| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 */  | 
 | 
 | 
 | 
package sun.java2d.marlin;  | 
 | 
 | 
 | 
import static java.lang.Math.PI;  | 
 | 
import static java.lang.Math.cos;  | 
 | 
import static java.lang.Math.sqrt;  | 
 | 
import static java.lang.Math.cbrt;  | 
 | 
import static java.lang.Math.acos;  | 
 | 
 | 
 | 
final class Helpers implements MarlinConst { | 
 | 
 | 
 | 
    private Helpers() { | 
 | 
        throw new Error("This is a non instantiable class"); | 
 | 
    }  | 
 | 
 | 
 | 
    static boolean within(final float x, final float y, final float err) { | 
 | 
        final float d = y - x;  | 
 | 
        return (d <= err && d >= -err);  | 
 | 
    }  | 
 | 
 | 
 | 
    static boolean within(final double x, final double y, final double err) { | 
 | 
        final double d = y - x;  | 
 | 
        return (d <= err && d >= -err);  | 
 | 
    }  | 
 | 
 | 
 | 
    static int quadraticRoots(final float a, final float b,  | 
 | 
                              final float c, float[] zeroes, final int off)  | 
 | 
    { | 
 | 
        int ret = off;  | 
 | 
        float t;  | 
 | 
        if (a != 0f) { | 
 | 
            final float dis = b*b - 4*a*c;  | 
 | 
            if (dis > 0f) { | 
 | 
                final float sqrtDis = (float)Math.sqrt(dis);  | 
 | 
                // depending on the sign of b we use a slightly different  | 
 | 
                // algorithm than the traditional one to find one of the roots  | 
 | 
                // so we can avoid adding numbers of different signs (which  | 
 | 
                  | 
 | 
                if (b >= 0f) { | 
 | 
                    zeroes[ret++] = (2f * c) / (-b - sqrtDis);  | 
 | 
                    zeroes[ret++] = (-b - sqrtDis) / (2f * a);  | 
 | 
                } else { | 
 | 
                    zeroes[ret++] = (-b + sqrtDis) / (2f * a);  | 
 | 
                    zeroes[ret++] = (2f * c) / (-b + sqrtDis);  | 
 | 
                }  | 
 | 
            } else if (dis == 0f) { | 
 | 
                t = (-b) / (2f * a);  | 
 | 
                zeroes[ret++] = t;  | 
 | 
            }  | 
 | 
        } else { | 
 | 
            if (b != 0f) { | 
 | 
                t = (-c) / b;  | 
 | 
                zeroes[ret++] = t;  | 
 | 
            }  | 
 | 
        }  | 
 | 
        return ret - off;  | 
 | 
    }  | 
 | 
 | 
 | 
      | 
 | 
    static int cubicRootsInAB(float d, float a, float b, float c,  | 
 | 
                              float[] pts, final int off,  | 
 | 
                              final float A, final float B)  | 
 | 
    { | 
 | 
        if (d == 0f) { | 
 | 
            int num = quadraticRoots(a, b, c, pts, off);  | 
 | 
            return filterOutNotInAB(pts, off, num, A, B) - off;  | 
 | 
        }  | 
 | 
        // From Graphics Gems:  | 
 | 
        // http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c  | 
 | 
        // (also from awt.geom.CubicCurve2D. But here we don't need as  | 
 | 
        // much accuracy and we don't want to create arrays so we use  | 
 | 
        // our own customized version).  | 
 | 
 | 
 | 
          | 
 | 
        a /= d;  | 
 | 
        b /= d;  | 
 | 
        c /= d;  | 
 | 
 | 
 | 
        //  substitute x = y - A/3 to eliminate quadratic term:  | 
 | 
        //     x^3 +Px + Q = 0  | 
 | 
        //  | 
 | 
        // Since we actually need P/3 and Q/2 for all of the  | 
 | 
        // calculations that follow, we will calculate  | 
 | 
        // p = P/3  | 
 | 
        // q = Q/2  | 
 | 
          | 
 | 
        double sq_A = a * a;  | 
 | 
        double p = (1.0/3.0) * ((-1.0/3.0) * sq_A + b);  | 
 | 
        double q = (1.0/2.0) * ((2.0/27.0) * a * sq_A - (1.0/3.0) * a * b + c);  | 
 | 
 | 
 | 
        // use Cardano's formula  | 
 | 
 | 
 | 
        double cb_p = p * p * p;  | 
 | 
        double D = q * q + cb_p;  | 
 | 
 | 
 | 
        int num;  | 
 | 
        if (D < 0.0) { | 
 | 
              | 
 | 
            final double phi = (1.0/3.0) * acos(-q / sqrt(-cb_p));  | 
 | 
            final double t = 2.0 * sqrt(-p);  | 
 | 
 | 
 | 
            pts[ off+0 ] =  (float)( t * cos(phi));  | 
 | 
            pts[ off+1 ] =  (float)(-t * cos(phi + (PI / 3.0)));  | 
 | 
            pts[ off+2 ] =  (float)(-t * cos(phi - (PI / 3.0)));  | 
 | 
            num = 3;  | 
 | 
        } else { | 
 | 
            final double sqrt_D = sqrt(D);  | 
 | 
            final double u = cbrt(sqrt_D - q);  | 
 | 
            final double v = - cbrt(sqrt_D + q);  | 
 | 
 | 
 | 
            pts[ off ] = (float)(u + v);  | 
 | 
            num = 1;  | 
 | 
 | 
 | 
            if (within(D, 0.0, 1e-8)) { | 
 | 
                pts[off+1] = -(pts[off] / 2f);  | 
 | 
                num = 2;  | 
 | 
            }  | 
 | 
        }  | 
 | 
 | 
 | 
        final float sub = (1f/3f) * a;  | 
 | 
 | 
 | 
        for (int i = 0; i < num; ++i) { | 
 | 
            pts[ off+i ] -= sub;  | 
 | 
        }  | 
 | 
 | 
 | 
        return filterOutNotInAB(pts, off, num, A, B) - off;  | 
 | 
    }  | 
 | 
 | 
 | 
    static float evalCubic(final float a, final float b,  | 
 | 
                           final float c, final float d,  | 
 | 
                           final float t)  | 
 | 
    { | 
 | 
        return t * (t * (t * a + b) + c) + d;  | 
 | 
    }  | 
 | 
 | 
 | 
    static float evalQuad(final float a, final float b,  | 
 | 
                          final float c, final float t)  | 
 | 
    { | 
 | 
        return t * (t * a + b) + c;  | 
 | 
    }  | 
 | 
 | 
 | 
      | 
 | 
    static int filterOutNotInAB(float[] nums, final int off, final int len,  | 
 | 
                                final float a, final float b)  | 
 | 
    { | 
 | 
        int ret = off;  | 
 | 
        for (int i = off, end = off + len; i < end; i++) { | 
 | 
            if (nums[i] >= a && nums[i] < b) { | 
 | 
                nums[ret++] = nums[i];  | 
 | 
            }  | 
 | 
        }  | 
 | 
        return ret;  | 
 | 
    }  | 
 | 
 | 
 | 
    static float polyLineLength(float[] poly, final int off, final int nCoords) { | 
 | 
        assert nCoords % 2 == 0 && poly.length >= off + nCoords : "";  | 
 | 
        float acc = 0;  | 
 | 
        for (int i = off + 2; i < off + nCoords; i += 2) { | 
 | 
            acc += linelen(poly[i], poly[i+1], poly[i-2], poly[i-1]);  | 
 | 
        }  | 
 | 
        return acc;  | 
 | 
    }  | 
 | 
 | 
 | 
    static float linelen(float x1, float y1, float x2, float y2) { | 
 | 
        final float dx = x2 - x1;  | 
 | 
        final float dy = y2 - y1;  | 
 | 
        return (float)Math.sqrt(dx*dx + dy*dy);  | 
 | 
    }  | 
 | 
 | 
 | 
    static void subdivide(float[] src, int srcoff, float[] left, int leftoff,  | 
 | 
                          float[] right, int rightoff, int type)  | 
 | 
    { | 
 | 
        switch(type) { | 
 | 
        case 6:  | 
 | 
            Helpers.subdivideQuad(src, srcoff, left, leftoff, right, rightoff);  | 
 | 
            return;  | 
 | 
        case 8:  | 
 | 
            Helpers.subdivideCubic(src, srcoff, left, leftoff, right, rightoff);  | 
 | 
            return;  | 
 | 
        default:  | 
 | 
            throw new InternalError("Unsupported curve type"); | 
 | 
        }  | 
 | 
    }  | 
 | 
 | 
 | 
    static void isort(float[] a, int off, int len) { | 
 | 
        for (int i = off + 1, end = off + len; i < end; i++) { | 
 | 
            float ai = a[i];  | 
 | 
            int j = i - 1;  | 
 | 
            for (; j >= off && a[j] > ai; j--) { | 
 | 
                a[j+1] = a[j];  | 
 | 
            }  | 
 | 
            a[j+1] = ai;  | 
 | 
        }  | 
 | 
    }  | 
 | 
 | 
 | 
    // Most of these are copied from classes in java.awt.geom because we need  | 
 | 
    // float versions of these functions, and Line2D, CubicCurve2D,  | 
 | 
    // QuadCurve2D don't provide them.  | 
 | 
      | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
     */  | 
 | 
    static void subdivideCubic(float src[], int srcoff,  | 
 | 
                               float left[], int leftoff,  | 
 | 
                               float right[], int rightoff)  | 
 | 
    { | 
 | 
        float x1 = src[srcoff + 0];  | 
 | 
        float y1 = src[srcoff + 1];  | 
 | 
        float ctrlx1 = src[srcoff + 2];  | 
 | 
        float ctrly1 = src[srcoff + 3];  | 
 | 
        float ctrlx2 = src[srcoff + 4];  | 
 | 
        float ctrly2 = src[srcoff + 5];  | 
 | 
        float x2 = src[srcoff + 6];  | 
 | 
        float y2 = src[srcoff + 7];  | 
 | 
        if (left != null) { | 
 | 
            left[leftoff + 0] = x1;  | 
 | 
            left[leftoff + 1] = y1;  | 
 | 
        }  | 
 | 
        if (right != null) { | 
 | 
            right[rightoff + 6] = x2;  | 
 | 
            right[rightoff + 7] = y2;  | 
 | 
        }  | 
 | 
        x1 = (x1 + ctrlx1) / 2f;  | 
 | 
        y1 = (y1 + ctrly1) / 2f;  | 
 | 
        x2 = (x2 + ctrlx2) / 2f;  | 
 | 
        y2 = (y2 + ctrly2) / 2f;  | 
 | 
        float centerx = (ctrlx1 + ctrlx2) / 2f;  | 
 | 
        float centery = (ctrly1 + ctrly2) / 2f;  | 
 | 
        ctrlx1 = (x1 + centerx) / 2f;  | 
 | 
        ctrly1 = (y1 + centery) / 2f;  | 
 | 
        ctrlx2 = (x2 + centerx) / 2f;  | 
 | 
        ctrly2 = (y2 + centery) / 2f;  | 
 | 
        centerx = (ctrlx1 + ctrlx2) / 2f;  | 
 | 
        centery = (ctrly1 + ctrly2) / 2f;  | 
 | 
        if (left != null) { | 
 | 
            left[leftoff + 2] = x1;  | 
 | 
            left[leftoff + 3] = y1;  | 
 | 
            left[leftoff + 4] = ctrlx1;  | 
 | 
            left[leftoff + 5] = ctrly1;  | 
 | 
            left[leftoff + 6] = centerx;  | 
 | 
            left[leftoff + 7] = centery;  | 
 | 
        }  | 
 | 
        if (right != null) { | 
 | 
            right[rightoff + 0] = centerx;  | 
 | 
            right[rightoff + 1] = centery;  | 
 | 
            right[rightoff + 2] = ctrlx2;  | 
 | 
            right[rightoff + 3] = ctrly2;  | 
 | 
            right[rightoff + 4] = x2;  | 
 | 
            right[rightoff + 5] = y2;  | 
 | 
        }  | 
 | 
    }  | 
 | 
 | 
 | 
 | 
 | 
    static void subdivideCubicAt(float t, float src[], int srcoff,  | 
 | 
                                 float left[], int leftoff,  | 
 | 
                                 float right[], int rightoff)  | 
 | 
    { | 
 | 
        float x1 = src[srcoff + 0];  | 
 | 
        float y1 = src[srcoff + 1];  | 
 | 
        float ctrlx1 = src[srcoff + 2];  | 
 | 
        float ctrly1 = src[srcoff + 3];  | 
 | 
        float ctrlx2 = src[srcoff + 4];  | 
 | 
        float ctrly2 = src[srcoff + 5];  | 
 | 
        float x2 = src[srcoff + 6];  | 
 | 
        float y2 = src[srcoff + 7];  | 
 | 
        if (left != null) { | 
 | 
            left[leftoff + 0] = x1;  | 
 | 
            left[leftoff + 1] = y1;  | 
 | 
        }  | 
 | 
        if (right != null) { | 
 | 
            right[rightoff + 6] = x2;  | 
 | 
            right[rightoff + 7] = y2;  | 
 | 
        }  | 
 | 
        x1 = x1 + t * (ctrlx1 - x1);  | 
 | 
        y1 = y1 + t * (ctrly1 - y1);  | 
 | 
        x2 = ctrlx2 + t * (x2 - ctrlx2);  | 
 | 
        y2 = ctrly2 + t * (y2 - ctrly2);  | 
 | 
        float centerx = ctrlx1 + t * (ctrlx2 - ctrlx1);  | 
 | 
        float centery = ctrly1 + t * (ctrly2 - ctrly1);  | 
 | 
        ctrlx1 = x1 + t * (centerx - x1);  | 
 | 
        ctrly1 = y1 + t * (centery - y1);  | 
 | 
        ctrlx2 = centerx + t * (x2 - centerx);  | 
 | 
        ctrly2 = centery + t * (y2 - centery);  | 
 | 
        centerx = ctrlx1 + t * (ctrlx2 - ctrlx1);  | 
 | 
        centery = ctrly1 + t * (ctrly2 - ctrly1);  | 
 | 
        if (left != null) { | 
 | 
            left[leftoff + 2] = x1;  | 
 | 
            left[leftoff + 3] = y1;  | 
 | 
            left[leftoff + 4] = ctrlx1;  | 
 | 
            left[leftoff + 5] = ctrly1;  | 
 | 
            left[leftoff + 6] = centerx;  | 
 | 
            left[leftoff + 7] = centery;  | 
 | 
        }  | 
 | 
        if (right != null) { | 
 | 
            right[rightoff + 0] = centerx;  | 
 | 
            right[rightoff + 1] = centery;  | 
 | 
            right[rightoff + 2] = ctrlx2;  | 
 | 
            right[rightoff + 3] = ctrly2;  | 
 | 
            right[rightoff + 4] = x2;  | 
 | 
            right[rightoff + 5] = y2;  | 
 | 
        }  | 
 | 
    }  | 
 | 
 | 
 | 
    static void subdivideQuad(float src[], int srcoff,  | 
 | 
                              float left[], int leftoff,  | 
 | 
                              float right[], int rightoff)  | 
 | 
    { | 
 | 
        float x1 = src[srcoff + 0];  | 
 | 
        float y1 = src[srcoff + 1];  | 
 | 
        float ctrlx = src[srcoff + 2];  | 
 | 
        float ctrly = src[srcoff + 3];  | 
 | 
        float x2 = src[srcoff + 4];  | 
 | 
        float y2 = src[srcoff + 5];  | 
 | 
        if (left != null) { | 
 | 
            left[leftoff + 0] = x1;  | 
 | 
            left[leftoff + 1] = y1;  | 
 | 
        }  | 
 | 
        if (right != null) { | 
 | 
            right[rightoff + 4] = x2;  | 
 | 
            right[rightoff + 5] = y2;  | 
 | 
        }  | 
 | 
        x1 = (x1 + ctrlx) / 2f;  | 
 | 
        y1 = (y1 + ctrly) / 2f;  | 
 | 
        x2 = (x2 + ctrlx) / 2f;  | 
 | 
        y2 = (y2 + ctrly) / 2f;  | 
 | 
        ctrlx = (x1 + x2) / 2f;  | 
 | 
        ctrly = (y1 + y2) / 2f;  | 
 | 
        if (left != null) { | 
 | 
            left[leftoff + 2] = x1;  | 
 | 
            left[leftoff + 3] = y1;  | 
 | 
            left[leftoff + 4] = ctrlx;  | 
 | 
            left[leftoff + 5] = ctrly;  | 
 | 
        }  | 
 | 
        if (right != null) { | 
 | 
            right[rightoff + 0] = ctrlx;  | 
 | 
            right[rightoff + 1] = ctrly;  | 
 | 
            right[rightoff + 2] = x2;  | 
 | 
            right[rightoff + 3] = y2;  | 
 | 
        }  | 
 | 
    }  | 
 | 
 | 
 | 
    static void subdivideQuadAt(float t, float src[], int srcoff,  | 
 | 
                                float left[], int leftoff,  | 
 | 
                                float right[], int rightoff)  | 
 | 
    { | 
 | 
        float x1 = src[srcoff + 0];  | 
 | 
        float y1 = src[srcoff + 1];  | 
 | 
        float ctrlx = src[srcoff + 2];  | 
 | 
        float ctrly = src[srcoff + 3];  | 
 | 
        float x2 = src[srcoff + 4];  | 
 | 
        float y2 = src[srcoff + 5];  | 
 | 
        if (left != null) { | 
 | 
            left[leftoff + 0] = x1;  | 
 | 
            left[leftoff + 1] = y1;  | 
 | 
        }  | 
 | 
        if (right != null) { | 
 | 
            right[rightoff + 4] = x2;  | 
 | 
            right[rightoff + 5] = y2;  | 
 | 
        }  | 
 | 
        x1 = x1 + t * (ctrlx - x1);  | 
 | 
        y1 = y1 + t * (ctrly - y1);  | 
 | 
        x2 = ctrlx + t * (x2 - ctrlx);  | 
 | 
        y2 = ctrly + t * (y2 - ctrly);  | 
 | 
        ctrlx = x1 + t * (x2 - x1);  | 
 | 
        ctrly = y1 + t * (y2 - y1);  | 
 | 
        if (left != null) { | 
 | 
            left[leftoff + 2] = x1;  | 
 | 
            left[leftoff + 3] = y1;  | 
 | 
            left[leftoff + 4] = ctrlx;  | 
 | 
            left[leftoff + 5] = ctrly;  | 
 | 
        }  | 
 | 
        if (right != null) { | 
 | 
            right[rightoff + 0] = ctrlx;  | 
 | 
            right[rightoff + 1] = ctrly;  | 
 | 
            right[rightoff + 2] = x2;  | 
 | 
            right[rightoff + 3] = y2;  | 
 | 
        }  | 
 | 
    }  | 
 | 
 | 
 | 
    static void subdivideAt(float t, float src[], int srcoff,  | 
 | 
                            float left[], int leftoff,  | 
 | 
                            float right[], int rightoff, int size)  | 
 | 
    { | 
 | 
        switch(size) { | 
 | 
        case 8:  | 
 | 
            subdivideCubicAt(t, src, srcoff, left, leftoff, right, rightoff);  | 
 | 
            return;  | 
 | 
        case 6:  | 
 | 
            subdivideQuadAt(t, src, srcoff, left, leftoff, right, rightoff);  | 
 | 
            return;  | 
 | 
        }  | 
 | 
    }  | 
 | 
}  |