/* | 
|
 * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved. | 
|
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | 
|
 * | 
|
 * This code is free software; you can redistribute it and/or modify it | 
|
 * under the terms of the GNU General Public License version 2 only, as | 
|
 * published by the Free Software Foundation.  Oracle designates this | 
|
 * particular file as subject to the "Classpath" exception as provided | 
|
 * by Oracle in the LICENSE file that accompanied this code. | 
|
 * | 
|
 * This code is distributed in the hope that it will be useful, but WITHOUT | 
|
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|
 * version 2 for more details (a copy is included in the LICENSE file that | 
|
 * accompanied this code). | 
|
 * | 
|
 * You should have received a copy of the GNU General Public License version | 
|
 * 2 along with this work; if not, write to the Free Software Foundation, | 
|
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
|
 * | 
|
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | 
|
 * or visit www.oracle.com if you need additional information or have any | 
|
 * questions. | 
|
*/  | 
|
package sun.security.ec;  | 
|
import sun.security.ec.point.*;  | 
|
import sun.security.util.ArrayUtil;  | 
|
import sun.security.util.math.*;  | 
|
import static sun.security.ec.ECOperations.IntermediateValueException;  | 
|
import java.security.ProviderException;  | 
|
import java.security.spec.*;  | 
|
import java.util.Optional;  | 
|
public class ECDSAOperations { | 
|
    public static class Seed { | 
|
private final byte[] seedValue;  | 
|
        public Seed(byte[] seedValue) { | 
|
this.seedValue = seedValue;  | 
|
}  | 
|
        public byte[] getSeedValue() { | 
|
return seedValue;  | 
|
}  | 
|
}  | 
|
    public static class Nonce { | 
|
private final byte[] nonceValue;  | 
|
        public Nonce(byte[] nonceValue) { | 
|
this.nonceValue = nonceValue;  | 
|
}  | 
|
        public byte[] getNonceValue() { | 
|
return nonceValue;  | 
|
}  | 
|
}  | 
|
private final ECOperations ecOps;  | 
|
private final AffinePoint basePoint;  | 
|
public ECDSAOperations(ECOperations ecOps, ECPoint basePoint) {  | 
|
this.ecOps = ecOps;  | 
|
this.basePoint = toAffinePoint(basePoint, ecOps.getField());  | 
|
}  | 
|
public ECOperations getEcOperations() {  | 
|
return ecOps;  | 
|
}  | 
|
public AffinePoint basePointMultiply(byte[] scalar) {  | 
|
return ecOps.multiply(basePoint, scalar).asAffine();  | 
|
}  | 
|
public static AffinePoint toAffinePoint(ECPoint point,  | 
|
IntegerFieldModuloP field) {  | 
|
ImmutableIntegerModuloP affineX = field.getElement(point.getAffineX());  | 
|
ImmutableIntegerModuloP affineY = field.getElement(point.getAffineY());  | 
|
return new AffinePoint(affineX, affineY);  | 
|
}  | 
|
public static  | 
|
Optional<ECDSAOperations> forParameters(ECParameterSpec ecParams) {  | 
|
Optional<ECOperations> curveOps =  | 
|
ECOperations.forParameters(ecParams);  | 
|
return curveOps.map(  | 
|
ops -> new ECDSAOperations(ops, ecParams.getGenerator())  | 
|
);  | 
|
}  | 
|
    /** | 
|
     * | 
|
     * Sign a digest using the provided private key and seed. | 
|
     * IMPORTANT: The private key is a scalar represented using a | 
|
     * little-endian byte array. This is backwards from the conventional | 
|
     * representation in ECDSA. The routines that produce and consume this | 
|
     * value uses little-endian, so this deviation from convention removes | 
|
     * the requirement to swap the byte order. The returned signature is in | 
|
     * the conventional byte order. | 
|
     * | 
|
     * @param privateKey the private key scalar as a little-endian byte array | 
|
     * @param digest the digest to be signed | 
|
     * @param seed the seed that will be used to produce the nonce. This object | 
|
     *             should contain an array that is at least 64 bits longer than | 
|
     *             the number of bits required to represent the group order. | 
|
     * @return the ECDSA signature value | 
|
     * @throws IntermediateValueException if the signature cannot be produced | 
|
     *      due to an unacceptable intermediate or final value. If this | 
|
     *      exception is thrown, then the caller should discard the nonnce and | 
|
     *      try again with an entirely new nonce value. | 
|
*/  | 
|
public byte[] signDigest(byte[] privateKey, byte[] digest, Seed seed)  | 
|
        throws IntermediateValueException { | 
|
byte[] nonceArr = ecOps.seedToScalar(seed.getSeedValue());  | 
|
Nonce nonce = new Nonce(nonceArr);  | 
|
return signDigest(privateKey, digest, nonce);  | 
|
}  | 
|
    /** | 
|
     * | 
|
     * Sign a digest using the provided private key and nonce. | 
|
     * IMPORTANT: The private key and nonce are scalars represented by a | 
|
     * little-endian byte array. This is backwards from the conventional | 
|
     * representation in ECDSA. The routines that produce and consume these | 
|
     * values use little-endian, so this deviation from convention removes | 
|
     * the requirement to swap the byte order. The returned signature is in | 
|
     * the conventional byte order. | 
|
     * | 
|
     * @param privateKey the private key scalar as a little-endian byte array | 
|
     * @param digest the digest to be signed | 
|
     * @param nonce the nonce object containing a little-endian scalar value. | 
|
     * @return the ECDSA signature value | 
|
     * @throws IntermediateValueException if the signature cannot be produced | 
|
     *      due to an unacceptable intermediate or final value. If this | 
|
     *      exception is thrown, then the caller should discard the nonnce and | 
|
     *      try again with an entirely new nonce value. | 
|
*/  | 
|
public byte[] signDigest(byte[] privateKey, byte[] digest, Nonce nonce)  | 
|
        throws IntermediateValueException { | 
|
IntegerFieldModuloP orderField = ecOps.getOrderField();  | 
|
int orderBits = orderField.getSize().bitLength();  | 
|
if (orderBits % 8 != 0 && orderBits < digest.length * 8) {  | 
|
// This implementation does not support truncating digests to  | 
|
            // a length that is not a multiple of 8. | 
|
throw new ProviderException("Invalid digest length");  | 
|
}  | 
|
byte[] k = nonce.getNonceValue();  | 
|
        // check nonce length | 
|
int length = (orderField.getSize().bitLength() + 7) / 8;  | 
|
if (k.length != length) {  | 
|
throw new ProviderException("Incorrect nonce length");  | 
|
}  | 
|
MutablePoint R = ecOps.multiply(basePoint, k);  | 
|
IntegerModuloP r = R.asAffine().getX();  | 
|
        // put r into the correct field by fully reducing to an array | 
|
byte[] temp = new byte[length];  | 
|
r.asByteArray(temp);  | 
|
r = orderField.getElement(temp);  | 
|
        // store r in result | 
|
r.asByteArray(temp);  | 
|
byte[] result = new byte[2 * length];  | 
|
ArrayUtil.reverse(temp);  | 
|
System.arraycopy(temp, 0, result, 0, length);  | 
|
        // compare r to 0 | 
|
if (ECOperations.allZero(temp)) {  | 
|
throw new IntermediateValueException();  | 
|
}  | 
|
IntegerModuloP dU = orderField.getElement(privateKey);  | 
|
int lengthE = Math.min(length, digest.length);  | 
|
byte[] E = new byte[lengthE];  | 
|
System.arraycopy(digest, 0, E, 0, lengthE);  | 
|
ArrayUtil.reverse(E);  | 
|
IntegerModuloP e = orderField.getElement(E);  | 
|
IntegerModuloP kElem = orderField.getElement(k);  | 
|
IntegerModuloP kInv = kElem.multiplicativeInverse();  | 
|
MutableIntegerModuloP s = r.mutable();  | 
|
s.setProduct(dU).setSum(e).setProduct(kInv);  | 
|
        // store s in result | 
|
s.asByteArray(temp);  | 
|
ArrayUtil.reverse(temp);  | 
|
System.arraycopy(temp, 0, result, length, length);  | 
|
        // compare s to 0 | 
|
if (ECOperations.allZero(temp)) {  | 
|
throw new IntermediateValueException();  | 
|
}  | 
|
return result;  | 
|
}  | 
|
}  |