<E>(e); |
|
long nanos = unit.toNanos(timeout); |
|
final ReentrantLock lock = this.lock; |
|
lock.lockInterruptibly(); |
|
try { |
|
while (!linkLast(node)) { |
|
if (nanos <= 0) |
|
return false; |
|
nanos = notFull.awaitNanos(nanos); |
|
} |
|
return true; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* @throws NoSuchElementException {@inheritDoc} |
|
*/ |
|
public E removeFirst() { |
|
E x = pollFirst(); |
|
if (x == null) throw new NoSuchElementException(); |
|
return x; |
|
} |
|
/** |
|
* @throws NoSuchElementException {@inheritDoc} |
|
*/ |
|
public E removeLast() { |
|
E x = pollLast(); |
|
if (x == null) throw new NoSuchElementException(); |
|
return x; |
|
} |
|
public E pollFirst() { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
return unlinkFirst(); |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
public E pollLast() { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
return unlinkLast(); |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
public E takeFirst() throws InterruptedException { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
E x; |
|
while ( (x = unlinkFirst()) == null) |
|
notEmpty.await(); |
|
return x; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
public E takeLast() throws InterruptedException { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
E x; |
|
while ( (x = unlinkLast()) == null) |
|
notEmpty.await(); |
|
return x; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
public E pollFirst(long timeout, TimeUnit unit) |
|
throws InterruptedException { |
|
long nanos = unit.toNanos(timeout); |
|
final ReentrantLock lock = this.lock; |
|
lock.lockInterruptibly(); |
|
try { |
|
E x; |
|
while ( (x = unlinkFirst()) == null) { |
|
if (nanos <= 0) |
|
return null; |
|
nanos = notEmpty.awaitNanos(nanos); |
|
} |
|
return x; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
public E pollLast(long timeout, TimeUnit unit) |
|
throws InterruptedException { |
|
long nanos = unit.toNanos(timeout); |
|
final ReentrantLock lock = this.lock; |
|
lock.lockInterruptibly(); |
|
try { |
|
E x; |
|
while ( (x = unlinkLast()) == null) { |
|
if (nanos <= 0) |
|
return null; |
|
nanos = notEmpty.awaitNanos(nanos); |
|
} |
|
return x; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* @throws NoSuchElementException {@inheritDoc} |
|
*/ |
|
public E getFirst() { |
|
E x = peekFirst(); |
|
if (x == null) throw new NoSuchElementException(); |
|
return x; |
|
} |
|
/** |
|
* @throws NoSuchElementException {@inheritDoc} |
|
*/ |
|
public E getLast() { |
|
E x = peekLast(); |
|
if (x == null) throw new NoSuchElementException(); |
|
return x; |
|
} |
|
public E peekFirst() { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
return (first == null) ? null : first.item; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
public E peekLast() { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
return (last == null) ? null : last.item; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
public boolean removeFirstOccurrence(Object o) { |
|
if (o == null) return false; |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
for (Node<E> p = first; p != null; p = p.next) { |
|
if (o.equals(p.item)) { |
|
unlink(p); |
|
return true; |
|
} |
|
} |
|
return false; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
public boolean removeLastOccurrence(Object o) { |
|
if (o == null) return false; |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
for (Node<E> p = last; p != null; p = p.prev) { |
|
if (o.equals(p.item)) { |
|
unlink(p); |
|
return true; |
|
} |
|
} |
|
return false; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
// BlockingQueue methods |
|
/** |
|
* Inserts the specified element at the end of this deque unless it would |
|
* violate capacity restrictions. When using a capacity-restricted deque, |
|
* it is generally preferable to use method {@link #offer(Object) offer}. |
|
* |
|
* <p>This method is equivalent to {@link #addLast}. |
|
* |
|
* @throws IllegalStateException if this deque is full |
|
* @throws NullPointerException if the specified element is null |
|
*/ |
|
public boolean add(E e) { |
|
addLast(e); |
|
return true; |
|
} |
|
/** |
|
* @throws NullPointerException if the specified element is null |
|
*/ |
|
public boolean offer(E e) { |
|
return offerLast(e); |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
* @throws InterruptedException {@inheritDoc} |
|
*/ |
|
public void put(E e) throws InterruptedException { |
|
putLast(e); |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
* @throws InterruptedException {@inheritDoc} |
|
*/ |
|
public boolean offer(E e, long timeout, TimeUnit unit) |
|
throws InterruptedException { |
|
return offerLast(e, timeout, unit); |
|
} |
|
/** |
|
* Retrieves and removes the head of the queue represented by this deque. |
|
* This method differs from {@link #poll poll} only in that it throws an |
|
* exception if this deque is empty. |
|
* |
|
* <p>This method is equivalent to {@link #removeFirst() removeFirst}. |
|
* |
|
* @return the head of the queue represented by this deque |
|
* @throws NoSuchElementException if this deque is empty |
|
*/ |
|
public E remove() { |
|
return removeFirst(); |
|
} |
|
public E poll() { |
|
return pollFirst(); |
|
} |
|
public E take() throws InterruptedException { |
|
return takeFirst(); |
|
} |
|
public E poll(long timeout, TimeUnit unit) throws InterruptedException { |
|
return pollFirst(timeout, unit); |
|
} |
|
/** |
|
* Retrieves, but does not remove, the head of the queue represented by |
|
* this deque. This method differs from {@link #peek peek} only in that |
|
* it throws an exception if this deque is empty. |
|
* |
|
* <p>This method is equivalent to {@link #getFirst() getFirst}. |
|
* |
|
* @return the head of the queue represented by this deque |
|
* @throws NoSuchElementException if this deque is empty |
|
*/ |
|
public E element() { |
|
return getFirst(); |
|
} |
|
public E peek() { |
|
return peekFirst(); |
|
} |
|
/** |
|
* Returns the number of additional elements that this deque can ideally |
|
* (in the absence of memory or resource constraints) accept without |
|
* blocking. This is always equal to the initial capacity of this deque |
|
* less the current {@code size} of this deque. |
|
* |
|
* <p>Note that you <em>cannot</em> always tell if an attempt to insert |
|
* an element will succeed by inspecting {@code remainingCapacity} |
|
* because it may be the case that another thread is about to |
|
* insert or remove an element. |
|
*/ |
|
public int remainingCapacity() { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
return capacity - count; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* @throws UnsupportedOperationException {@inheritDoc} |
|
* @throws ClassCastException {@inheritDoc} |
|
* @throws NullPointerException {@inheritDoc} |
|
* @throws IllegalArgumentException {@inheritDoc} |
|
*/ |
|
public int drainTo(Collection<? super E> c) { |
|
return drainTo(c, Integer.MAX_VALUE); |
|
} |
|
/** |
|
* @throws UnsupportedOperationException {@inheritDoc} |
|
* @throws ClassCastException {@inheritDoc} |
|
* @throws NullPointerException {@inheritDoc} |
|
* @throws IllegalArgumentException {@inheritDoc} |
|
*/ |
|
public int drainTo(Collection<? super E> c, int maxElements) { |
|
if (c == null) |
|
throw new NullPointerException(); |
|
if (c == this) |
|
throw new IllegalArgumentException(); |
|
if (maxElements <= 0) |
|
return 0; |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
int n = Math.min(maxElements, count); |
|
for (int i = 0; i < n; i++) { |
|
c.add(first.item); // In this order, in case add() throws. |
|
unlinkFirst(); |
|
} |
|
return n; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
// Stack methods |
|
/** |
|
* @throws IllegalStateException if this deque is full |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public void push(E e) { |
|
addFirst(e); |
|
} |
|
/** |
|
* @throws NoSuchElementException {@inheritDoc} |
|
*/ |
|
public E pop() { |
|
return removeFirst(); |
|
} |
|
// Collection methods |
|
/** |
|
* Removes the first occurrence of the specified element from this deque. |
|
* If the deque does not contain the element, it is unchanged. |
|
* More formally, removes the first element {@code e} such that |
|
* {@code o.equals(e)} (if such an element exists). |
|
* Returns {@code true} if this deque contained the specified element |
|
* (or equivalently, if this deque changed as a result of the call). |
|
* |
|
* <p>This method is equivalent to |
|
* {@link #removeFirstOccurrence(Object) removeFirstOccurrence}. |
|
* |
|
* @param o element to be removed from this deque, if present |
|
* @return {@code true} if this deque changed as a result of the call |
|
*/ |
|
public boolean remove(Object o) { |
|
return removeFirstOccurrence(o); |
|
} |
|
/** |
|
* Returns the number of elements in this deque. |
|
* |
|
* @return the number of elements in this deque |
|
*/ |
|
public int size() { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
return count; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* Returns {@code true} if this deque contains the specified element. |
|
* More formally, returns {@code true} if and only if this deque contains |
|
* at least one element {@code e} such that {@code o.equals(e)}. |
|
* |
|
* @param o object to be checked for containment in this deque |
|
* @return {@code true} if this deque contains the specified element |
|
*/ |
|
public boolean contains(Object o) { |
|
if (o == null) return false; |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
for (Node<E> p = first; p != null; p = p.next) |
|
if (o.equals(p.item)) |
|
return true; |
|
return false; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/* |
|
* TODO: Add support for more efficient bulk operations. |
|
* |
|
* We don't want to acquire the lock for every iteration, but we |
|
* also want other threads a chance to interact with the |
|
* collection, especially when count is close to capacity. |
|
*/ |
|
// /** |
|
// * Adds all of the elements in the specified collection to this |
|
// * queue. Attempts to addAll of a queue to itself result in |
|
// * {@code IllegalArgumentException}. Further, the behavior of |
|
// * this operation is undefined if the specified collection is |
|
// * modified while the operation is in progress. |
|
// * |
|
// * @param c collection containing elements to be added to this queue |
|
// * @return {@code true} if this queue changed as a result of the call |
|
// * @throws ClassCastException {@inheritDoc} |
|
// * @throws NullPointerException {@inheritDoc} |
|
// * @throws IllegalArgumentException {@inheritDoc} |
|
// * @throws IllegalStateException if this deque is full |
|
// * @see #add(Object) |
|
// */ |
|
// public boolean addAll(Collection<? extends E> c) { |
|
// if (c == null) |
|
// throw new NullPointerException(); |
|
// if (c == this) |
|
// throw new IllegalArgumentException(); |
|
// final ReentrantLock lock = this.lock; |
|
// lock.lock(); |
|
// try { |
|
// boolean modified = false; |
|
// for (E e : c) |
|
// if (linkLast(e)) |
|
// modified = true; |
|
// return modified; |
|
// } finally { |
|
// lock.unlock(); |
|
// } |
|
// } |
|
/** |
|
* Returns an array containing all of the elements in this deque, in |
|
* proper sequence (from first to last element). |
|
* |
|
* <p>The returned array will be "safe" in that no references to it are |
|
* maintained by this deque. (In other words, this method must allocate |
|
* a new array). The caller is thus free to modify the returned array. |
|
* |
|
* <p>This method acts as bridge between array-based and collection-based |
|
* APIs. |
|
* |
|
* @return an array containing all of the elements in this deque |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public Object[] toArray() { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
Object[] a = new Object[count]; |
|
int k = 0; |
|
for (Node<E> p = first; p != null; p = p.next) |
|
a[k++] = p.item; |
|
return a; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* Returns an array containing all of the elements in this deque, in |
|
* proper sequence; the runtime type of the returned array is that of |
|
* the specified array. If the deque fits in the specified array, it |
|
* is returned therein. Otherwise, a new array is allocated with the |
|
* runtime type of the specified array and the size of this deque. |
|
* |
|
* <p>If this deque fits in the specified array with room to spare |
|
* (i.e., the array has more elements than this deque), the element in |
|
* the array immediately following the end of the deque is set to |
|
* {@code null}. |
|
* |
|
* <p>Like the {@link #toArray()} method, this method acts as bridge between |
|
* array-based and collection-based APIs. Further, this method allows |
|
* precise control over the runtime type of the output array, and may, |
|
* under certain circumstances, be used to save allocation costs. |
|
* |
|
* <p>Suppose {@code x} is a deque known to contain only strings. |
|
* The following code can be used to dump the deque into a newly |
|
* allocated array of {@code String}: |
|
* |
|
* <pre> {@code String[] y = x.toArray(new String[0]);}</pre> |
|
* |
|
* Note that {@code toArray(new Object[0])} is identical in function to |
|
* {@code toArray()}. |
|
* |
|
* @param a the array into which the elements of the deque are to |
|
* be stored, if it is big enough; otherwise, a new array of the |
|
* same runtime type is allocated for this purpose |
|
* @return an array containing all of the elements in this deque |
|
* @throws ArrayStoreException if the runtime type of the specified array |
|
* is not a supertype of the runtime type of every element in |
|
* this deque |
|
* @throws NullPointerException if the specified array is null |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public <T> T[] toArray(T[] a) { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
if (a.length < count) |
|
a = (T[])java.lang.reflect.Array.newInstance |
|
(a.getClass().getComponentType(), count); |
|
int k = 0; |
|
for (Node<E> p = first; p != null; p = p.next) |
|
a[k++] = (T)p.item; |
|
if (a.length > k) |
|
a[k] = null; |
|
return a; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
public String toString() { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
Node<E> p = first; |
|
if (p == null) |
|
return "[]"; |
|
StringBuilder sb = new StringBuilder(); |
|
sb.append('['); |
|
for (;;) { |
|
E e = p.item; |
|
sb.append(e == this ? "(this Collection)" : e); |
|
p = p.next; |
|
if (p == null) |
|
return sb.append(']').toString(); |
|
sb.append(',').append(' '); |
|
} |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* Atomically removes all of the elements from this deque. |
|
* The deque will be empty after this call returns. |
|
*/ |
|
public void clear() { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
for (Node<E> f = first; f != null; ) { |
|
f.item = null; |
|
Node<E> n = f.next; |
|
f.prev = null; |
|
f.next = null; |
|
f = n; |
|
} |
|
first = last = null; |
|
count = 0; |
|
notFull.signalAll(); |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* Returns an iterator over the elements in this deque in proper sequence. |
|
* The elements will be returned in order from first (head) to last (tail). |
|
* |
|
* <p>The returned iterator is |
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. |
|
* |
|
* @return an iterator over the elements in this deque in proper sequence |
|
*/ |
|
public Iterator<E> iterator() { |
|
return new Itr(); |
|
} |
|
/** |
|
* Returns an iterator over the elements in this deque in reverse |
|
* sequential order. The elements will be returned in order from |
|
* last (tail) to first (head). |
|
* |
|
* <p>The returned iterator is |
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. |
|
* |
|
* @return an iterator over the elements in this deque in reverse order |
|
*/ |
|
public Iterator<E> descendingIterator() { |
|
return new DescendingItr(); |
|
} |
|
/** |
|
* Base class for Iterators for LinkedBlockingDeque |
|
*/ |
|
private abstract class AbstractItr implements Iterator<E> { |
|
/** |
|
* The next node to return in next() |
|
*/ |
|
Node<E> next; |
|
/** |
|
* nextItem holds on to item fields because once we claim that |
|
* an element exists in hasNext(), we must return item read |
|
* under lock (in advance()) even if it was in the process of |
|
* being removed when hasNext() was called. |
|
*/ |
|
E nextItem; |
|
/** |
|
* Node returned by most recent call to next. Needed by remove. |
|
* Reset to null if this element is deleted by a call to remove. |
|
*/ |
|
private Node<E> lastRet; |
|
abstract Node<E> firstNode(); |
|
abstract Node<E> nextNode(Node<E> n); |
|
AbstractItr() { |
|
// set to initial position |
|
final ReentrantLock lock = LinkedBlockingDeque.this.lock; |
|
lock.lock(); |
|
try { |
|
next = firstNode(); |
|
nextItem = (next == null) ? null : next.item; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* Returns the successor node of the given non-null, but |
|
* possibly previously deleted, node. |
|
*/ |
|
private Node<E> succ(Node<E> n) { |
|
// Chains of deleted nodes ending in null or self-links |
|
// are possible if multiple interior nodes are removed. |
|
for (;;) { |
|
Node<E> s = nextNode(n); |
|
if (s == null) |
|
return null; |
|
else if (s.item != null) |
|
return s; |
|
else if (s == n) |
|
return firstNode(); |
|
else |
|
n = s; |
|
} |
|
} |
|
/** |
|
* Advances next. |
|
*/ |
|
void advance() { |
|
final ReentrantLock lock = LinkedBlockingDeque.this.lock; |
|
lock.lock(); |
|
try { |
|
// assert next != null; |
|
next = succ(next); |
|
nextItem = (next == null) ? null : next.item; |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
public boolean hasNext() { |
|
return next != null; |
|
} |
|
public E next() { |
|
if (next == null) |
|
throw new NoSuchElementException(); |
|
lastRet = next; |
|
E x = nextItem; |
|
advance(); |
|
return x; |
|
} |
|
public void remove() { |
|
Node<E> n = lastRet; |
|
if (n == null) |
|
throw new IllegalStateException(); |
|
lastRet = null; |
|
final ReentrantLock lock = LinkedBlockingDeque.this.lock; |
|
lock.lock(); |
|
try { |
|
if (n.item != null) |
|
unlink(n); |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
} |
|
/** Forward iterator */ |
|
private class Itr extends AbstractItr { |
|
Node<E> firstNode() { return first; } |
|
Node<E> nextNode(Node<E> n) { return n.next; } |
|
} |
|
/** Descending iterator */ |
|
private class DescendingItr extends AbstractItr { |
|
Node<E> firstNode() { return last; } |
|
Node<E> nextNode(Node<E> n) { return n.prev; } |
|
} |
|
/** A customized variant of Spliterators.IteratorSpliterator */ |
|
static final class LBDSpliterator<E> implements Spliterator<E> { |
|
static final int MAX_BATCH = 1 << 25; // max batch array size; |
|
final LinkedBlockingDeque<E> queue; |
|
Node<E> current; // current node; null until initialized |
|
int batch; // batch size for splits |
|
boolean exhausted; // true when no more nodes |
|
long est; // size estimate |
|
LBDSpliterator(LinkedBlockingDeque<E> queue) { |
|
this.queue = queue; |
|
this.est = queue.size(); |
|
} |
|
public long estimateSize() { return est; } |
|
public Spliterator<E> trySplit() { |
|
Node<E> h; |
|
final LinkedBlockingDeque<E> q = this.queue; |
|
int b = batch; |
|
int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1; |
|
if (!exhausted && |
|
((h = current) != null || (h = q.first) != null) && |
|
h.next != null) { |
|
Object[] a = new Object[n]; |
|
final ReentrantLock lock = q.lock; |
|
int i = 0; |
|
Node<E> p = current; |
|
lock.lock(); |
|
try { |
|
if (p != null || (p = q.first) != null) { |
|
do { |
|
if ((a[i] = p.item) != null) |
|
++i; |
|
} while ((p = p.next) != null && i < n); |
|
} |
|
} finally { |
|
lock.unlock(); |
|
} |
|
if ((current = p) == null) { |
|
est = 0L; |
|
exhausted = true; |
|
} |
|
else if ((est -= i) < 0L) |
|
est = 0L; |
|
if (i > 0) { |
|
batch = i; |
|
return Spliterators.spliterator |
|
(a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL | |
|
Spliterator.CONCURRENT); |
|
} |
|
} |
|
return null; |
|
} |
|
public void forEachRemaining(Consumer<? super E> action) { |
|
if (action == null) throw new NullPointerException(); |
|
final LinkedBlockingDeque<E> q = this.queue; |
|
final ReentrantLock lock = q.lock; |
|
if (!exhausted) { |
|
exhausted = true; |
|
Node<E> p = current; |
|
do { |
|
E e = null; |
|
lock.lock(); |
|
try { |
|
if (p == null) |
|
p = q.first; |
|
while (p != null) { |
|
e = p.item; |
|
p = p.next; |
|
if (e != null) |
|
break; |
|
} |
|
} finally { |
|
lock.unlock(); |
|
} |
|
if (e != null) |
|
action.accept(e); |
|
} while (p != null); |
|
} |
|
} |
|
public boolean tryAdvance(Consumer<? super E> action) { |
|
if (action == null) throw new NullPointerException(); |
|
final LinkedBlockingDeque<E> q = this.queue; |
|
final ReentrantLock lock = q.lock; |
|
if (!exhausted) { |
|
E e = null; |
|
lock.lock(); |
|
try { |
|
if (current == null) |
|
current = q.first; |
|
while (current != null) { |
|
e = current.item; |
|
current = current.next; |
|
if (e != null) |
|
break; |
|
} |
|
} finally { |
|
lock.unlock(); |
|
} |
|
if (current == null) |
|
exhausted = true; |
|
if (e != null) { |
|
action.accept(e); |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
public int characteristics() { |
|
return Spliterator.ORDERED | Spliterator.NONNULL | |
|
Spliterator.CONCURRENT; |
|
} |
|
} |
|
/** |
|
* Returns a {@link Spliterator} over the elements in this deque. |
|
* |
|
* <p>The returned spliterator is |
|
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. |
|
* |
|
* <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT}, |
|
* {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}. |
|
* |
|
* @implNote |
|
* The {@code Spliterator} implements {@code trySplit} to permit limited |
|
* parallelism. |
|
* |
|
* @return a {@code Spliterator} over the elements in this deque |
|
* @since 1.8 |
|
*/ |
|
public Spliterator<E> spliterator() { |
|
return new LBDSpliterator<E>(this); |
|
} |
|
/** |
|
* Saves this deque to a stream (that is, serializes it). |
|
* |
|
* @param s the stream |
|
* @throws java.io.IOException if an I/O error occurs |
|
* @serialData The capacity (int), followed by elements (each an |
|
* {@code Object}) in the proper order, followed by a null |
|
*/ |
|
private void writeObject(java.io.ObjectOutputStream s) |
|
throws java.io.IOException { |
|
final ReentrantLock lock = this.lock; |
|
lock.lock(); |
|
try { |
|
// Write out capacity and any hidden stuff |
|
s.defaultWriteObject(); |
|
// Write out all elements in the proper order. |
|
for (Node<E> p = first; p != null; p = p.next) |
|
s.writeObject(p.item); |
|
// Use trailing null as sentinel |
|
s.writeObject(null); |
|
} finally { |
|
lock.unlock(); |
|
} |
|
} |
|
/** |
|
* Reconstitutes this deque from a stream (that is, deserializes it). |
|
* @param s the stream |
|
* @throws ClassNotFoundException if the class of a serialized object |
|
* could not be found |
|
* @throws java.io.IOException if an I/O error occurs |
|
*/ |
|
private void readObject(java.io.ObjectInputStream s) |
|
throws java.io.IOException, ClassNotFoundException { |
|
s.defaultReadObject(); |
|
count = 0; |
|
first = null; |
|
last = null; |
|
// Read in all elements and place in queue |
|
for (;;) { |
|
@SuppressWarnings("unchecked") |
|
E item = (E)s.readObject(); |
|
if (item == null) |
|
break; |
|
add(item); |
|
} |
|
} |
|
} |