|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
|
|
package sun.security.provider; |
|
|
|
import java.io.IOException; |
|
import java.io.UnsupportedEncodingException; |
|
import java.security.Key; |
|
import java.security.KeyStoreException; |
|
import java.security.MessageDigest; |
|
import java.security.NoSuchAlgorithmException; |
|
import java.security.SecureRandom; |
|
import java.security.UnrecoverableKeyException; |
|
import java.util.*; |
|
|
|
import sun.security.pkcs.PKCS8Key; |
|
import sun.security.pkcs.EncryptedPrivateKeyInfo; |
|
import sun.security.x509.AlgorithmId; |
|
import sun.security.util.ObjectIdentifier; |
|
import sun.security.util.DerValue; |
|
|
|
/** |
|
* This is an implementation of a Sun proprietary, exportable algorithm |
|
* intended for use when protecting (or recovering the cleartext version of) |
|
* sensitive keys. |
|
* This algorithm is not intended as a general purpose cipher. |
|
* |
|
* This is how the algorithm works for key protection: |
|
* |
|
* p - user password |
|
* s - random salt |
|
* X - xor key |
|
* P - to-be-protected key |
|
* Y - protected key |
|
* R - what gets stored in the keystore |
|
* |
|
* Step 1: |
|
* Take the user's password, append a random salt (of fixed size) to it, |
|
* and hash it: d1 = digest(p, s) |
|
* Store d1 in X. |
|
* |
|
* Step 2: |
|
* Take the user's password, append the digest result from the previous step, |
|
* and hash it: dn = digest(p, dn-1). |
|
* Store dn in X (append it to the previously stored digests). |
|
* Repeat this step until the length of X matches the length of the private key |
|
* P. |
|
* |
|
* Step 3: |
|
* XOR X and P, and store the result in Y: Y = X XOR P. |
|
* |
|
* Step 4: |
|
* Store s, Y, and digest(p, P) in the result buffer R: |
|
* R = s + Y + digest(p, P), where "+" denotes concatenation. |
|
* (NOTE: digest(p, P) is stored in the result buffer, so that when the key is |
|
* recovered, we can check if the recovered key indeed matches the original |
|
* key.) R is stored in the keystore. |
|
* |
|
* The protected key is recovered as follows: |
|
* |
|
* Step1 and Step2 are the same as above, except that the salt is not randomly |
|
* generated, but taken from the result R of step 4 (the first length(s) |
|
* bytes). |
|
* |
|
* Step 3 (XOR operation) yields the plaintext key. |
|
* |
|
* Then concatenate the password with the recovered key, and compare with the |
|
* last length(digest(p, P)) bytes of R. If they match, the recovered key is |
|
* indeed the same key as the original key. |
|
* |
|
* @author Jan Luehe |
|
* |
|
* |
|
* @see java.security.KeyStore |
|
* @see JavaKeyStore |
|
* @see KeyTool |
|
* |
|
* @since 1.2 |
|
*/ |
|
|
|
final class KeyProtector { |
|
|
|
private static final int SALT_LEN = 20; |
|
private static final String DIGEST_ALG = "SHA"; |
|
private static final int DIGEST_LEN = 20; |
|
|
|
|
|
private static final String KEY_PROTECTOR_OID = "1.3.6.1.4.1.42.2.17.1.1"; |
|
|
|
// The password used for protecting/recovering keys passed through this |
|
|
|
private byte[] passwdBytes; |
|
|
|
private MessageDigest md; |
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public KeyProtector(byte[] passwordBytes) |
|
throws NoSuchAlgorithmException |
|
{ |
|
if (passwordBytes == null) { |
|
throw new IllegalArgumentException("password can't be null"); |
|
} |
|
md = MessageDigest.getInstance(DIGEST_ALG); |
|
this.passwdBytes = passwordBytes; |
|
} |
|
|
|
|
|
|
|
|
|
*/ |
|
protected void finalize() { |
|
if (passwdBytes != null) { |
|
Arrays.fill(passwdBytes, (byte)0x00); |
|
passwdBytes = null; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
*/ |
|
public byte[] protect(Key key) throws KeyStoreException |
|
{ |
|
int i; |
|
int numRounds; |
|
byte[] digest; |
|
int xorOffset; |
|
int encrKeyOffset = 0; |
|
|
|
if (key == null) { |
|
throw new IllegalArgumentException("plaintext key can't be null"); |
|
} |
|
|
|
if (!"PKCS#8".equalsIgnoreCase(key.getFormat())) { |
|
throw new KeyStoreException( |
|
"Cannot get key bytes, not PKCS#8 encoded"); |
|
} |
|
|
|
byte[] plainKey = key.getEncoded(); |
|
if (plainKey == null) { |
|
throw new KeyStoreException( |
|
"Cannot get key bytes, encoding not supported"); |
|
} |
|
|
|
|
|
numRounds = plainKey.length / DIGEST_LEN; |
|
if ((plainKey.length % DIGEST_LEN) != 0) |
|
numRounds++; |
|
|
|
|
|
byte[] salt = new byte[SALT_LEN]; |
|
SecureRandom random = new SecureRandom(); |
|
random.nextBytes(salt); |
|
|
|
|
|
byte[] xorKey = new byte[plainKey.length]; |
|
|
|
|
|
for (i = 0, xorOffset = 0, digest = salt; |
|
i < numRounds; |
|
i++, xorOffset += DIGEST_LEN) { |
|
md.update(passwdBytes); |
|
md.update(digest); |
|
digest = md.digest(); |
|
md.reset(); |
|
|
|
if (i < numRounds - 1) { |
|
System.arraycopy(digest, 0, xorKey, xorOffset, |
|
digest.length); |
|
} else { |
|
System.arraycopy(digest, 0, xorKey, xorOffset, |
|
xorKey.length - xorOffset); |
|
} |
|
} |
|
|
|
|
|
byte[] tmpKey = new byte[plainKey.length]; |
|
for (i = 0; i < tmpKey.length; i++) { |
|
tmpKey[i] = (byte)(plainKey[i] ^ xorKey[i]); |
|
} |
|
|
|
|
|
byte[] encrKey = new byte[salt.length + tmpKey.length + DIGEST_LEN]; |
|
System.arraycopy(salt, 0, encrKey, encrKeyOffset, salt.length); |
|
encrKeyOffset += salt.length; |
|
System.arraycopy(tmpKey, 0, encrKey, encrKeyOffset, tmpKey.length); |
|
encrKeyOffset += tmpKey.length; |
|
|
|
|
|
md.update(passwdBytes); |
|
Arrays.fill(passwdBytes, (byte)0x00); |
|
passwdBytes = null; |
|
md.update(plainKey); |
|
digest = md.digest(); |
|
md.reset(); |
|
System.arraycopy(digest, 0, encrKey, encrKeyOffset, digest.length); |
|
|
|
// wrap the protected private key in a PKCS#8-style |
|
|
|
AlgorithmId encrAlg; |
|
try { |
|
encrAlg = new AlgorithmId(new ObjectIdentifier(KEY_PROTECTOR_OID)); |
|
return new EncryptedPrivateKeyInfo(encrAlg,encrKey).getEncoded(); |
|
} catch (IOException ioe) { |
|
throw new KeyStoreException(ioe.getMessage()); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
*/ |
|
public Key recover(EncryptedPrivateKeyInfo encrInfo) |
|
throws UnrecoverableKeyException |
|
{ |
|
int i; |
|
byte[] digest; |
|
int numRounds; |
|
int xorOffset; |
|
int encrKeyLen; |
|
|
|
|
|
AlgorithmId encrAlg = encrInfo.getAlgorithm(); |
|
if (!(encrAlg.getOID().toString().equals(KEY_PROTECTOR_OID))) { |
|
throw new UnrecoverableKeyException("Unsupported key protection " |
|
+ "algorithm"); |
|
} |
|
|
|
byte[] protectedKey = encrInfo.getEncryptedData(); |
|
|
|
|
|
|
|
|
|
*/ |
|
byte[] salt = new byte[SALT_LEN]; |
|
System.arraycopy(protectedKey, 0, salt, 0, SALT_LEN); |
|
|
|
|
|
encrKeyLen = protectedKey.length - SALT_LEN - DIGEST_LEN; |
|
numRounds = encrKeyLen / DIGEST_LEN; |
|
if ((encrKeyLen % DIGEST_LEN) != 0) numRounds++; |
|
|
|
|
|
byte[] encrKey = new byte[encrKeyLen]; |
|
System.arraycopy(protectedKey, SALT_LEN, encrKey, 0, encrKeyLen); |
|
|
|
|
|
byte[] xorKey = new byte[encrKey.length]; |
|
|
|
|
|
for (i = 0, xorOffset = 0, digest = salt; |
|
i < numRounds; |
|
i++, xorOffset += DIGEST_LEN) { |
|
md.update(passwdBytes); |
|
md.update(digest); |
|
digest = md.digest(); |
|
md.reset(); |
|
|
|
if (i < numRounds - 1) { |
|
System.arraycopy(digest, 0, xorKey, xorOffset, |
|
digest.length); |
|
} else { |
|
System.arraycopy(digest, 0, xorKey, xorOffset, |
|
xorKey.length - xorOffset); |
|
} |
|
} |
|
|
|
|
|
byte[] plainKey = new byte[encrKey.length]; |
|
for (i = 0; i < plainKey.length; i++) { |
|
plainKey[i] = (byte)(encrKey[i] ^ xorKey[i]); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
md.update(passwdBytes); |
|
Arrays.fill(passwdBytes, (byte)0x00); |
|
passwdBytes = null; |
|
md.update(plainKey); |
|
digest = md.digest(); |
|
md.reset(); |
|
for (i = 0; i < digest.length; i++) { |
|
if (digest[i] != protectedKey[SALT_LEN + encrKeyLen + i]) { |
|
throw new UnrecoverableKeyException("Cannot recover key"); |
|
} |
|
} |
|
|
|
// The parseKey() method of PKCS8Key parses the key |
|
// algorithm and instantiates the appropriate key factory, |
|
|
|
try { |
|
return PKCS8Key.parseKey(new DerValue(plainKey)); |
|
} catch (IOException ioe) { |
|
throw new UnrecoverableKeyException(ioe.getMessage()); |
|
} |
|
} |
|
} |