/* |
|
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
package java.util; |
|
import java.lang.reflect.Array; |
|
import java.util.concurrent.ForkJoinPool; |
|
import java.util.function.BinaryOperator; |
|
import java.util.function.Consumer; |
|
import java.util.function.DoubleBinaryOperator; |
|
import java.util.function.IntBinaryOperator; |
|
import java.util.function.IntFunction; |
|
import java.util.function.IntToDoubleFunction; |
|
import java.util.function.IntToLongFunction; |
|
import java.util.function.IntUnaryOperator; |
|
import java.util.function.LongBinaryOperator; |
|
import java.util.function.UnaryOperator; |
|
import java.util.stream.DoubleStream; |
|
import java.util.stream.IntStream; |
|
import java.util.stream.LongStream; |
|
import java.util.stream.Stream; |
|
import java.util.stream.StreamSupport; |
|
/** |
|
* This class contains various methods for manipulating arrays (such as |
|
* sorting and searching). This class also contains a static factory |
|
* that allows arrays to be viewed as lists. |
|
* |
|
* <p>The methods in this class all throw a {@code NullPointerException}, |
|
* if the specified array reference is null, except where noted. |
|
* |
|
* <p>The documentation for the methods contained in this class includes |
|
* briefs description of the <i>implementations</i>. Such descriptions should |
|
* be regarded as <i>implementation notes</i>, rather than parts of the |
|
* <i>specification</i>. Implementors should feel free to substitute other |
|
* algorithms, so long as the specification itself is adhered to. (For |
|
* example, the algorithm used by {@code sort(Object[])} does not have to be |
|
* a MergeSort, but it does have to be <i>stable</i>.) |
|
* |
|
* <p>This class is a member of the |
|
* <a href="{@docRoot}/../technotes/guides/collections/index.html"> |
|
* Java Collections Framework</a>. |
|
* |
|
* @author Josh Bloch |
|
* @author Neal Gafter |
|
* @author John Rose |
|
* @since 1.2 |
|
*/ |
|
public class Arrays { |
|
/** |
|
* The minimum array length below which a parallel sorting |
|
* algorithm will not further partition the sorting task. Using |
|
* smaller sizes typically results in memory contention across |
|
* tasks that makes parallel speedups unlikely. |
|
*/ |
|
private static final int MIN_ARRAY_SORT_GRAN = 1 << 13; |
|
// Suppresses default constructor, ensuring non-instantiability. |
|
private Arrays() {} |
|
/** |
|
* A comparator that implements the natural ordering of a group of |
|
* mutually comparable elements. May be used when a supplied |
|
* comparator is null. To simplify code-sharing within underlying |
|
* implementations, the compare method only declares type Object |
|
* for its second argument. |
|
* |
|
* Arrays class implementor's note: It is an empirical matter |
|
* whether ComparableTimSort offers any performance benefit over |
|
* TimSort used with this comparator. If not, you are better off |
|
* deleting or bypassing ComparableTimSort. There is currently no |
|
* empirical case for separating them for parallel sorting, so all |
|
* public Object parallelSort methods use the same comparator |
|
* based implementation. |
|
*/ |
|
static final class NaturalOrder implements Comparator<Object> { |
|
@SuppressWarnings("unchecked") |
|
public int compare(Object first, Object second) { |
|
return ((Comparable<Object>)first).compareTo(second); |
|
} |
|
static final NaturalOrder INSTANCE = new NaturalOrder(); |
|
} |
|
/** |
|
* Checks that {@code fromIndex} and {@code toIndex} are in |
|
* the range and throws an exception if they aren't. |
|
*/ |
|
private static void rangeCheck(int arrayLength, int fromIndex, int toIndex) { |
|
if (fromIndex > toIndex) { |
|
throw new IllegalArgumentException( |
|
"fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); |
|
} |
|
if (fromIndex < 0) { |
|
throw new ArrayIndexOutOfBoundsException(fromIndex); |
|
} |
|
if (toIndex > arrayLength) { |
|
throw new ArrayIndexOutOfBoundsException(toIndex); |
|
} |
|
} |
|
/* |
|
* Sorting methods. Note that all public "sort" methods take the |
|
* same form: Performing argument checks if necessary, and then |
|
* expanding arguments into those required for the internal |
|
* implementation methods residing in other package-private |
|
* classes (except for legacyMergeSort, included in this class). |
|
*/ |
|
/** |
|
* Sorts the specified array into ascending numerical order. |
|
* |
|
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort |
|
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
|
* offers O(n log(n)) performance on many data sets that cause other |
|
* quicksorts to degrade to quadratic performance, and is typically |
|
* faster than traditional (one-pivot) Quicksort implementations. |
|
* |
|
* @param a the array to be sorted |
|
*/ |
|
public static void sort(int[] a) { |
|
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0); |
|
} |
|
/** |
|
* Sorts the specified range of the array into ascending order. The range |
|
* to be sorted extends from the index {@code fromIndex}, inclusive, to |
|
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, |
|
* the range to be sorted is empty. |
|
* |
|
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort |
|
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
|
* offers O(n log(n)) performance on many data sets that cause other |
|
* quicksorts to degrade to quadratic performance, and is typically |
|
* faster than traditional (one-pivot) Quicksort implementations. |
|
* |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element, inclusive, to be sorted |
|
* @param toIndex the index of the last element, exclusive, to be sorted |
|
* |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > a.length} |
|
*/ |
|
public static void sort(int[] a, int fromIndex, int toIndex) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); |
|
} |
|
/** |
|
* Sorts the specified array into ascending numerical order. |
|
* |
|
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort |
|
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
|
* offers O(n log(n)) performance on many data sets that cause other |
|
* quicksorts to degrade to quadratic performance, and is typically |
|
* faster than traditional (one-pivot) Quicksort implementations. |
|
* |
|
* @param a the array to be sorted |
|
*/ |
|
public static void sort(long[] a) { |
|
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0); |
|
} |
|
/** |
|
* Sorts the specified range of the array into ascending order. The range |
|
* to be sorted extends from the index {@code fromIndex}, inclusive, to |
|
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, |
|
* the range to be sorted is empty. |
|
* |
|
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort |
|
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
|
* offers O(n log(n)) performance on many data sets that cause other |
|
* quicksorts to degrade to quadratic performance, and is typically |
|
* faster than traditional (one-pivot) Quicksort implementations. |
|
* |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element, inclusive, to be sorted |
|
* @param toIndex the index of the last element, exclusive, to be sorted |
|
* |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > a.length} |
|
*/ |
|
public static void sort(long[] a, int fromIndex, int toIndex) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); |
|
} |
|
/** |
|
* Sorts the specified array into ascending numerical order. |
|
* |
|
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort |
|
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
|
* offers O(n log(n)) performance on many data sets that cause other |
|
* quicksorts to degrade to quadratic performance, and is typically |
|
* faster than traditional (one-pivot) Quicksort implementations. |
|
* |
|
* @param a the array to be sorted |
|
*/ |
|
public static void sort(short[] a) { |
|
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0); |
|
} |
|
/** |
|
* Sorts the specified range of the array into ascending order. The range |
|
* to be sorted extends from the index {@code fromIndex}, inclusive, to |
|
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, |
|
* the range to be sorted is empty. |
|
* |
|
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort |
|
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
|
* offers O(n log(n)) performance on many data sets that cause other |
|
* quicksorts to degrade to quadratic performance, and is typically |
|
* faster than traditional (one-pivot) Quicksort implementations. |
|
* |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element, inclusive, to be sorted |
|
* @param toIndex the index of the last element, exclusive, to be sorted |
|
* |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > a.length} |
|
*/ |
|
public static void sort(short[] a, int fromIndex, int toIndex) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); |
|
} |
|
/** |
|
* Sorts the specified array into ascending numerical order. |
|
* |
|
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort |
|
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
|
* offers O(n log(n)) performance on many data sets that cause other |
|
* quicksorts to degrade to quadratic performance, and is typically |
|
* faster than traditional (one-pivot) Quicksort implementations. |
|
* |
|
* @param a the array to be sorted |
|
*/ |
|
public static void sort(char[] a) { |
|
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0); |
|
} |
|
/** |
|
* Sorts the specified range of the array into ascending order. The range |
|
* to be sorted extends from the index {@code fromIndex}, inclusive, to |
|
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, |
|
* the range to be sorted is empty. |
|
* |
|
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort |
|
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
|
* offers O(n log(n)) performance on many data sets that cause other |
|
* quicksorts to degrade to quadratic performance, and is typically |
|
* faster than traditional (one-pivot) Quicksort implementations. |
|
* |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element, inclusive, to be sorted |
|
* @param toIndex the index of the last element, exclusive, to be sorted |
|
* |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > a.length} |
|
*/ |
|
public static void sort(char[] a, int fromIndex, int toIndex) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); |
|
} |
|
/** |
|
* Sorts the specified array into ascending numerical order. |
|
* |
|
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort |
|
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
|
* offers O(n log(n)) performance on many data sets that cause other |
|
* quicksorts to degrade to quadratic performance, and is typically |
|
* faster than traditional (one-pivot) Quicksort implementations. |
|
* |
|
* @param a the array to be sorted |
|
*/ |
|
public static void sort(byte[] a) { |
|
DualPivotQuicksort.sort(a, 0, a.length - 1); |
|
} |
|
/** |
|
* Sorts the specified range of the array into ascending order. The range |
|
* to be sorted extends from the index {@code fromIndex}, inclusive, to |
|
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, |
|
* the range to be sorted is empty. |
|
* |
|
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort |
|
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
|
* offers O(n log(n)) performance on many data sets that cause other |
|
* quicksorts to degrade to quadratic performance, and is typically |
|
* faster than traditional (one-pivot) Quicksort implementations. |
|
* |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element, inclusive, to be sorted |
|
* @param toIndex the index of the last element, exclusive, to be sorted |
|
* |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > a.length} |
|
*/ |
|
public static void sort(byte[] a, int fromIndex, int toIndex) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1); |
|
} |
|
/** |
|
* Sorts the specified array into ascending numerical order. |
|
* |
|
* <p>The {@code <} relation does not provide a total order on all float |
|
* values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} |
|
* value compares neither less than, greater than, nor equal to any value, |
|
* even itself. This method uses the total order imposed by the method |
|
* {@link Float#compareTo}: {@code -0.0f} is treated as less than value |
|
* {@code 0.0f} and {@code Float.NaN} is considered greater than any |
|
* other value and all {@code Float.NaN} values are considered equal. |
|
* |
|
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort |
|
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
|
* offers O(n log(n)) performance on many data sets that cause other |
|
* quicksorts to degrade to quadratic performance, and is typically |
|
* faster than traditional (one-pivot) Quicksort implementations. |
|
* |
|
* @param a the array to be sorted |
|
*/ |
|
public static void sort(float[] a) { |
|
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0); |
|
} |
|
/** |
|
* Sorts the specified range of the array into ascending order. The range |
|
* to be sorted extends from the index {@code fromIndex}, inclusive, to |
|
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, |
|
* the range to be sorted is empty. |
|
* |
|
* <p>The {@code <} relation does not provide a total order on all float |
|
* values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} |
|
* value compares neither less than, greater than, nor equal to any value, |
|
* even itself. This method uses the total order imposed by the method |
|
* {@link Float#compareTo}: {@code -0.0f} is treated as less than value |
|
* {@code 0.0f} and {@code Float.NaN} is considered greater than any |
|
* other value and all {@code Float.NaN} values are considered equal. |
|
* |
|
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort |
|
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
|
* offers O(n log(n)) performance on many data sets that cause other |
|
* quicksorts to degrade to quadratic performance, and is typically |
|
* faster than traditional (one-pivot) Quicksort implementations. |
|
* |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element, inclusive, to be sorted |
|
* @param toIndex the index of the last element, exclusive, to be sorted |
|
* |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > a.length} |
|
*/ |
|
public static void sort(float[] a, int fromIndex, int toIndex) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); |
|
} |
|
/** |
|
* Sorts the specified array into ascending numerical order. |
|
* |
|
* <p>The {@code <} relation does not provide a total order on all double |
|
* values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} |
|
* value compares neither less than, greater than, nor equal to any value, |
|
* even itself. This method uses the total order imposed by the method |
|
* {@link Double#compareTo}: {@code -0.0d} is treated as less than value |
|
* {@code 0.0d} and {@code Double.NaN} is considered greater than any |
|
* other value and all {@code Double.NaN} values are considered equal. |
|
* |
|
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort |
|
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
|
* offers O(n log(n)) performance on many data sets that cause other |
|
* quicksorts to degrade to quadratic performance, and is typically |
|
* faster than traditional (one-pivot) Quicksort implementations. |
|
* |
|
* @param a the array to be sorted |
|
*/ |
|
public static void sort(double[] a) { |
|
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0); |
|
} |
|
/** |
|
* Sorts the specified range of the array into ascending order. The range |
|
* to be sorted extends from the index {@code fromIndex}, inclusive, to |
|
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, |
|
* the range to be sorted is empty. |
|
* |
|
* <p>The {@code <} relation does not provide a total order on all double |
|
* values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} |
|
* value compares neither less than, greater than, nor equal to any value, |
|
* even itself. This method uses the total order imposed by the method |
|
* {@link Double#compareTo}: {@code -0.0d} is treated as less than value |
|
* {@code 0.0d} and {@code Double.NaN} is considered greater than any |
|
* other value and all {@code Double.NaN} values are considered equal. |
|
* |
|
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort |
|
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
|
* offers O(n log(n)) performance on many data sets that cause other |
|
* quicksorts to degrade to quadratic performance, and is typically |
|
* faster than traditional (one-pivot) Quicksort implementations. |
|
* |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element, inclusive, to be sorted |
|
* @param toIndex the index of the last element, exclusive, to be sorted |
|
* |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > a.length} |
|
*/ |
|
public static void sort(double[] a, int fromIndex, int toIndex) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); |
|
} |
|
/** |
|
* Sorts the specified array into ascending numerical order. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(byte[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(byte[]) Arrays.sort} method. The algorithm requires a |
|
* working space no greater than the size of the original array. The |
|
* {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to |
|
* execute any parallel tasks. |
|
* |
|
* @param a the array to be sorted |
|
* |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSort(byte[] a) { |
|
int n = a.length, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
DualPivotQuicksort.sort(a, 0, n - 1); |
|
else |
|
new ArraysParallelSortHelpers.FJByte.Sorter |
|
(null, a, new byte[n], 0, n, 0, |
|
((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g).invoke(); |
|
} |
|
/** |
|
* Sorts the specified range of the array into ascending numerical order. |
|
* The range to be sorted extends from the index {@code fromIndex}, |
|
* inclusive, to the index {@code toIndex}, exclusive. If |
|
* {@code fromIndex == toIndex}, the range to be sorted is empty. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(byte[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(byte[]) Arrays.sort} method. The algorithm requires a working |
|
* space no greater than the size of the specified range of the original |
|
* array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is |
|
* used to execute any parallel tasks. |
|
* |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element, inclusive, to be sorted |
|
* @param toIndex the index of the last element, exclusive, to be sorted |
|
* |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > a.length} |
|
* |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSort(byte[] a, int fromIndex, int toIndex) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
int n = toIndex - fromIndex, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1); |
|
else |
|
new ArraysParallelSortHelpers.FJByte.Sorter |
|
(null, a, new byte[n], fromIndex, n, 0, |
|
((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g).invoke(); |
|
} |
|
/** |
|
* Sorts the specified array into ascending numerical order. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(char[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(char[]) Arrays.sort} method. The algorithm requires a |
|
* working space no greater than the size of the original array. The |
|
* {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to |
|
* execute any parallel tasks. |
|
* |
|
* @param a the array to be sorted |
|
* |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSort(char[] a) { |
|
int n = a.length, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0); |
|
else |
|
new ArraysParallelSortHelpers.FJChar.Sorter |
|
(null, a, new char[n], 0, n, 0, |
|
((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g).invoke(); |
|
} |
|
/** |
|
* Sorts the specified range of the array into ascending numerical order. |
|
* The range to be sorted extends from the index {@code fromIndex}, |
|
* inclusive, to the index {@code toIndex}, exclusive. If |
|
* {@code fromIndex == toIndex}, the range to be sorted is empty. |
|
* |
|
@implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(char[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(char[]) Arrays.sort} method. The algorithm requires a working |
|
* space no greater than the size of the specified range of the original |
|
* array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is |
|
* used to execute any parallel tasks. |
|
* |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element, inclusive, to be sorted |
|
* @param toIndex the index of the last element, exclusive, to be sorted |
|
* |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > a.length} |
|
* |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSort(char[] a, int fromIndex, int toIndex) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
int n = toIndex - fromIndex, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); |
|
else |
|
new ArraysParallelSortHelpers.FJChar.Sorter |
|
(null, a, new char[n], fromIndex, n, 0, |
|
((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g).invoke(); |
|
} |
|
/** |
|
* Sorts the specified array into ascending numerical order. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(short[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(short[]) Arrays.sort} method. The algorithm requires a |
|
* working space no greater than the size of the original array. The |
|
* {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to |
|
* execute any parallel tasks. |
|
* |
|
* @param a the array to be sorted |
|
* |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSort(short[] a) { |
|
int n = a.length, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0); |
|
else |
|
new ArraysParallelSortHelpers.FJShort.Sorter |
|
(null, a, new short[n], 0, n, 0, |
|
((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g).invoke(); |
|
} |
|
/** |
|
* Sorts the specified range of the array into ascending numerical order. |
|
* The range to be sorted extends from the index {@code fromIndex}, |
|
* inclusive, to the index {@code toIndex}, exclusive. If |
|
* {@code fromIndex == toIndex}, the range to be sorted is empty. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(short[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(short[]) Arrays.sort} method. The algorithm requires a working |
|
* space no greater than the size of the specified range of the original |
|
* array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is |
|
* used to execute any parallel tasks. |
|
* |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element, inclusive, to be sorted |
|
* @param toIndex the index of the last element, exclusive, to be sorted |
|
* |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > a.length} |
|
* |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSort(short[] a, int fromIndex, int toIndex) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
int n = toIndex - fromIndex, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); |
|
else |
|
new ArraysParallelSortHelpers.FJShort.Sorter |
|
(null, a, new short[n], fromIndex, n, 0, |
|
((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g).invoke(); |
|
} |
|
/** |
|
* Sorts the specified array into ascending numerical order. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(int[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(int[]) Arrays.sort} method. The algorithm requires a |
|
* working space no greater than the size of the original array. The |
|
* {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to |
|
* execute any parallel tasks. |
|
* |
|
* @param a the array to be sorted |
|
* |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSort(int[] a) { |
|
int n = a.length, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0); |
|
else |
|
new ArraysParallelSortHelpers.FJInt.Sorter |
|
(null, a, new int[n], 0, n, 0, |
|
((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g).invoke(); |
|
} |
|
/** |
|
* Sorts the specified range of the array into ascending numerical order. |
|
* The range to be sorted extends from the index {@code fromIndex}, |
|
* inclusive, to the index {@code toIndex}, exclusive. If |
|
* {@code fromIndex == toIndex}, the range to be sorted is empty. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(int[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(int[]) Arrays.sort} method. The algorithm requires a working |
|
* space no greater than the size of the specified range of the original |
|
* array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is |
|
* used to execute any parallel tasks. |
|
* |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element, inclusive, to be sorted |
|
* @param toIndex the index of the last element, exclusive, to be sorted |
|
* |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > a.length} |
|
* |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSort(int[] a, int fromIndex, int toIndex) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
int n = toIndex - fromIndex, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); |
|
else |
|
new ArraysParallelSortHelpers.FJInt.Sorter |
|
(null, a, new int[n], fromIndex, n, 0, |
|
((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g).invoke(); |
|
} |
|
/** |
|
* Sorts the specified array into ascending numerical order. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(long[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(long[]) Arrays.sort} method. The algorithm requires a |
|
* working space no greater than the size of the original array. The |
|
* {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to |
|
* execute any parallel tasks. |
|
* |
|
* @param a the array to be sorted |
|
* |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSort(long[] a) { |
|
int n = a.length, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0); |
|
else |
|
new ArraysParallelSortHelpers.FJLong.Sorter |
|
(null, a, new long[n], 0, n, 0, |
|
((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g).invoke(); |
|
} |
|
/** |
|
* Sorts the specified range of the array into ascending numerical order. |
|
* The range to be sorted extends from the index {@code fromIndex}, |
|
* inclusive, to the index {@code toIndex}, exclusive. If |
|
* {@code fromIndex == toIndex}, the range to be sorted is empty. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(long[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(long[]) Arrays.sort} method. The algorithm requires a working |
|
* space no greater than the size of the specified range of the original |
|
* array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is |
|
* used to execute any parallel tasks. |
|
* |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element, inclusive, to be sorted |
|
* @param toIndex the index of the last element, exclusive, to be sorted |
|
* |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > a.length} |
|
* |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSort(long[] a, int fromIndex, int toIndex) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
int n = toIndex - fromIndex, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); |
|
else |
|
new ArraysParallelSortHelpers.FJLong.Sorter |
|
(null, a, new long[n], fromIndex, n, 0, |
|
((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g).invoke(); |
|
} |
|
/** |
|
* Sorts the specified array into ascending numerical order. |
|
* |
|
* <p>The {@code <} relation does not provide a total order on all float |
|
* values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} |
|
* value compares neither less than, greater than, nor equal to any value, |
|
* even itself. This method uses the total order imposed by the method |
|
* {@link Float#compareTo}: {@code -0.0f} is treated as less than value |
|
* {@code 0.0f} and {@code Float.NaN} is considered greater than any |
|
* other value and all {@code Float.NaN} values are considered equal. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(float[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(float[]) Arrays.sort} method. The algorithm requires a |
|
* working space no greater than the size of the original array. The |
|
* {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to |
|
* execute any parallel tasks. |
|
* |
|
* @param a the array to be sorted |
|
* |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSort(float[] a) { |
|
int n = a.length, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0); |
|
else |
|
new ArraysParallelSortHelpers.FJFloat.Sorter |
|
(null, a, new float[n], 0, n, 0, |
|
((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g).invoke(); |
|
} |
|
/** |
|
* Sorts the specified range of the array into ascending numerical order. |
|
* The range to be sorted extends from the index {@code fromIndex}, |
|
* inclusive, to the index {@code toIndex}, exclusive. If |
|
* {@code fromIndex == toIndex}, the range to be sorted is empty. |
|
* |
|
* <p>The {@code <} relation does not provide a total order on all float |
|
* values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} |
|
* value compares neither less than, greater than, nor equal to any value, |
|
* even itself. This method uses the total order imposed by the method |
|
* {@link Float#compareTo}: {@code -0.0f} is treated as less than value |
|
* {@code 0.0f} and {@code Float.NaN} is considered greater than any |
|
* other value and all {@code Float.NaN} values are considered equal. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(float[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(float[]) Arrays.sort} method. The algorithm requires a working |
|
* space no greater than the size of the specified range of the original |
|
* array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is |
|
* used to execute any parallel tasks. |
|
* |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element, inclusive, to be sorted |
|
* @param toIndex the index of the last element, exclusive, to be sorted |
|
* |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > a.length} |
|
* |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSort(float[] a, int fromIndex, int toIndex) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
int n = toIndex - fromIndex, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); |
|
else |
|
new ArraysParallelSortHelpers.FJFloat.Sorter |
|
(null, a, new float[n], fromIndex, n, 0, |
|
((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g).invoke(); |
|
} |
|
/** |
|
* Sorts the specified array into ascending numerical order. |
|
* |
|
* <p>The {@code <} relation does not provide a total order on all double |
|
* values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} |
|
* value compares neither less than, greater than, nor equal to any value, |
|
* even itself. This method uses the total order imposed by the method |
|
* {@link Double#compareTo}: {@code -0.0d} is treated as less than value |
|
* {@code 0.0d} and {@code Double.NaN} is considered greater than any |
|
* other value and all {@code Double.NaN} values are considered equal. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(double[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(double[]) Arrays.sort} method. The algorithm requires a |
|
* working space no greater than the size of the original array. The |
|
* {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to |
|
* execute any parallel tasks. |
|
* |
|
* @param a the array to be sorted |
|
* |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSort(double[] a) { |
|
int n = a.length, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0); |
|
else |
|
new ArraysParallelSortHelpers.FJDouble.Sorter |
|
(null, a, new double[n], 0, n, 0, |
|
((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g).invoke(); |
|
} |
|
/** |
|
* Sorts the specified range of the array into ascending numerical order. |
|
* The range to be sorted extends from the index {@code fromIndex}, |
|
* inclusive, to the index {@code toIndex}, exclusive. If |
|
* {@code fromIndex == toIndex}, the range to be sorted is empty. |
|
* |
|
* <p>The {@code <} relation does not provide a total order on all double |
|
* values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} |
|
* value compares neither less than, greater than, nor equal to any value, |
|
* even itself. This method uses the total order imposed by the method |
|
* {@link Double#compareTo}: {@code -0.0d} is treated as less than value |
|
* {@code 0.0d} and {@code Double.NaN} is considered greater than any |
|
* other value and all {@code Double.NaN} values are considered equal. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(double[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(double[]) Arrays.sort} method. The algorithm requires a working |
|
* space no greater than the size of the specified range of the original |
|
* array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is |
|
* used to execute any parallel tasks. |
|
* |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element, inclusive, to be sorted |
|
* @param toIndex the index of the last element, exclusive, to be sorted |
|
* |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > a.length} |
|
* |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSort(double[] a, int fromIndex, int toIndex) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
int n = toIndex - fromIndex, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); |
|
else |
|
new ArraysParallelSortHelpers.FJDouble.Sorter |
|
(null, a, new double[n], fromIndex, n, 0, |
|
((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g).invoke(); |
|
} |
|
/** |
|
* Sorts the specified array of objects into ascending order, according |
|
* to the {@linkplain Comparable natural ordering} of its elements. |
|
* All elements in the array must implement the {@link Comparable} |
|
* interface. Furthermore, all elements in the array must be |
|
* <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)} must |
|
* not throw a {@code ClassCastException} for any elements {@code e1} |
|
* and {@code e2} in the array). |
|
* |
|
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
|
* not be reordered as a result of the sort. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(Object[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(Object[]) Arrays.sort} method. The algorithm requires a |
|
* working space no greater than the size of the original array. The |
|
* {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to |
|
* execute any parallel tasks. |
|
* |
|
* @param <T> the class of the objects to be sorted |
|
* @param a the array to be sorted |
|
* |
|
* @throws ClassCastException if the array contains elements that are not |
|
* <i>mutually comparable</i> (for example, strings and integers) |
|
* @throws IllegalArgumentException (optional) if the natural |
|
* ordering of the array elements is found to violate the |
|
* {@link Comparable} contract |
|
* |
|
* @since 1.8 |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static <T extends Comparable<? super T>> void parallelSort(T[] a) { |
|
int n = a.length, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
TimSort.sort(a, 0, n, NaturalOrder.INSTANCE, null, 0, 0); |
|
else |
|
new ArraysParallelSortHelpers.FJObject.Sorter<T> |
|
(null, a, |
|
(T[])Array.newInstance(a.getClass().getComponentType(), n), |
|
0, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g, NaturalOrder.INSTANCE).invoke(); |
|
} |
|
/** |
|
* Sorts the specified range of the specified array of objects into |
|
* ascending order, according to the |
|
* {@linkplain Comparable natural ordering} of its |
|
* elements. The range to be sorted extends from index |
|
* {@code fromIndex}, inclusive, to index {@code toIndex}, exclusive. |
|
* (If {@code fromIndex==toIndex}, the range to be sorted is empty.) All |
|
* elements in this range must implement the {@link Comparable} |
|
* interface. Furthermore, all elements in this range must be <i>mutually |
|
* comparable</i> (that is, {@code e1.compareTo(e2)} must not throw a |
|
* {@code ClassCastException} for any elements {@code e1} and |
|
* {@code e2} in the array). |
|
* |
|
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
|
* not be reordered as a result of the sort. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(Object[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(Object[]) Arrays.sort} method. The algorithm requires a working |
|
* space no greater than the size of the specified range of the original |
|
* array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is |
|
* used to execute any parallel tasks. |
|
* |
|
* @param <T> the class of the objects to be sorted |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* sorted |
|
* @param toIndex the index of the last element (exclusive) to be sorted |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} or |
|
* (optional) if the natural ordering of the array elements is |
|
* found to violate the {@link Comparable} contract |
|
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
|
* {@code toIndex > a.length} |
|
* @throws ClassCastException if the array contains elements that are |
|
* not <i>mutually comparable</i> (for example, strings and |
|
* integers). |
|
* |
|
* @since 1.8 |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static <T extends Comparable<? super T>> |
|
void parallelSort(T[] a, int fromIndex, int toIndex) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
int n = toIndex - fromIndex, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
TimSort.sort(a, fromIndex, toIndex, NaturalOrder.INSTANCE, null, 0, 0); |
|
else |
|
new ArraysParallelSortHelpers.FJObject.Sorter<T> |
|
(null, a, |
|
(T[])Array.newInstance(a.getClass().getComponentType(), n), |
|
fromIndex, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g, NaturalOrder.INSTANCE).invoke(); |
|
} |
|
/** |
|
* Sorts the specified array of objects according to the order induced by |
|
* the specified comparator. All elements in the array must be |
|
* <i>mutually comparable</i> by the specified comparator (that is, |
|
* {@code c.compare(e1, e2)} must not throw a {@code ClassCastException} |
|
* for any elements {@code e1} and {@code e2} in the array). |
|
* |
|
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
|
* not be reordered as a result of the sort. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(Object[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(Object[]) Arrays.sort} method. The algorithm requires a |
|
* working space no greater than the size of the original array. The |
|
* {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to |
|
* execute any parallel tasks. |
|
* |
|
* @param <T> the class of the objects to be sorted |
|
* @param a the array to be sorted |
|
* @param cmp the comparator to determine the order of the array. A |
|
* {@code null} value indicates that the elements' |
|
* {@linkplain Comparable natural ordering} should be used. |
|
* @throws ClassCastException if the array contains elements that are |
|
* not <i>mutually comparable</i> using the specified comparator |
|
* @throws IllegalArgumentException (optional) if the comparator is |
|
* found to violate the {@link java.util.Comparator} contract |
|
* |
|
* @since 1.8 |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static <T> void parallelSort(T[] a, Comparator<? super T> cmp) { |
|
if (cmp == null) |
|
cmp = NaturalOrder.INSTANCE; |
|
int n = a.length, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
TimSort.sort(a, 0, n, cmp, null, 0, 0); |
|
else |
|
new ArraysParallelSortHelpers.FJObject.Sorter<T> |
|
(null, a, |
|
(T[])Array.newInstance(a.getClass().getComponentType(), n), |
|
0, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g, cmp).invoke(); |
|
} |
|
/** |
|
* Sorts the specified range of the specified array of objects according |
|
* to the order induced by the specified comparator. The range to be |
|
* sorted extends from index {@code fromIndex}, inclusive, to index |
|
* {@code toIndex}, exclusive. (If {@code fromIndex==toIndex}, the |
|
* range to be sorted is empty.) All elements in the range must be |
|
* <i>mutually comparable</i> by the specified comparator (that is, |
|
* {@code c.compare(e1, e2)} must not throw a {@code ClassCastException} |
|
* for any elements {@code e1} and {@code e2} in the range). |
|
* |
|
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
|
* not be reordered as a result of the sort. |
|
* |
|
* @implNote The sorting algorithm is a parallel sort-merge that breaks the |
|
* array into sub-arrays that are themselves sorted and then merged. When |
|
* the sub-array length reaches a minimum granularity, the sub-array is |
|
* sorted using the appropriate {@link Arrays#sort(Object[]) Arrays.sort} |
|
* method. If the length of the specified array is less than the minimum |
|
* granularity, then it is sorted using the appropriate {@link |
|
* Arrays#sort(Object[]) Arrays.sort} method. The algorithm requires a working |
|
* space no greater than the size of the specified range of the original |
|
* array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is |
|
* used to execute any parallel tasks. |
|
* |
|
* @param <T> the class of the objects to be sorted |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* sorted |
|
* @param toIndex the index of the last element (exclusive) to be sorted |
|
* @param cmp the comparator to determine the order of the array. A |
|
* {@code null} value indicates that the elements' |
|
* {@linkplain Comparable natural ordering} should be used. |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} or |
|
* (optional) if the natural ordering of the array elements is |
|
* found to violate the {@link Comparable} contract |
|
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
|
* {@code toIndex > a.length} |
|
* @throws ClassCastException if the array contains elements that are |
|
* not <i>mutually comparable</i> (for example, strings and |
|
* integers). |
|
* |
|
* @since 1.8 |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static <T> void parallelSort(T[] a, int fromIndex, int toIndex, |
|
Comparator<? super T> cmp) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
if (cmp == null) |
|
cmp = NaturalOrder.INSTANCE; |
|
int n = toIndex - fromIndex, p, g; |
|
if (n <= MIN_ARRAY_SORT_GRAN || |
|
(p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
|
TimSort.sort(a, fromIndex, toIndex, cmp, null, 0, 0); |
|
else |
|
new ArraysParallelSortHelpers.FJObject.Sorter<T> |
|
(null, a, |
|
(T[])Array.newInstance(a.getClass().getComponentType(), n), |
|
fromIndex, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
|
MIN_ARRAY_SORT_GRAN : g, cmp).invoke(); |
|
} |
|
/* |
|
* Sorting of complex type arrays. |
|
*/ |
|
/** |
|
* Old merge sort implementation can be selected (for |
|
* compatibility with broken comparators) using a system property. |
|
* Cannot be a static boolean in the enclosing class due to |
|
* circular dependencies. To be removed in a future release. |
|
*/ |
|
static final class LegacyMergeSort { |
|
private static final boolean userRequested = |
|
java.security.AccessController.doPrivileged( |
|
new sun.security.action.GetBooleanAction( |
|
"java.util.Arrays.useLegacyMergeSort")).booleanValue(); |
|
} |
|
/** |
|
* Sorts the specified array of objects into ascending order, according |
|
* to the {@linkplain Comparable natural ordering} of its elements. |
|
* All elements in the array must implement the {@link Comparable} |
|
* interface. Furthermore, all elements in the array must be |
|
* <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)} must |
|
* not throw a {@code ClassCastException} for any elements {@code e1} |
|
* and {@code e2} in the array). |
|
* |
|
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
|
* not be reordered as a result of the sort. |
|
* |
|
* <p>Implementation note: This implementation is a stable, adaptive, |
|
* iterative mergesort that requires far fewer than n lg(n) comparisons |
|
* when the input array is partially sorted, while offering the |
|
* performance of a traditional mergesort when the input array is |
|
* randomly ordered. If the input array is nearly sorted, the |
|
* implementation requires approximately n comparisons. Temporary |
|
* storage requirements vary from a small constant for nearly sorted |
|
* input arrays to n/2 object references for randomly ordered input |
|
* arrays. |
|
* |
|
* <p>The implementation takes equal advantage of ascending and |
|
* descending order in its input array, and can take advantage of |
|
* ascending and descending order in different parts of the the same |
|
* input array. It is well-suited to merging two or more sorted arrays: |
|
* simply concatenate the arrays and sort the resulting array. |
|
* |
|
* <p>The implementation was adapted from Tim Peters's list sort for Python |
|
* (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt"> |
|
* TimSort</a>). It uses techniques from Peter McIlroy's "Optimistic |
|
* Sorting and Information Theoretic Complexity", in Proceedings of the |
|
* Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474, |
|
* January 1993. |
|
* |
|
* @param a the array to be sorted |
|
* @throws ClassCastException if the array contains elements that are not |
|
* <i>mutually comparable</i> (for example, strings and integers) |
|
* @throws IllegalArgumentException (optional) if the natural |
|
* ordering of the array elements is found to violate the |
|
* {@link Comparable} contract |
|
*/ |
|
public static void sort(Object[] a) { |
|
if (LegacyMergeSort.userRequested) |
|
legacyMergeSort(a); |
|
else |
|
ComparableTimSort.sort(a, 0, a.length, null, 0, 0); |
|
} |
|
/** To be removed in a future release. */ |
|
private static void legacyMergeSort(Object[] a) { |
|
Object[] aux = a.clone(); |
|
mergeSort(aux, a, 0, a.length, 0); |
|
} |
|
/** |
|
* Sorts the specified range of the specified array of objects into |
|
* ascending order, according to the |
|
* {@linkplain Comparable natural ordering} of its |
|
* elements. The range to be sorted extends from index |
|
* {@code fromIndex}, inclusive, to index {@code toIndex}, exclusive. |
|
* (If {@code fromIndex==toIndex}, the range to be sorted is empty.) All |
|
* elements in this range must implement the {@link Comparable} |
|
* interface. Furthermore, all elements in this range must be <i>mutually |
|
* comparable</i> (that is, {@code e1.compareTo(e2)} must not throw a |
|
* {@code ClassCastException} for any elements {@code e1} and |
|
* {@code e2} in the array). |
|
* |
|
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
|
* not be reordered as a result of the sort. |
|
* |
|
* <p>Implementation note: This implementation is a stable, adaptive, |
|
* iterative mergesort that requires far fewer than n lg(n) comparisons |
|
* when the input array is partially sorted, while offering the |
|
* performance of a traditional mergesort when the input array is |
|
* randomly ordered. If the input array is nearly sorted, the |
|
* implementation requires approximately n comparisons. Temporary |
|
* storage requirements vary from a small constant for nearly sorted |
|
* input arrays to n/2 object references for randomly ordered input |
|
* arrays. |
|
* |
|
* <p>The implementation takes equal advantage of ascending and |
|
* descending order in its input array, and can take advantage of |
|
* ascending and descending order in different parts of the the same |
|
* input array. It is well-suited to merging two or more sorted arrays: |
|
* simply concatenate the arrays and sort the resulting array. |
|
* |
|
* <p>The implementation was adapted from Tim Peters's list sort for Python |
|
* (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt"> |
|
* TimSort</a>). It uses techniques from Peter McIlroy's "Optimistic |
|
* Sorting and Information Theoretic Complexity", in Proceedings of the |
|
* Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474, |
|
* January 1993. |
|
* |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* sorted |
|
* @param toIndex the index of the last element (exclusive) to be sorted |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} or |
|
* (optional) if the natural ordering of the array elements is |
|
* found to violate the {@link Comparable} contract |
|
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
|
* {@code toIndex > a.length} |
|
* @throws ClassCastException if the array contains elements that are |
|
* not <i>mutually comparable</i> (for example, strings and |
|
* integers). |
|
*/ |
|
public static void sort(Object[] a, int fromIndex, int toIndex) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
if (LegacyMergeSort.userRequested) |
|
legacyMergeSort(a, fromIndex, toIndex); |
|
else |
|
ComparableTimSort.sort(a, fromIndex, toIndex, null, 0, 0); |
|
} |
|
/** To be removed in a future release. */ |
|
private static void legacyMergeSort(Object[] a, |
|
int fromIndex, int toIndex) { |
|
Object[] aux = copyOfRange(a, fromIndex, toIndex); |
|
mergeSort(aux, a, fromIndex, toIndex, -fromIndex); |
|
} |
|
/** |
|
* Tuning parameter: list size at or below which insertion sort will be |
|
* used in preference to mergesort. |
|
* To be removed in a future release. |
|
*/ |
|
private static final int INSERTIONSORT_THRESHOLD = 7; |
|
/** |
|
* Src is the source array that starts at index 0 |
|
* Dest is the (possibly larger) array destination with a possible offset |
|
* low is the index in dest to start sorting |
|
* high is the end index in dest to end sorting |
|
* off is the offset to generate corresponding low, high in src |
|
* To be removed in a future release. |
|
*/ |
|
@SuppressWarnings({"unchecked", "rawtypes"}) |
|
private static void mergeSort(Object[] src, |
|
Object[] dest, |
|
int low, |
|
int high, |
|
int off) { |
|
int length = high - low; |
|
// Insertion sort on smallest arrays |
|
if (length < INSERTIONSORT_THRESHOLD) { |
|
for (int i=low; i<high; i++) |
|
for (int j=i; j>low && |
|
((Comparable) dest[j-1]).compareTo(dest[j])>0; j--) |
|
swap(dest, j, j-1); |
|
return; |
|
} |
|
// Recursively sort halves of dest into src |
|
int destLow = low; |
|
int destHigh = high; |
|
low += off; |
|
high += off; |
|
int mid = (low + high) >>> 1; |
|
mergeSort(dest, src, low, mid, -off); |
|
mergeSort(dest, src, mid, high, -off); |
|
// If list is already sorted, just copy from src to dest. This is an |
|
// optimization that results in faster sorts for nearly ordered lists. |
|
if (((Comparable)src[mid-1]).compareTo(src[mid]) <= 0) { |
|
System.arraycopy(src, low, dest, destLow, length); |
|
return; |
|
} |
|
// Merge sorted halves (now in src) into dest |
|
for(int i = destLow, p = low, q = mid; i < destHigh; i++) { |
|
if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0) |
|
dest[i] = src[p++]; |
|
else |
|
dest[i] = src[q++]; |
|
} |
|
} |
|
/** |
|
* Swaps x[a] with x[b]. |
|
*/ |
|
private static void swap(Object[] x, int a, int b) { |
|
Object t = x[a]; |
|
x[a] = x[b]; |
|
x[b] = t; |
|
} |
|
/** |
|
* Sorts the specified array of objects according to the order induced by |
|
* the specified comparator. All elements in the array must be |
|
* <i>mutually comparable</i> by the specified comparator (that is, |
|
* {@code c.compare(e1, e2)} must not throw a {@code ClassCastException} |
|
* for any elements {@code e1} and {@code e2} in the array). |
|
* |
|
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
|
* not be reordered as a result of the sort. |
|
* |
|
* <p>Implementation note: This implementation is a stable, adaptive, |
|
* iterative mergesort that requires far fewer than n lg(n) comparisons |
|
* when the input array is partially sorted, while offering the |
|
* performance of a traditional mergesort when the input array is |
|
* randomly ordered. If the input array is nearly sorted, the |
|
* implementation requires approximately n comparisons. Temporary |
|
* storage requirements vary from a small constant for nearly sorted |
|
* input arrays to n/2 object references for randomly ordered input |
|
* arrays. |
|
* |
|
* <p>The implementation takes equal advantage of ascending and |
|
* descending order in its input array, and can take advantage of |
|
* ascending and descending order in different parts of the the same |
|
* input array. It is well-suited to merging two or more sorted arrays: |
|
* simply concatenate the arrays and sort the resulting array. |
|
* |
|
* <p>The implementation was adapted from Tim Peters's list sort for Python |
|
* (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt"> |
|
* TimSort</a>). It uses techniques from Peter McIlroy's "Optimistic |
|
* Sorting and Information Theoretic Complexity", in Proceedings of the |
|
* Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474, |
|
* January 1993. |
|
* |
|
* @param <T> the class of the objects to be sorted |
|
* @param a the array to be sorted |
|
* @param c the comparator to determine the order of the array. A |
|
* {@code null} value indicates that the elements' |
|
* {@linkplain Comparable natural ordering} should be used. |
|
* @throws ClassCastException if the array contains elements that are |
|
* not <i>mutually comparable</i> using the specified comparator |
|
* @throws IllegalArgumentException (optional) if the comparator is |
|
* found to violate the {@link Comparator} contract |
|
*/ |
|
public static <T> void sort(T[] a, Comparator<? super T> c) { |
|
if (c == null) { |
|
sort(a); |
|
} else { |
|
if (LegacyMergeSort.userRequested) |
|
legacyMergeSort(a, c); |
|
else |
|
TimSort.sort(a, 0, a.length, c, null, 0, 0); |
|
} |
|
} |
|
/** To be removed in a future release. */ |
|
private static <T> void legacyMergeSort(T[] a, Comparator<? super T> c) { |
|
T[] aux = a.clone(); |
|
if (c==null) |
|
mergeSort(aux, a, 0, a.length, 0); |
|
else |
|
mergeSort(aux, a, 0, a.length, 0, c); |
|
} |
|
/** |
|
* Sorts the specified range of the specified array of objects according |
|
* to the order induced by the specified comparator. The range to be |
|
* sorted extends from index {@code fromIndex}, inclusive, to index |
|
* {@code toIndex}, exclusive. (If {@code fromIndex==toIndex}, the |
|
* range to be sorted is empty.) All elements in the range must be |
|
* <i>mutually comparable</i> by the specified comparator (that is, |
|
* {@code c.compare(e1, e2)} must not throw a {@code ClassCastException} |
|
* for any elements {@code e1} and {@code e2} in the range). |
|
* |
|
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
|
* not be reordered as a result of the sort. |
|
* |
|
* <p>Implementation note: This implementation is a stable, adaptive, |
|
* iterative mergesort that requires far fewer than n lg(n) comparisons |
|
* when the input array is partially sorted, while offering the |
|
* performance of a traditional mergesort when the input array is |
|
* randomly ordered. If the input array is nearly sorted, the |
|
* implementation requires approximately n comparisons. Temporary |
|
* storage requirements vary from a small constant for nearly sorted |
|
* input arrays to n/2 object references for randomly ordered input |
|
* arrays. |
|
* |
|
* <p>The implementation takes equal advantage of ascending and |
|
* descending order in its input array, and can take advantage of |
|
* ascending and descending order in different parts of the the same |
|
* input array. It is well-suited to merging two or more sorted arrays: |
|
* simply concatenate the arrays and sort the resulting array. |
|
* |
|
* <p>The implementation was adapted from Tim Peters's list sort for Python |
|
* (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt"> |
|
* TimSort</a>). It uses techniques from Peter McIlroy's "Optimistic |
|
* Sorting and Information Theoretic Complexity", in Proceedings of the |
|
* Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474, |
|
* January 1993. |
|
* |
|
* @param <T> the class of the objects to be sorted |
|
* @param a the array to be sorted |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* sorted |
|
* @param toIndex the index of the last element (exclusive) to be sorted |
|
* @param c the comparator to determine the order of the array. A |
|
* {@code null} value indicates that the elements' |
|
* {@linkplain Comparable natural ordering} should be used. |
|
* @throws ClassCastException if the array contains elements that are not |
|
* <i>mutually comparable</i> using the specified comparator. |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} or |
|
* (optional) if the comparator is found to violate the |
|
* {@link Comparator} contract |
|
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
|
* {@code toIndex > a.length} |
|
*/ |
|
public static <T> void sort(T[] a, int fromIndex, int toIndex, |
|
Comparator<? super T> c) { |
|
if (c == null) { |
|
sort(a, fromIndex, toIndex); |
|
} else { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
if (LegacyMergeSort.userRequested) |
|
legacyMergeSort(a, fromIndex, toIndex, c); |
|
else |
|
TimSort.sort(a, fromIndex, toIndex, c, null, 0, 0); |
|
} |
|
} |
|
/** To be removed in a future release. */ |
|
private static <T> void legacyMergeSort(T[] a, int fromIndex, int toIndex, |
|
Comparator<? super T> c) { |
|
T[] aux = copyOfRange(a, fromIndex, toIndex); |
|
if (c==null) |
|
mergeSort(aux, a, fromIndex, toIndex, -fromIndex); |
|
else |
|
mergeSort(aux, a, fromIndex, toIndex, -fromIndex, c); |
|
} |
|
/** |
|
* Src is the source array that starts at index 0 |
|
* Dest is the (possibly larger) array destination with a possible offset |
|
* low is the index in dest to start sorting |
|
* high is the end index in dest to end sorting |
|
* off is the offset into src corresponding to low in dest |
|
* To be removed in a future release. |
|
*/ |
|
@SuppressWarnings({"rawtypes", "unchecked"}) |
|
private static void mergeSort(Object[] src, |
|
Object[] dest, |
|
int low, int high, int off, |
|
Comparator c) { |
|
int length = high - low; |
|
// Insertion sort on smallest arrays |
|
if (length < INSERTIONSORT_THRESHOLD) { |
|
for (int i=low; i<high; i++) |
|
for (int j=i; j>low && c.compare(dest[j-1], dest[j])>0; j--) |
|
swap(dest, j, j-1); |
|
return; |
|
} |
|
// Recursively sort halves of dest into src |
|
int destLow = low; |
|
int destHigh = high; |
|
low += off; |
|
high += off; |
|
int mid = (low + high) >>> 1; |
|
mergeSort(dest, src, low, mid, -off, c); |
|
mergeSort(dest, src, mid, high, -off, c); |
|
// If list is already sorted, just copy from src to dest. This is an |
|
// optimization that results in faster sorts for nearly ordered lists. |
|
if (c.compare(src[mid-1], src[mid]) <= 0) { |
|
System.arraycopy(src, low, dest, destLow, length); |
|
return; |
|
} |
|
// Merge sorted halves (now in src) into dest |
|
for(int i = destLow, p = low, q = mid; i < destHigh; i++) { |
|
if (q >= high || p < mid && c.compare(src[p], src[q]) <= 0) |
|
dest[i] = src[p++]; |
|
else |
|
dest[i] = src[q++]; |
|
} |
|
} |
|
// Parallel prefix |
|
/** |
|
* Cumulates, in parallel, each element of the given array in place, |
|
* using the supplied function. For example if the array initially |
|
* holds {@code [2, 1, 0, 3]} and the operation performs addition, |
|
* then upon return the array holds {@code [2, 3, 3, 6]}. |
|
* Parallel prefix computation is usually more efficient than |
|
* sequential loops for large arrays. |
|
* |
|
* @param <T> the class of the objects in the array |
|
* @param array the array, which is modified in-place by this method |
|
* @param op a side-effect-free, associative function to perform the |
|
* cumulation |
|
* @throws NullPointerException if the specified array or function is null |
|
* @since 1.8 |
|
*/ |
|
public static <T> void parallelPrefix(T[] array, BinaryOperator<T> op) { |
|
Objects.requireNonNull(op); |
|
if (array.length > 0) |
|
new ArrayPrefixHelpers.CumulateTask<> |
|
(null, op, array, 0, array.length).invoke(); |
|
} |
|
/** |
|
* Performs {@link #parallelPrefix(Object[], BinaryOperator)} |
|
* for the given subrange of the array. |
|
* |
|
* @param <T> the class of the objects in the array |
|
* @param array the array |
|
* @param fromIndex the index of the first element, inclusive |
|
* @param toIndex the index of the last element, exclusive |
|
* @param op a side-effect-free, associative function to perform the |
|
* cumulation |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > array.length} |
|
* @throws NullPointerException if the specified array or function is null |
|
* @since 1.8 |
|
*/ |
|
public static <T> void parallelPrefix(T[] array, int fromIndex, |
|
int toIndex, BinaryOperator<T> op) { |
|
Objects.requireNonNull(op); |
|
rangeCheck(array.length, fromIndex, toIndex); |
|
if (fromIndex < toIndex) |
|
new ArrayPrefixHelpers.CumulateTask<> |
|
(null, op, array, fromIndex, toIndex).invoke(); |
|
} |
|
/** |
|
* Cumulates, in parallel, each element of the given array in place, |
|
* using the supplied function. For example if the array initially |
|
* holds {@code [2, 1, 0, 3]} and the operation performs addition, |
|
* then upon return the array holds {@code [2, 3, 3, 6]}. |
|
* Parallel prefix computation is usually more efficient than |
|
* sequential loops for large arrays. |
|
* |
|
* @param array the array, which is modified in-place by this method |
|
* @param op a side-effect-free, associative function to perform the |
|
* cumulation |
|
* @throws NullPointerException if the specified array or function is null |
|
* @since 1.8 |
|
*/ |
|
public static void parallelPrefix(long[] array, LongBinaryOperator op) { |
|
Objects.requireNonNull(op); |
|
if (array.length > 0) |
|
new ArrayPrefixHelpers.LongCumulateTask |
|
(null, op, array, 0, array.length).invoke(); |
|
} |
|
/** |
|
* Performs {@link #parallelPrefix(long[], LongBinaryOperator)} |
|
* for the given subrange of the array. |
|
* |
|
* @param array the array |
|
* @param fromIndex the index of the first element, inclusive |
|
* @param toIndex the index of the last element, exclusive |
|
* @param op a side-effect-free, associative function to perform the |
|
* cumulation |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > array.length} |
|
* @throws NullPointerException if the specified array or function is null |
|
* @since 1.8 |
|
*/ |
|
public static void parallelPrefix(long[] array, int fromIndex, |
|
int toIndex, LongBinaryOperator op) { |
|
Objects.requireNonNull(op); |
|
rangeCheck(array.length, fromIndex, toIndex); |
|
if (fromIndex < toIndex) |
|
new ArrayPrefixHelpers.LongCumulateTask |
|
(null, op, array, fromIndex, toIndex).invoke(); |
|
} |
|
/** |
|
* Cumulates, in parallel, each element of the given array in place, |
|
* using the supplied function. For example if the array initially |
|
* holds {@code [2.0, 1.0, 0.0, 3.0]} and the operation performs addition, |
|
* then upon return the array holds {@code [2.0, 3.0, 3.0, 6.0]}. |
|
* Parallel prefix computation is usually more efficient than |
|
* sequential loops for large arrays. |
|
* |
|
* <p> Because floating-point operations may not be strictly associative, |
|
* the returned result may not be identical to the value that would be |
|
* obtained if the operation was performed sequentially. |
|
* |
|
* @param array the array, which is modified in-place by this method |
|
* @param op a side-effect-free function to perform the cumulation |
|
* @throws NullPointerException if the specified array or function is null |
|
* @since 1.8 |
|
*/ |
|
public static void parallelPrefix(double[] array, DoubleBinaryOperator op) { |
|
Objects.requireNonNull(op); |
|
if (array.length > 0) |
|
new ArrayPrefixHelpers.DoubleCumulateTask |
|
(null, op, array, 0, array.length).invoke(); |
|
} |
|
/** |
|
* Performs {@link #parallelPrefix(double[], DoubleBinaryOperator)} |
|
* for the given subrange of the array. |
|
* |
|
* @param array the array |
|
* @param fromIndex the index of the first element, inclusive |
|
* @param toIndex the index of the last element, exclusive |
|
* @param op a side-effect-free, associative function to perform the |
|
* cumulation |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > array.length} |
|
* @throws NullPointerException if the specified array or function is null |
|
* @since 1.8 |
|
*/ |
|
public static void parallelPrefix(double[] array, int fromIndex, |
|
int toIndex, DoubleBinaryOperator op) { |
|
Objects.requireNonNull(op); |
|
rangeCheck(array.length, fromIndex, toIndex); |
|
if (fromIndex < toIndex) |
|
new ArrayPrefixHelpers.DoubleCumulateTask |
|
(null, op, array, fromIndex, toIndex).invoke(); |
|
} |
|
/** |
|
* Cumulates, in parallel, each element of the given array in place, |
|
* using the supplied function. For example if the array initially |
|
* holds {@code [2, 1, 0, 3]} and the operation performs addition, |
|
* then upon return the array holds {@code [2, 3, 3, 6]}. |
|
* Parallel prefix computation is usually more efficient than |
|
* sequential loops for large arrays. |
|
* |
|
* @param array the array, which is modified in-place by this method |
|
* @param op a side-effect-free, associative function to perform the |
|
* cumulation |
|
* @throws NullPointerException if the specified array or function is null |
|
* @since 1.8 |
|
*/ |
|
public static void parallelPrefix(int[] array, IntBinaryOperator op) { |
|
Objects.requireNonNull(op); |
|
if (array.length > 0) |
|
new ArrayPrefixHelpers.IntCumulateTask |
|
(null, op, array, 0, array.length).invoke(); |
|
} |
|
/** |
|
* Performs {@link #parallelPrefix(int[], IntBinaryOperator)} |
|
* for the given subrange of the array. |
|
* |
|
* @param array the array |
|
* @param fromIndex the index of the first element, inclusive |
|
* @param toIndex the index of the last element, exclusive |
|
* @param op a side-effect-free, associative function to perform the |
|
* cumulation |
|
* @throws IllegalArgumentException if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0} or {@code toIndex > array.length} |
|
* @throws NullPointerException if the specified array or function is null |
|
* @since 1.8 |
|
*/ |
|
public static void parallelPrefix(int[] array, int fromIndex, |
|
int toIndex, IntBinaryOperator op) { |
|
Objects.requireNonNull(op); |
|
rangeCheck(array.length, fromIndex, toIndex); |
|
if (fromIndex < toIndex) |
|
new ArrayPrefixHelpers.IntCumulateTask |
|
(null, op, array, fromIndex, toIndex).invoke(); |
|
} |
|
// Searching |
|
/** |
|
* Searches the specified array of longs for the specified value using the |
|
* binary search algorithm. The array must be sorted (as |
|
* by the {@link #sort(long[])} method) prior to making this call. If it |
|
* is not sorted, the results are undefined. If the array contains |
|
* multiple elements with the specified value, there is no guarantee which |
|
* one will be found. |
|
* |
|
* @param a the array to be searched |
|
* @param key the value to be searched for |
|
* @return index of the search key, if it is contained in the array; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element greater than the key, or <tt>a.length</tt> if all |
|
* elements in the array are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
*/ |
|
public static int binarySearch(long[] a, long key) { |
|
return binarySearch0(a, 0, a.length, key); |
|
} |
|
/** |
|
* Searches a range of |
|
* the specified array of longs for the specified value using the |
|
* binary search algorithm. |
|
* The range must be sorted (as |
|
* by the {@link #sort(long[], int, int)} method) |
|
* prior to making this call. If it |
|
* is not sorted, the results are undefined. If the range contains |
|
* multiple elements with the specified value, there is no guarantee which |
|
* one will be found. |
|
* |
|
* @param a the array to be searched |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* searched |
|
* @param toIndex the index of the last element (exclusive) to be searched |
|
* @param key the value to be searched for |
|
* @return index of the search key, if it is contained in the array |
|
* within the specified range; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element in the range greater than the key, |
|
* or <tt>toIndex</tt> if all |
|
* elements in the range are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
* @throws IllegalArgumentException |
|
* if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0 or toIndex > a.length} |
|
* @since 1.6 |
|
*/ |
|
public static int binarySearch(long[] a, int fromIndex, int toIndex, |
|
long key) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
return binarySearch0(a, fromIndex, toIndex, key); |
|
} |
|
// Like public version, but without range checks. |
|
private static int binarySearch0(long[] a, int fromIndex, int toIndex, |
|
long key) { |
|
int low = fromIndex; |
|
int high = toIndex - 1; |
|
while (low <= high) { |
|
int mid = (low + high) >>> 1; |
|
long midVal = a[mid]; |
|
if (midVal < key) |
|
low = mid + 1; |
|
else if (midVal > key) |
|
high = mid - 1; |
|
else |
|
return mid; // key found |
|
} |
|
return -(low + 1); // key not found. |
|
} |
|
/** |
|
* Searches the specified array of ints for the specified value using the |
|
* binary search algorithm. The array must be sorted (as |
|
* by the {@link #sort(int[])} method) prior to making this call. If it |
|
* is not sorted, the results are undefined. If the array contains |
|
* multiple elements with the specified value, there is no guarantee which |
|
* one will be found. |
|
* |
|
* @param a the array to be searched |
|
* @param key the value to be searched for |
|
* @return index of the search key, if it is contained in the array; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element greater than the key, or <tt>a.length</tt> if all |
|
* elements in the array are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
*/ |
|
public static int binarySearch(int[] a, int key) { |
|
return binarySearch0(a, 0, a.length, key); |
|
} |
|
/** |
|
* Searches a range of |
|
* the specified array of ints for the specified value using the |
|
* binary search algorithm. |
|
* The range must be sorted (as |
|
* by the {@link #sort(int[], int, int)} method) |
|
* prior to making this call. If it |
|
* is not sorted, the results are undefined. If the range contains |
|
* multiple elements with the specified value, there is no guarantee which |
|
* one will be found. |
|
* |
|
* @param a the array to be searched |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* searched |
|
* @param toIndex the index of the last element (exclusive) to be searched |
|
* @param key the value to be searched for |
|
* @return index of the search key, if it is contained in the array |
|
* within the specified range; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element in the range greater than the key, |
|
* or <tt>toIndex</tt> if all |
|
* elements in the range are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
* @throws IllegalArgumentException |
|
* if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0 or toIndex > a.length} |
|
* @since 1.6 |
|
*/ |
|
public static int binarySearch(int[] a, int fromIndex, int toIndex, |
|
int key) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
return binarySearch0(a, fromIndex, toIndex, key); |
|
} |
|
// Like public version, but without range checks. |
|
private static int binarySearch0(int[] a, int fromIndex, int toIndex, |
|
int key) { |
|
int low = fromIndex; |
|
int high = toIndex - 1; |
|
while (low <= high) { |
|
int mid = (low + high) >>> 1; |
|
int midVal = a[mid]; |
|
if (midVal < key) |
|
low = mid + 1; |
|
else if (midVal > key) |
|
high = mid - 1; |
|
else |
|
return mid; // key found |
|
} |
|
return -(low + 1); // key not found. |
|
} |
|
/** |
|
* Searches the specified array of shorts for the specified value using |
|
* the binary search algorithm. The array must be sorted |
|
* (as by the {@link #sort(short[])} method) prior to making this call. If |
|
* it is not sorted, the results are undefined. If the array contains |
|
* multiple elements with the specified value, there is no guarantee which |
|
* one will be found. |
|
* |
|
* @param a the array to be searched |
|
* @param key the value to be searched for |
|
* @return index of the search key, if it is contained in the array; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element greater than the key, or <tt>a.length</tt> if all |
|
* elements in the array are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
*/ |
|
public static int binarySearch(short[] a, short key) { |
|
return binarySearch0(a, 0, a.length, key); |
|
} |
|
/** |
|
* Searches a range of |
|
* the specified array of shorts for the specified value using |
|
* the binary search algorithm. |
|
* The range must be sorted |
|
* (as by the {@link #sort(short[], int, int)} method) |
|
* prior to making this call. If |
|
* it is not sorted, the results are undefined. If the range contains |
|
* multiple elements with the specified value, there is no guarantee which |
|
* one will be found. |
|
* |
|
* @param a the array to be searched |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* searched |
|
* @param toIndex the index of the last element (exclusive) to be searched |
|
* @param key the value to be searched for |
|
* @return index of the search key, if it is contained in the array |
|
* within the specified range; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element in the range greater than the key, |
|
* or <tt>toIndex</tt> if all |
|
* elements in the range are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
* @throws IllegalArgumentException |
|
* if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0 or toIndex > a.length} |
|
* @since 1.6 |
|
*/ |
|
public static int binarySearch(short[] a, int fromIndex, int toIndex, |
|
short key) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
return binarySearch0(a, fromIndex, toIndex, key); |
|
} |
|
// Like public version, but without range checks. |
|
private static int binarySearch0(short[] a, int fromIndex, int toIndex, |
|
short key) { |
|
int low = fromIndex; |
|
int high = toIndex - 1; |
|
while (low <= high) { |
|
int mid = (low + high) >>> 1; |
|
short midVal = a[mid]; |
|
if (midVal < key) |
|
low = mid + 1; |
|
else if (midVal > key) |
|
high = mid - 1; |
|
else |
|
return mid; // key found |
|
} |
|
return -(low + 1); // key not found. |
|
} |
|
/** |
|
* Searches the specified array of chars for the specified value using the |
|
* binary search algorithm. The array must be sorted (as |
|
* by the {@link #sort(char[])} method) prior to making this call. If it |
|
* is not sorted, the results are undefined. If the array contains |
|
* multiple elements with the specified value, there is no guarantee which |
|
* one will be found. |
|
* |
|
* @param a the array to be searched |
|
* @param key the value to be searched for |
|
* @return index of the search key, if it is contained in the array; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element greater than the key, or <tt>a.length</tt> if all |
|
* elements in the array are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
*/ |
|
public static int binarySearch(char[] a, char key) { |
|
return binarySearch0(a, 0, a.length, key); |
|
} |
|
/** |
|
* Searches a range of |
|
* the specified array of chars for the specified value using the |
|
* binary search algorithm. |
|
* The range must be sorted (as |
|
* by the {@link #sort(char[], int, int)} method) |
|
* prior to making this call. If it |
|
* is not sorted, the results are undefined. If the range contains |
|
* multiple elements with the specified value, there is no guarantee which |
|
* one will be found. |
|
* |
|
* @param a the array to be searched |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* searched |
|
* @param toIndex the index of the last element (exclusive) to be searched |
|
* @param key the value to be searched for |
|
* @return index of the search key, if it is contained in the array |
|
* within the specified range; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element in the range greater than the key, |
|
* or <tt>toIndex</tt> if all |
|
* elements in the range are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
* @throws IllegalArgumentException |
|
* if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0 or toIndex > a.length} |
|
* @since 1.6 |
|
*/ |
|
public static int binarySearch(char[] a, int fromIndex, int toIndex, |
|
char key) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
return binarySearch0(a, fromIndex, toIndex, key); |
|
} |
|
// Like public version, but without range checks. |
|
private static int binarySearch0(char[] a, int fromIndex, int toIndex, |
|
char key) { |
|
int low = fromIndex; |
|
int high = toIndex - 1; |
|
while (low <= high) { |
|
int mid = (low + high) >>> 1; |
|
char midVal = a[mid]; |
|
if (midVal < key) |
|
low = mid + 1; |
|
else if (midVal > key) |
|
high = mid - 1; |
|
else |
|
return mid; // key found |
|
} |
|
return -(low + 1); // key not found. |
|
} |
|
/** |
|
* Searches the specified array of bytes for the specified value using the |
|
* binary search algorithm. The array must be sorted (as |
|
* by the {@link #sort(byte[])} method) prior to making this call. If it |
|
* is not sorted, the results are undefined. If the array contains |
|
* multiple elements with the specified value, there is no guarantee which |
|
* one will be found. |
|
* |
|
* @param a the array to be searched |
|
* @param key the value to be searched for |
|
* @return index of the search key, if it is contained in the array; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element greater than the key, or <tt>a.length</tt> if all |
|
* elements in the array are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
*/ |
|
public static int binarySearch(byte[] a, byte key) { |
|
return binarySearch0(a, 0, a.length, key); |
|
} |
|
/** |
|
* Searches a range of |
|
* the specified array of bytes for the specified value using the |
|
* binary search algorithm. |
|
* The range must be sorted (as |
|
* by the {@link #sort(byte[], int, int)} method) |
|
* prior to making this call. If it |
|
* is not sorted, the results are undefined. If the range contains |
|
* multiple elements with the specified value, there is no guarantee which |
|
* one will be found. |
|
* |
|
* @param a the array to be searched |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* searched |
|
* @param toIndex the index of the last element (exclusive) to be searched |
|
* @param key the value to be searched for |
|
* @return index of the search key, if it is contained in the array |
|
* within the specified range; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element in the range greater than the key, |
|
* or <tt>toIndex</tt> if all |
|
* elements in the range are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
* @throws IllegalArgumentException |
|
* if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0 or toIndex > a.length} |
|
* @since 1.6 |
|
*/ |
|
public static int binarySearch(byte[] a, int fromIndex, int toIndex, |
|
byte key) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
return binarySearch0(a, fromIndex, toIndex, key); |
|
} |
|
// Like public version, but without range checks. |
|
private static int binarySearch0(byte[] a, int fromIndex, int toIndex, |
|
byte key) { |
|
int low = fromIndex; |
|
int high = toIndex - 1; |
|
while (low <= high) { |
|
int mid = (low + high) >>> 1; |
|
byte midVal = a[mid]; |
|
if (midVal < key) |
|
low = mid + 1; |
|
else if (midVal > key) |
|
high = mid - 1; |
|
else |
|
return mid; // key found |
|
} |
|
return -(low + 1); // key not found. |
|
} |
|
/** |
|
* Searches the specified array of doubles for the specified value using |
|
* the binary search algorithm. The array must be sorted |
|
* (as by the {@link #sort(double[])} method) prior to making this call. |
|
* If it is not sorted, the results are undefined. If the array contains |
|
* multiple elements with the specified value, there is no guarantee which |
|
* one will be found. This method considers all NaN values to be |
|
* equivalent and equal. |
|
* |
|
* @param a the array to be searched |
|
* @param key the value to be searched for |
|
* @return index of the search key, if it is contained in the array; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element greater than the key, or <tt>a.length</tt> if all |
|
* elements in the array are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
*/ |
|
public static int binarySearch(double[] a, double key) { |
|
return binarySearch0(a, 0, a.length, key); |
|
} |
|
/** |
|
* Searches a range of |
|
* the specified array of doubles for the specified value using |
|
* the binary search algorithm. |
|
* The range must be sorted |
|
* (as by the {@link #sort(double[], int, int)} method) |
|
* prior to making this call. |
|
* If it is not sorted, the results are undefined. If the range contains |
|
* multiple elements with the specified value, there is no guarantee which |
|
* one will be found. This method considers all NaN values to be |
|
* equivalent and equal. |
|
* |
|
* @param a the array to be searched |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* searched |
|
* @param toIndex the index of the last element (exclusive) to be searched |
|
* @param key the value to be searched for |
|
* @return index of the search key, if it is contained in the array |
|
* within the specified range; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element in the range greater than the key, |
|
* or <tt>toIndex</tt> if all |
|
* elements in the range are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
* @throws IllegalArgumentException |
|
* if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0 or toIndex > a.length} |
|
* @since 1.6 |
|
*/ |
|
public static int binarySearch(double[] a, int fromIndex, int toIndex, |
|
double key) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
return binarySearch0(a, fromIndex, toIndex, key); |
|
} |
|
// Like public version, but without range checks. |
|
private static int binarySearch0(double[] a, int fromIndex, int toIndex, |
|
double key) { |
|
int low = fromIndex; |
|
int high = toIndex - 1; |
|
while (low <= high) { |
|
int mid = (low + high) >>> 1; |
|
double midVal = a[mid]; |
|
if (midVal < key) |
|
low = mid + 1; // Neither val is NaN, thisVal is smaller |
|
else if (midVal > key) |
|
high = mid - 1; // Neither val is NaN, thisVal is larger |
|
else { |
|
long midBits = Double.doubleToLongBits(midVal); |
|
long keyBits = Double.doubleToLongBits(key); |
|
if (midBits == keyBits) // Values are equal |
|
return mid; // Key found |
|
else if (midBits < keyBits) // (-0.0, 0.0) or (!NaN, NaN) |
|
low = mid + 1; |
|
else // (0.0, -0.0) or (NaN, !NaN) |
|
high = mid - 1; |
|
} |
|
} |
|
return -(low + 1); // key not found. |
|
} |
|
/** |
|
* Searches the specified array of floats for the specified value using |
|
* the binary search algorithm. The array must be sorted |
|
* (as by the {@link #sort(float[])} method) prior to making this call. If |
|
* it is not sorted, the results are undefined. If the array contains |
|
* multiple elements with the specified value, there is no guarantee which |
|
* one will be found. This method considers all NaN values to be |
|
* equivalent and equal. |
|
* |
|
* @param a the array to be searched |
|
* @param key the value to be searched for |
|
* @return index of the search key, if it is contained in the array; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element greater than the key, or <tt>a.length</tt> if all |
|
* elements in the array are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
*/ |
|
public static int binarySearch(float[] a, float key) { |
|
return binarySearch0(a, 0, a.length, key); |
|
} |
|
/** |
|
* Searches a range of |
|
* the specified array of floats for the specified value using |
|
* the binary search algorithm. |
|
* The range must be sorted |
|
* (as by the {@link #sort(float[], int, int)} method) |
|
* prior to making this call. If |
|
* it is not sorted, the results are undefined. If the range contains |
|
* multiple elements with the specified value, there is no guarantee which |
|
* one will be found. This method considers all NaN values to be |
|
* equivalent and equal. |
|
* |
|
* @param a the array to be searched |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* searched |
|
* @param toIndex the index of the last element (exclusive) to be searched |
|
* @param key the value to be searched for |
|
* @return index of the search key, if it is contained in the array |
|
* within the specified range; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element in the range greater than the key, |
|
* or <tt>toIndex</tt> if all |
|
* elements in the range are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
* @throws IllegalArgumentException |
|
* if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0 or toIndex > a.length} |
|
* @since 1.6 |
|
*/ |
|
public static int binarySearch(float[] a, int fromIndex, int toIndex, |
|
float key) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
return binarySearch0(a, fromIndex, toIndex, key); |
|
} |
|
// Like public version, but without range checks. |
|
private static int binarySearch0(float[] a, int fromIndex, int toIndex, |
|
float key) { |
|
int low = fromIndex; |
|
int high = toIndex - 1; |
|
while (low <= high) { |
|
int mid = (low + high) >>> 1; |
|
float midVal = a[mid]; |
|
if (midVal < key) |
|
low = mid + 1; // Neither val is NaN, thisVal is smaller |
|
else if (midVal > key) |
|
high = mid - 1; // Neither val is NaN, thisVal is larger |
|
else { |
|
int midBits = Float.floatToIntBits(midVal); |
|
int keyBits = Float.floatToIntBits(key); |
|
if (midBits == keyBits) // Values are equal |
|
return mid; // Key found |
|
else if (midBits < keyBits) // (-0.0, 0.0) or (!NaN, NaN) |
|
low = mid + 1; |
|
else // (0.0, -0.0) or (NaN, !NaN) |
|
high = mid - 1; |
|
} |
|
} |
|
return -(low + 1); // key not found. |
|
} |
|
/** |
|
* Searches the specified array for the specified object using the binary |
|
* search algorithm. The array must be sorted into ascending order |
|
* according to the |
|
* {@linkplain Comparable natural ordering} |
|
* of its elements (as by the |
|
* {@link #sort(Object[])} method) prior to making this call. |
|
* If it is not sorted, the results are undefined. |
|
* (If the array contains elements that are not mutually comparable (for |
|
* example, strings and integers), it <i>cannot</i> be sorted according |
|
* to the natural ordering of its elements, hence results are undefined.) |
|
* If the array contains multiple |
|
* elements equal to the specified object, there is no guarantee which |
|
* one will be found. |
|
* |
|
* @param a the array to be searched |
|
* @param key the value to be searched for |
|
* @return index of the search key, if it is contained in the array; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element greater than the key, or <tt>a.length</tt> if all |
|
* elements in the array are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
* @throws ClassCastException if the search key is not comparable to the |
|
* elements of the array. |
|
*/ |
|
public static int binarySearch(Object[] a, Object key) { |
|
return binarySearch0(a, 0, a.length, key); |
|
} |
|
/** |
|
* Searches a range of |
|
* the specified array for the specified object using the binary |
|
* search algorithm. |
|
* The range must be sorted into ascending order |
|
* according to the |
|
* {@linkplain Comparable natural ordering} |
|
* of its elements (as by the |
|
* {@link #sort(Object[], int, int)} method) prior to making this |
|
* call. If it is not sorted, the results are undefined. |
|
* (If the range contains elements that are not mutually comparable (for |
|
* example, strings and integers), it <i>cannot</i> be sorted according |
|
* to the natural ordering of its elements, hence results are undefined.) |
|
* If the range contains multiple |
|
* elements equal to the specified object, there is no guarantee which |
|
* one will be found. |
|
* |
|
* @param a the array to be searched |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* searched |
|
* @param toIndex the index of the last element (exclusive) to be searched |
|
* @param key the value to be searched for |
|
* @return index of the search key, if it is contained in the array |
|
* within the specified range; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element in the range greater than the key, |
|
* or <tt>toIndex</tt> if all |
|
* elements in the range are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
* @throws ClassCastException if the search key is not comparable to the |
|
* elements of the array within the specified range. |
|
* @throws IllegalArgumentException |
|
* if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0 or toIndex > a.length} |
|
* @since 1.6 |
|
*/ |
|
public static int binarySearch(Object[] a, int fromIndex, int toIndex, |
|
Object key) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
return binarySearch0(a, fromIndex, toIndex, key); |
|
} |
|
// Like public version, but without range checks. |
|
private static int binarySearch0(Object[] a, int fromIndex, int toIndex, |
|
Object key) { |
|
int low = fromIndex; |
|
int high = toIndex - 1; |
|
while (low <= high) { |
|
int mid = (low + high) >>> 1; |
|
@SuppressWarnings("rawtypes") |
|
Comparable midVal = (Comparable)a[mid]; |
|
@SuppressWarnings("unchecked") |
|
int cmp = midVal.compareTo(key); |
|
if (cmp < 0) |
|
low = mid + 1; |
|
else if (cmp > 0) |
|
high = mid - 1; |
|
else |
|
return mid; // key found |
|
} |
|
return -(low + 1); // key not found. |
|
} |
|
/** |
|
* Searches the specified array for the specified object using the binary |
|
* search algorithm. The array must be sorted into ascending order |
|
* according to the specified comparator (as by the |
|
* {@link #sort(Object[], Comparator) sort(T[], Comparator)} |
|
* method) prior to making this call. If it is |
|
* not sorted, the results are undefined. |
|
* If the array contains multiple |
|
* elements equal to the specified object, there is no guarantee which one |
|
* will be found. |
|
* |
|
* @param <T> the class of the objects in the array |
|
* @param a the array to be searched |
|
* @param key the value to be searched for |
|
* @param c the comparator by which the array is ordered. A |
|
* <tt>null</tt> value indicates that the elements' |
|
* {@linkplain Comparable natural ordering} should be used. |
|
* @return index of the search key, if it is contained in the array; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element greater than the key, or <tt>a.length</tt> if all |
|
* elements in the array are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
* @throws ClassCastException if the array contains elements that are not |
|
* <i>mutually comparable</i> using the specified comparator, |
|
* or the search key is not comparable to the |
|
* elements of the array using this comparator. |
|
*/ |
|
public static <T> int binarySearch(T[] a, T key, Comparator<? super T> c) { |
|
return binarySearch0(a, 0, a.length, key, c); |
|
} |
|
/** |
|
* Searches a range of |
|
* the specified array for the specified object using the binary |
|
* search algorithm. |
|
* The range must be sorted into ascending order |
|
* according to the specified comparator (as by the |
|
* {@link #sort(Object[], int, int, Comparator) |
|
* sort(T[], int, int, Comparator)} |
|
* method) prior to making this call. |
|
* If it is not sorted, the results are undefined. |
|
* If the range contains multiple elements equal to the specified object, |
|
* there is no guarantee which one will be found. |
|
* |
|
* @param <T> the class of the objects in the array |
|
* @param a the array to be searched |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* searched |
|
* @param toIndex the index of the last element (exclusive) to be searched |
|
* @param key the value to be searched for |
|
* @param c the comparator by which the array is ordered. A |
|
* <tt>null</tt> value indicates that the elements' |
|
* {@linkplain Comparable natural ordering} should be used. |
|
* @return index of the search key, if it is contained in the array |
|
* within the specified range; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the array: the index of the first |
|
* element in the range greater than the key, |
|
* or <tt>toIndex</tt> if all |
|
* elements in the range are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
* @throws ClassCastException if the range contains elements that are not |
|
* <i>mutually comparable</i> using the specified comparator, |
|
* or the search key is not comparable to the |
|
* elements in the range using this comparator. |
|
* @throws IllegalArgumentException |
|
* if {@code fromIndex > toIndex} |
|
* @throws ArrayIndexOutOfBoundsException |
|
* if {@code fromIndex < 0 or toIndex > a.length} |
|
* @since 1.6 |
|
*/ |
|
public static <T> int binarySearch(T[] a, int fromIndex, int toIndex, |
|
T key, Comparator<? super T> c) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
return binarySearch0(a, fromIndex, toIndex, key, c); |
|
} |
|
// Like public version, but without range checks. |
|
private static <T> int binarySearch0(T[] a, int fromIndex, int toIndex, |
|
T key, Comparator<? super T> c) { |
|
if (c == null) { |
|
return binarySearch0(a, fromIndex, toIndex, key); |
|
} |
|
int low = fromIndex; |
|
int high = toIndex - 1; |
|
while (low <= high) { |
|
int mid = (low + high) >>> 1; |
|
T midVal = a[mid]; |
|
int cmp = c.compare(midVal, key); |
|
if (cmp < 0) |
|
low = mid + 1; |
|
else if (cmp > 0) |
|
high = mid - 1; |
|
else |
|
return mid; // key found |
|
} |
|
return -(low + 1); // key not found. |
|
} |
|
// Equality Testing |
|
/** |
|
* Returns <tt>true</tt> if the two specified arrays of longs are |
|
* <i>equal</i> to one another. Two arrays are considered equal if both |
|
* arrays contain the same number of elements, and all corresponding pairs |
|
* of elements in the two arrays are equal. In other words, two arrays |
|
* are equal if they contain the same elements in the same order. Also, |
|
* two array references are considered equal if both are <tt>null</tt>.<p> |
|
* |
|
* @param a one array to be tested for equality |
|
* @param a2 the other array to be tested for equality |
|
* @return <tt>true</tt> if the two arrays are equal |
|
*/ |
|
public static boolean equals(long[] a, long[] a2) { |
|
if (a==a2) |
|
return true; |
|
if (a==null || a2==null) |
|
return false; |
|
int length = a.length; |
|
if (a2.length != length) |
|
return false; |
|
for (int i=0; i<length; i++) |
|
if (a[i] != a2[i]) |
|
return false; |
|
return true; |
|
} |
|
/** |
|
* Returns <tt>true</tt> if the two specified arrays of ints are |
|
* <i>equal</i> to one another. Two arrays are considered equal if both |
|
* arrays contain the same number of elements, and all corresponding pairs |
|
* of elements in the two arrays are equal. In other words, two arrays |
|
* are equal if they contain the same elements in the same order. Also, |
|
* two array references are considered equal if both are <tt>null</tt>.<p> |
|
* |
|
* @param a one array to be tested for equality |
|
* @param a2 the other array to be tested for equality |
|
* @return <tt>true</tt> if the two arrays are equal |
|
*/ |
|
public static boolean equals(int[] a, int[] a2) { |
|
if (a==a2) |
|
return true; |
|
if (a==null || a2==null) |
|
return false; |
|
int length = a.length; |
|
if (a2.length != length) |
|
return false; |
|
for (int i=0; i<length; i++) |
|
if (a[i] != a2[i]) |
|
return false; |
|
return true; |
|
} |
|
/** |
|
* Returns <tt>true</tt> if the two specified arrays of shorts are |
|
* <i>equal</i> to one another. Two arrays are considered equal if both |
|
* arrays contain the same number of elements, and all corresponding pairs |
|
* of elements in the two arrays are equal. In other words, two arrays |
|
* are equal if they contain the same elements in the same order. Also, |
|
* two array references are considered equal if both are <tt>null</tt>.<p> |
|
* |
|
* @param a one array to be tested for equality |
|
* @param a2 the other array to be tested for equality |
|
* @return <tt>true</tt> if the two arrays are equal |
|
*/ |
|
public static boolean equals(short[] a, short a2[]) { |
|
if (a==a2) |
|
return true; |
|
if (a==null || a2==null) |
|
return false; |
|
int length = a.length; |
|
if (a2.length != length) |
|
return false; |
|
for (int i=0; i<length; i++) |
|
if (a[i] != a2[i]) |
|
return false; |
|
return true; |
|
} |
|
/** |
|
* Returns <tt>true</tt> if the two specified arrays of chars are |
|
* <i>equal</i> to one another. Two arrays are considered equal if both |
|
* arrays contain the same number of elements, and all corresponding pairs |
|
* of elements in the two arrays are equal. In other words, two arrays |
|
* are equal if they contain the same elements in the same order. Also, |
|
* two array references are considered equal if both are <tt>null</tt>.<p> |
|
* |
|
* @param a one array to be tested for equality |
|
* @param a2 the other array to be tested for equality |
|
* @return <tt>true</tt> if the two arrays are equal |
|
*/ |
|
public static boolean equals(char[] a, char[] a2) { |
|
if (a==a2) |
|
return true; |
|
if (a==null || a2==null) |
|
return false; |
|
int length = a.length; |
|
if (a2.length != length) |
|
return false; |
|
for (int i=0; i<length; i++) |
|
if (a[i] != a2[i]) |
|
return false; |
|
return true; |
|
} |
|
/** |
|
* Returns <tt>true</tt> if the two specified arrays of bytes are |
|
* <i>equal</i> to one another. Two arrays are considered equal if both |
|
* arrays contain the same number of elements, and all corresponding pairs |
|
* of elements in the two arrays are equal. In other words, two arrays |
|
* are equal if they contain the same elements in the same order. Also, |
|
* two array references are considered equal if both are <tt>null</tt>.<p> |
|
* |
|
* @param a one array to be tested for equality |
|
* @param a2 the other array to be tested for equality |
|
* @return <tt>true</tt> if the two arrays are equal |
|
*/ |
|
public static boolean equals(byte[] a, byte[] a2) { |
|
if (a==a2) |
|
return true; |
|
if (a==null || a2==null) |
|
return false; |
|
int length = a.length; |
|
if (a2.length != length) |
|
return false; |
|
for (int i=0; i<length; i++) |
|
if (a[i] != a2[i]) |
|
return false; |
|
return true; |
|
} |
|
/** |
|
* Returns <tt>true</tt> if the two specified arrays of booleans are |
|
* <i>equal</i> to one another. Two arrays are considered equal if both |
|
* arrays contain the same number of elements, and all corresponding pairs |
|
* of elements in the two arrays are equal. In other words, two arrays |
|
* are equal if they contain the same elements in the same order. Also, |
|
* two array references are considered equal if both are <tt>null</tt>.<p> |
|
* |
|
* @param a one array to be tested for equality |
|
* @param a2 the other array to be tested for equality |
|
* @return <tt>true</tt> if the two arrays are equal |
|
*/ |
|
public static boolean equals(boolean[] a, boolean[] a2) { |
|
if (a==a2) |
|
return true; |
|
if (a==null || a2==null) |
|
return false; |
|
int length = a.length; |
|
if (a2.length != length) |
|
return false; |
|
for (int i=0; i<length; i++) |
|
if (a[i] != a2[i]) |
|
return false; |
|
return true; |
|
} |
|
/** |
|
* Returns <tt>true</tt> if the two specified arrays of doubles are |
|
* <i>equal</i> to one another. Two arrays are considered equal if both |
|
* arrays contain the same number of elements, and all corresponding pairs |
|
* of elements in the two arrays are equal. In other words, two arrays |
|
* are equal if they contain the same elements in the same order. Also, |
|
* two array references are considered equal if both are <tt>null</tt>.<p> |
|
* |
|
* Two doubles <tt>d1</tt> and <tt>d2</tt> are considered equal if: |
|
* <pre> <tt>new Double(d1).equals(new Double(d2))</tt></pre> |
|
* (Unlike the <tt>==</tt> operator, this method considers |
|
* <tt>NaN</tt> equals to itself, and 0.0d unequal to -0.0d.) |
|
* |
|
* @param a one array to be tested for equality |
|
* @param a2 the other array to be tested for equality |
|
* @return <tt>true</tt> if the two arrays are equal |
|
* @see Double#equals(Object) |
|
*/ |
|
public static boolean equals(double[] a, double[] a2) { |
|
if (a==a2) |
|
return true; |
|
if (a==null || a2==null) |
|
return false; |
|
int length = a.length; |
|
if (a2.length != length) |
|
return false; |
|
for (int i=0; i<length; i++) |
|
if (Double.doubleToLongBits(a[i])!=Double.doubleToLongBits(a2[i])) |
|
return false; |
|
return true; |
|
} |
|
/** |
|
* Returns <tt>true</tt> if the two specified arrays of floats are |
|
* <i>equal</i> to one another. Two arrays are considered equal if both |
|
* arrays contain the same number of elements, and all corresponding pairs |
|
* of elements in the two arrays are equal. In other words, two arrays |
|
* are equal if they contain the same elements in the same order. Also, |
|
* two array references are considered equal if both are <tt>null</tt>.<p> |
|
* |
|
* Two floats <tt>f1</tt> and <tt>f2</tt> are considered equal if: |
|
* <pre> <tt>new Float(f1).equals(new Float(f2))</tt></pre> |
|
* (Unlike the <tt>==</tt> operator, this method considers |
|
* <tt>NaN</tt> equals to itself, and 0.0f unequal to -0.0f.) |
|
* |
|
* @param a one array to be tested for equality |
|
* @param a2 the other array to be tested for equality |
|
* @return <tt>true</tt> if the two arrays are equal |
|
* @see Float#equals(Object) |
|
*/ |
|
public static boolean equals(float[] a, float[] a2) { |
|
if (a==a2) |
|
return true; |
|
if (a==null || a2==null) |
|
return false; |
|
int length = a.length; |
|
if (a2.length != length) |
|
return false; |
|
for (int i=0; i<length; i++) |
|
if (Float.floatToIntBits(a[i])!=Float.floatToIntBits(a2[i])) |
|
return false; |
|
return true; |
|
} |
|
/** |
|
* Returns <tt>true</tt> if the two specified arrays of Objects are |
|
* <i>equal</i> to one another. The two arrays are considered equal if |
|
* both arrays contain the same number of elements, and all corresponding |
|
* pairs of elements in the two arrays are equal. Two objects <tt>e1</tt> |
|
* and <tt>e2</tt> are considered <i>equal</i> if <tt>(e1==null ? e2==null |
|
* : e1.equals(e2))</tt>. In other words, the two arrays are equal if |
|
* they contain the same elements in the same order. Also, two array |
|
* references are considered equal if both are <tt>null</tt>.<p> |
|
* |
|
* @param a one array to be tested for equality |
|
* @param a2 the other array to be tested for equality |
|
* @return <tt>true</tt> if the two arrays are equal |
|
*/ |
|
public static boolean equals(Object[] a, Object[] a2) { |
|
if (a==a2) |
|
return true; |
|
if (a==null || a2==null) |
|
return false; |
|
int length = a.length; |
|
if (a2.length != length) |
|
return false; |
|
for (int i=0; i<length; i++) { |
|
Object o1 = a[i]; |
|
Object o2 = a2[i]; |
|
if (!(o1==null ? o2==null : o1.equals(o2))) |
|
return false; |
|
} |
|
return true; |
|
} |
|
// Filling |
|
/** |
|
* Assigns the specified long value to each element of the specified array |
|
* of longs. |
|
* |
|
* @param a the array to be filled |
|
* @param val the value to be stored in all elements of the array |
|
*/ |
|
public static void fill(long[] a, long val) { |
|
for (int i = 0, len = a.length; i < len; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified long value to each element of the specified |
|
* range of the specified array of longs. The range to be filled |
|
* extends from index <tt>fromIndex</tt>, inclusive, to index |
|
* <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the |
|
* range to be filled is empty.) |
|
* |
|
* @param a the array to be filled |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* filled with the specified value |
|
* @param toIndex the index of the last element (exclusive) to be |
|
* filled with the specified value |
|
* @param val the value to be stored in all elements of the array |
|
* @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> |
|
* @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or |
|
* <tt>toIndex > a.length</tt> |
|
*/ |
|
public static void fill(long[] a, int fromIndex, int toIndex, long val) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
for (int i = fromIndex; i < toIndex; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified int value to each element of the specified array |
|
* of ints. |
|
* |
|
* @param a the array to be filled |
|
* @param val the value to be stored in all elements of the array |
|
*/ |
|
public static void fill(int[] a, int val) { |
|
for (int i = 0, len = a.length; i < len; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified int value to each element of the specified |
|
* range of the specified array of ints. The range to be filled |
|
* extends from index <tt>fromIndex</tt>, inclusive, to index |
|
* <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the |
|
* range to be filled is empty.) |
|
* |
|
* @param a the array to be filled |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* filled with the specified value |
|
* @param toIndex the index of the last element (exclusive) to be |
|
* filled with the specified value |
|
* @param val the value to be stored in all elements of the array |
|
* @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> |
|
* @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or |
|
* <tt>toIndex > a.length</tt> |
|
*/ |
|
public static void fill(int[] a, int fromIndex, int toIndex, int val) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
for (int i = fromIndex; i < toIndex; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified short value to each element of the specified array |
|
* of shorts. |
|
* |
|
* @param a the array to be filled |
|
* @param val the value to be stored in all elements of the array |
|
*/ |
|
public static void fill(short[] a, short val) { |
|
for (int i = 0, len = a.length; i < len; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified short value to each element of the specified |
|
* range of the specified array of shorts. The range to be filled |
|
* extends from index <tt>fromIndex</tt>, inclusive, to index |
|
* <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the |
|
* range to be filled is empty.) |
|
* |
|
* @param a the array to be filled |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* filled with the specified value |
|
* @param toIndex the index of the last element (exclusive) to be |
|
* filled with the specified value |
|
* @param val the value to be stored in all elements of the array |
|
* @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> |
|
* @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or |
|
* <tt>toIndex > a.length</tt> |
|
*/ |
|
public static void fill(short[] a, int fromIndex, int toIndex, short val) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
for (int i = fromIndex; i < toIndex; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified char value to each element of the specified array |
|
* of chars. |
|
* |
|
* @param a the array to be filled |
|
* @param val the value to be stored in all elements of the array |
|
*/ |
|
public static void fill(char[] a, char val) { |
|
for (int i = 0, len = a.length; i < len; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified char value to each element of the specified |
|
* range of the specified array of chars. The range to be filled |
|
* extends from index <tt>fromIndex</tt>, inclusive, to index |
|
* <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the |
|
* range to be filled is empty.) |
|
* |
|
* @param a the array to be filled |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* filled with the specified value |
|
* @param toIndex the index of the last element (exclusive) to be |
|
* filled with the specified value |
|
* @param val the value to be stored in all elements of the array |
|
* @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> |
|
* @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or |
|
* <tt>toIndex > a.length</tt> |
|
*/ |
|
public static void fill(char[] a, int fromIndex, int toIndex, char val) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
for (int i = fromIndex; i < toIndex; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified byte value to each element of the specified array |
|
* of bytes. |
|
* |
|
* @param a the array to be filled |
|
* @param val the value to be stored in all elements of the array |
|
*/ |
|
public static void fill(byte[] a, byte val) { |
|
for (int i = 0, len = a.length; i < len; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified byte value to each element of the specified |
|
* range of the specified array of bytes. The range to be filled |
|
* extends from index <tt>fromIndex</tt>, inclusive, to index |
|
* <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the |
|
* range to be filled is empty.) |
|
* |
|
* @param a the array to be filled |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* filled with the specified value |
|
* @param toIndex the index of the last element (exclusive) to be |
|
* filled with the specified value |
|
* @param val the value to be stored in all elements of the array |
|
* @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> |
|
* @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or |
|
* <tt>toIndex > a.length</tt> |
|
*/ |
|
public static void fill(byte[] a, int fromIndex, int toIndex, byte val) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
for (int i = fromIndex; i < toIndex; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified boolean value to each element of the specified |
|
* array of booleans. |
|
* |
|
* @param a the array to be filled |
|
* @param val the value to be stored in all elements of the array |
|
*/ |
|
public static void fill(boolean[] a, boolean val) { |
|
for (int i = 0, len = a.length; i < len; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified boolean value to each element of the specified |
|
* range of the specified array of booleans. The range to be filled |
|
* extends from index <tt>fromIndex</tt>, inclusive, to index |
|
* <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the |
|
* range to be filled is empty.) |
|
* |
|
* @param a the array to be filled |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* filled with the specified value |
|
* @param toIndex the index of the last element (exclusive) to be |
|
* filled with the specified value |
|
* @param val the value to be stored in all elements of the array |
|
* @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> |
|
* @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or |
|
* <tt>toIndex > a.length</tt> |
|
*/ |
|
public static void fill(boolean[] a, int fromIndex, int toIndex, |
|
boolean val) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
for (int i = fromIndex; i < toIndex; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified double value to each element of the specified |
|
* array of doubles. |
|
* |
|
* @param a the array to be filled |
|
* @param val the value to be stored in all elements of the array |
|
*/ |
|
public static void fill(double[] a, double val) { |
|
for (int i = 0, len = a.length; i < len; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified double value to each element of the specified |
|
* range of the specified array of doubles. The range to be filled |
|
* extends from index <tt>fromIndex</tt>, inclusive, to index |
|
* <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the |
|
* range to be filled is empty.) |
|
* |
|
* @param a the array to be filled |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* filled with the specified value |
|
* @param toIndex the index of the last element (exclusive) to be |
|
* filled with the specified value |
|
* @param val the value to be stored in all elements of the array |
|
* @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> |
|
* @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or |
|
* <tt>toIndex > a.length</tt> |
|
*/ |
|
public static void fill(double[] a, int fromIndex, int toIndex,double val){ |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
for (int i = fromIndex; i < toIndex; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified float value to each element of the specified array |
|
* of floats. |
|
* |
|
* @param a the array to be filled |
|
* @param val the value to be stored in all elements of the array |
|
*/ |
|
public static void fill(float[] a, float val) { |
|
for (int i = 0, len = a.length; i < len; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified float value to each element of the specified |
|
* range of the specified array of floats. The range to be filled |
|
* extends from index <tt>fromIndex</tt>, inclusive, to index |
|
* <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the |
|
* range to be filled is empty.) |
|
* |
|
* @param a the array to be filled |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* filled with the specified value |
|
* @param toIndex the index of the last element (exclusive) to be |
|
* filled with the specified value |
|
* @param val the value to be stored in all elements of the array |
|
* @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> |
|
* @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or |
|
* <tt>toIndex > a.length</tt> |
|
*/ |
|
public static void fill(float[] a, int fromIndex, int toIndex, float val) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
for (int i = fromIndex; i < toIndex; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified Object reference to each element of the specified |
|
* array of Objects. |
|
* |
|
* @param a the array to be filled |
|
* @param val the value to be stored in all elements of the array |
|
* @throws ArrayStoreException if the specified value is not of a |
|
* runtime type that can be stored in the specified array |
|
*/ |
|
public static void fill(Object[] a, Object val) { |
|
for (int i = 0, len = a.length; i < len; i++) |
|
a[i] = val; |
|
} |
|
/** |
|
* Assigns the specified Object reference to each element of the specified |
|
* range of the specified array of Objects. The range to be filled |
|
* extends from index <tt>fromIndex</tt>, inclusive, to index |
|
* <tt>toIndex</tt>, exclusive. (If <tt>fromIndex==toIndex</tt>, the |
|
* range to be filled is empty.) |
|
* |
|
* @param a the array to be filled |
|
* @param fromIndex the index of the first element (inclusive) to be |
|
* filled with the specified value |
|
* @param toIndex the index of the last element (exclusive) to be |
|
* filled with the specified value |
|
* @param val the value to be stored in all elements of the array |
|
* @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt> |
|
* @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or |
|
* <tt>toIndex > a.length</tt> |
|
* @throws ArrayStoreException if the specified value is not of a |
|
* runtime type that can be stored in the specified array |
|
*/ |
|
public static void fill(Object[] a, int fromIndex, int toIndex, Object val) { |
|
rangeCheck(a.length, fromIndex, toIndex); |
|
for (int i = fromIndex; i < toIndex; i++) |
|
a[i] = val; |
|
} |
|
// Cloning |
|
/** |
|
* Copies the specified array, truncating or padding with nulls (if necessary) |
|
* so the copy has the specified length. For all indices that are |
|
* valid in both the original array and the copy, the two arrays will |
|
* contain identical values. For any indices that are valid in the |
|
* copy but not the original, the copy will contain <tt>null</tt>. |
|
* Such indices will exist if and only if the specified length |
|
* is greater than that of the original array. |
|
* The resulting array is of exactly the same class as the original array. |
|
* |
|
* @param <T> the class of the objects in the array |
|
* @param original the array to be copied |
|
* @param newLength the length of the copy to be returned |
|
* @return a copy of the original array, truncated or padded with nulls |
|
* to obtain the specified length |
|
* @throws NegativeArraySizeException if <tt>newLength</tt> is negative |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static <T> T[] copyOf(T[] original, int newLength) { |
|
return (T[]) copyOf(original, newLength, original.getClass()); |
|
} |
|
/** |
|
* Copies the specified array, truncating or padding with nulls (if necessary) |
|
* so the copy has the specified length. For all indices that are |
|
* valid in both the original array and the copy, the two arrays will |
|
* contain identical values. For any indices that are valid in the |
|
* copy but not the original, the copy will contain <tt>null</tt>. |
|
* Such indices will exist if and only if the specified length |
|
* is greater than that of the original array. |
|
* The resulting array is of the class <tt>newType</tt>. |
|
* |
|
* @param <U> the class of the objects in the original array |
|
* @param <T> the class of the objects in the returned array |
|
* @param original the array to be copied |
|
* @param newLength the length of the copy to be returned |
|
* @param newType the class of the copy to be returned |
|
* @return a copy of the original array, truncated or padded with nulls |
|
* to obtain the specified length |
|
* @throws NegativeArraySizeException if <tt>newLength</tt> is negative |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @throws ArrayStoreException if an element copied from |
|
* <tt>original</tt> is not of a runtime type that can be stored in |
|
* an array of class <tt>newType</tt> |
|
* @since 1.6 |
|
*/ |
|
public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) { |
|
@SuppressWarnings("unchecked") |
|
T[] copy = ((Object)newType == (Object)Object[].class) |
|
? (T[]) new Object[newLength] |
|
: (T[]) Array.newInstance(newType.getComponentType(), newLength); |
|
System.arraycopy(original, 0, copy, 0, |
|
Math.min(original.length, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified array, truncating or padding with zeros (if necessary) |
|
* so the copy has the specified length. For all indices that are |
|
* valid in both the original array and the copy, the two arrays will |
|
* contain identical values. For any indices that are valid in the |
|
* copy but not the original, the copy will contain <tt>(byte)0</tt>. |
|
* Such indices will exist if and only if the specified length |
|
* is greater than that of the original array. |
|
* |
|
* @param original the array to be copied |
|
* @param newLength the length of the copy to be returned |
|
* @return a copy of the original array, truncated or padded with zeros |
|
* to obtain the specified length |
|
* @throws NegativeArraySizeException if <tt>newLength</tt> is negative |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
public static byte[] copyOf(byte[] original, int newLength) { |
|
byte[] copy = new byte[newLength]; |
|
System.arraycopy(original, 0, copy, 0, |
|
Math.min(original.length, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified array, truncating or padding with zeros (if necessary) |
|
* so the copy has the specified length. For all indices that are |
|
* valid in both the original array and the copy, the two arrays will |
|
* contain identical values. For any indices that are valid in the |
|
* copy but not the original, the copy will contain <tt>(short)0</tt>. |
|
* Such indices will exist if and only if the specified length |
|
* is greater than that of the original array. |
|
* |
|
* @param original the array to be copied |
|
* @param newLength the length of the copy to be returned |
|
* @return a copy of the original array, truncated or padded with zeros |
|
* to obtain the specified length |
|
* @throws NegativeArraySizeException if <tt>newLength</tt> is negative |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
public static short[] copyOf(short[] original, int newLength) { |
|
short[] copy = new short[newLength]; |
|
System.arraycopy(original, 0, copy, 0, |
|
Math.min(original.length, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified array, truncating or padding with zeros (if necessary) |
|
* so the copy has the specified length. For all indices that are |
|
* valid in both the original array and the copy, the two arrays will |
|
* contain identical values. For any indices that are valid in the |
|
* copy but not the original, the copy will contain <tt>0</tt>. |
|
* Such indices will exist if and only if the specified length |
|
* is greater than that of the original array. |
|
* |
|
* @param original the array to be copied |
|
* @param newLength the length of the copy to be returned |
|
* @return a copy of the original array, truncated or padded with zeros |
|
* to obtain the specified length |
|
* @throws NegativeArraySizeException if <tt>newLength</tt> is negative |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
public static int[] copyOf(int[] original, int newLength) { |
|
int[] copy = new int[newLength]; |
|
System.arraycopy(original, 0, copy, 0, |
|
Math.min(original.length, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified array, truncating or padding with zeros (if necessary) |
|
* so the copy has the specified length. For all indices that are |
|
* valid in both the original array and the copy, the two arrays will |
|
* contain identical values. For any indices that are valid in the |
|
* copy but not the original, the copy will contain <tt>0L</tt>. |
|
* Such indices will exist if and only if the specified length |
|
* is greater than that of the original array. |
|
* |
|
* @param original the array to be copied |
|
* @param newLength the length of the copy to be returned |
|
* @return a copy of the original array, truncated or padded with zeros |
|
* to obtain the specified length |
|
* @throws NegativeArraySizeException if <tt>newLength</tt> is negative |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
public static long[] copyOf(long[] original, int newLength) { |
|
long[] copy = new long[newLength]; |
|
System.arraycopy(original, 0, copy, 0, |
|
Math.min(original.length, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified array, truncating or padding with null characters (if necessary) |
|
* so the copy has the specified length. For all indices that are valid |
|
* in both the original array and the copy, the two arrays will contain |
|
* identical values. For any indices that are valid in the copy but not |
|
* the original, the copy will contain <tt>'\\u000'</tt>. Such indices |
|
* will exist if and only if the specified length is greater than that of |
|
* the original array. |
|
* |
|
* @param original the array to be copied |
|
* @param newLength the length of the copy to be returned |
|
* @return a copy of the original array, truncated or padded with null characters |
|
* to obtain the specified length |
|
* @throws NegativeArraySizeException if <tt>newLength</tt> is negative |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
public static char[] copyOf(char[] original, int newLength) { |
|
char[] copy = new char[newLength]; |
|
System.arraycopy(original, 0, copy, 0, |
|
Math.min(original.length, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified array, truncating or padding with zeros (if necessary) |
|
* so the copy has the specified length. For all indices that are |
|
* valid in both the original array and the copy, the two arrays will |
|
* contain identical values. For any indices that are valid in the |
|
* copy but not the original, the copy will contain <tt>0f</tt>. |
|
* Such indices will exist if and only if the specified length |
|
* is greater than that of the original array. |
|
* |
|
* @param original the array to be copied |
|
* @param newLength the length of the copy to be returned |
|
* @return a copy of the original array, truncated or padded with zeros |
|
* to obtain the specified length |
|
* @throws NegativeArraySizeException if <tt>newLength</tt> is negative |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
public static float[] copyOf(float[] original, int newLength) { |
|
float[] copy = new float[newLength]; |
|
System.arraycopy(original, 0, copy, 0, |
|
Math.min(original.length, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified array, truncating or padding with zeros (if necessary) |
|
* so the copy has the specified length. For all indices that are |
|
* valid in both the original array and the copy, the two arrays will |
|
* contain identical values. For any indices that are valid in the |
|
* copy but not the original, the copy will contain <tt>0d</tt>. |
|
* Such indices will exist if and only if the specified length |
|
* is greater than that of the original array. |
|
* |
|
* @param original the array to be copied |
|
* @param newLength the length of the copy to be returned |
|
* @return a copy of the original array, truncated or padded with zeros |
|
* to obtain the specified length |
|
* @throws NegativeArraySizeException if <tt>newLength</tt> is negative |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
public static double[] copyOf(double[] original, int newLength) { |
|
double[] copy = new double[newLength]; |
|
System.arraycopy(original, 0, copy, 0, |
|
Math.min(original.length, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified array, truncating or padding with <tt>false</tt> (if necessary) |
|
* so the copy has the specified length. For all indices that are |
|
* valid in both the original array and the copy, the two arrays will |
|
* contain identical values. For any indices that are valid in the |
|
* copy but not the original, the copy will contain <tt>false</tt>. |
|
* Such indices will exist if and only if the specified length |
|
* is greater than that of the original array. |
|
* |
|
* @param original the array to be copied |
|
* @param newLength the length of the copy to be returned |
|
* @return a copy of the original array, truncated or padded with false elements |
|
* to obtain the specified length |
|
* @throws NegativeArraySizeException if <tt>newLength</tt> is negative |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
public static boolean[] copyOf(boolean[] original, int newLength) { |
|
boolean[] copy = new boolean[newLength]; |
|
System.arraycopy(original, 0, copy, 0, |
|
Math.min(original.length, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified range of the specified array into a new array. |
|
* The initial index of the range (<tt>from</tt>) must lie between zero |
|
* and <tt>original.length</tt>, inclusive. The value at |
|
* <tt>original[from]</tt> is placed into the initial element of the copy |
|
* (unless <tt>from == original.length</tt> or <tt>from == to</tt>). |
|
* Values from subsequent elements in the original array are placed into |
|
* subsequent elements in the copy. The final index of the range |
|
* (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>, |
|
* may be greater than <tt>original.length</tt>, in which case |
|
* <tt>null</tt> is placed in all elements of the copy whose index is |
|
* greater than or equal to <tt>original.length - from</tt>. The length |
|
* of the returned array will be <tt>to - from</tt>. |
|
* <p> |
|
* The resulting array is of exactly the same class as the original array. |
|
* |
|
* @param <T> the class of the objects in the array |
|
* @param original the array from which a range is to be copied |
|
* @param from the initial index of the range to be copied, inclusive |
|
* @param to the final index of the range to be copied, exclusive. |
|
* (This index may lie outside the array.) |
|
* @return a new array containing the specified range from the original array, |
|
* truncated or padded with nulls to obtain the required length |
|
* @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
|
* or {@code from > original.length} |
|
* @throws IllegalArgumentException if <tt>from > to</tt> |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static <T> T[] copyOfRange(T[] original, int from, int to) { |
|
return copyOfRange(original, from, to, (Class<? extends T[]>) original.getClass()); |
|
} |
|
/** |
|
* Copies the specified range of the specified array into a new array. |
|
* The initial index of the range (<tt>from</tt>) must lie between zero |
|
* and <tt>original.length</tt>, inclusive. The value at |
|
* <tt>original[from]</tt> is placed into the initial element of the copy |
|
* (unless <tt>from == original.length</tt> or <tt>from == to</tt>). |
|
* Values from subsequent elements in the original array are placed into |
|
* subsequent elements in the copy. The final index of the range |
|
* (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>, |
|
* may be greater than <tt>original.length</tt>, in which case |
|
* <tt>null</tt> is placed in all elements of the copy whose index is |
|
* greater than or equal to <tt>original.length - from</tt>. The length |
|
* of the returned array will be <tt>to - from</tt>. |
|
* The resulting array is of the class <tt>newType</tt>. |
|
* |
|
* @param <U> the class of the objects in the original array |
|
* @param <T> the class of the objects in the returned array |
|
* @param original the array from which a range is to be copied |
|
* @param from the initial index of the range to be copied, inclusive |
|
* @param to the final index of the range to be copied, exclusive. |
|
* (This index may lie outside the array.) |
|
* @param newType the class of the copy to be returned |
|
* @return a new array containing the specified range from the original array, |
|
* truncated or padded with nulls to obtain the required length |
|
* @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
|
* or {@code from > original.length} |
|
* @throws IllegalArgumentException if <tt>from > to</tt> |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @throws ArrayStoreException if an element copied from |
|
* <tt>original</tt> is not of a runtime type that can be stored in |
|
* an array of class <tt>newType</tt>. |
|
* @since 1.6 |
|
*/ |
|
public static <T,U> T[] copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType) { |
|
int newLength = to - from; |
|
if (newLength < 0) |
|
throw new IllegalArgumentException(from + " > " + to); |
|
@SuppressWarnings("unchecked") |
|
T[] copy = ((Object)newType == (Object)Object[].class) |
|
? (T[]) new Object[newLength] |
|
: (T[]) Array.newInstance(newType.getComponentType(), newLength); |
|
System.arraycopy(original, from, copy, 0, |
|
Math.min(original.length - from, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified range of the specified array into a new array. |
|
* The initial index of the range (<tt>from</tt>) must lie between zero |
|
* and <tt>original.length</tt>, inclusive. The value at |
|
* <tt>original[from]</tt> is placed into the initial element of the copy |
|
* (unless <tt>from == original.length</tt> or <tt>from == to</tt>). |
|
* Values from subsequent elements in the original array are placed into |
|
* subsequent elements in the copy. The final index of the range |
|
* (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>, |
|
* may be greater than <tt>original.length</tt>, in which case |
|
* <tt>(byte)0</tt> is placed in all elements of the copy whose index is |
|
* greater than or equal to <tt>original.length - from</tt>. The length |
|
* of the returned array will be <tt>to - from</tt>. |
|
* |
|
* @param original the array from which a range is to be copied |
|
* @param from the initial index of the range to be copied, inclusive |
|
* @param to the final index of the range to be copied, exclusive. |
|
* (This index may lie outside the array.) |
|
* @return a new array containing the specified range from the original array, |
|
* truncated or padded with zeros to obtain the required length |
|
* @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
|
* or {@code from > original.length} |
|
* @throws IllegalArgumentException if <tt>from > to</tt> |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
public static byte[] copyOfRange(byte[] original, int from, int to) { |
|
int newLength = to - from; |
|
if (newLength < 0) |
|
throw new IllegalArgumentException(from + " > " + to); |
|
byte[] copy = new byte[newLength]; |
|
System.arraycopy(original, from, copy, 0, |
|
Math.min(original.length - from, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified range of the specified array into a new array. |
|
* The initial index of the range (<tt>from</tt>) must lie between zero |
|
* and <tt>original.length</tt>, inclusive. The value at |
|
* <tt>original[from]</tt> is placed into the initial element of the copy |
|
* (unless <tt>from == original.length</tt> or <tt>from == to</tt>). |
|
* Values from subsequent elements in the original array are placed into |
|
* subsequent elements in the copy. The final index of the range |
|
* (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>, |
|
* may be greater than <tt>original.length</tt>, in which case |
|
* <tt>(short)0</tt> is placed in all elements of the copy whose index is |
|
* greater than or equal to <tt>original.length - from</tt>. The length |
|
* of the returned array will be <tt>to - from</tt>. |
|
* |
|
* @param original the array from which a range is to be copied |
|
* @param from the initial index of the range to be copied, inclusive |
|
* @param to the final index of the range to be copied, exclusive. |
|
* (This index may lie outside the array.) |
|
* @return a new array containing the specified range from the original array, |
|
* truncated or padded with zeros to obtain the required length |
|
* @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
|
* or {@code from > original.length} |
|
* @throws IllegalArgumentException if <tt>from > to</tt> |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
public static short[] copyOfRange(short[] original, int from, int to) { |
|
int newLength = to - from; |
|
if (newLength < 0) |
|
throw new IllegalArgumentException(from + " > " + to); |
|
short[] copy = new short[newLength]; |
|
System.arraycopy(original, from, copy, 0, |
|
Math.min(original.length - from, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified range of the specified array into a new array. |
|
* The initial index of the range (<tt>from</tt>) must lie between zero |
|
* and <tt>original.length</tt>, inclusive. The value at |
|
* <tt>original[from]</tt> is placed into the initial element of the copy |
|
* (unless <tt>from == original.length</tt> or <tt>from == to</tt>). |
|
* Values from subsequent elements in the original array are placed into |
|
* subsequent elements in the copy. The final index of the range |
|
* (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>, |
|
* may be greater than <tt>original.length</tt>, in which case |
|
* <tt>0</tt> is placed in all elements of the copy whose index is |
|
* greater than or equal to <tt>original.length - from</tt>. The length |
|
* of the returned array will be <tt>to - from</tt>. |
|
* |
|
* @param original the array from which a range is to be copied |
|
* @param from the initial index of the range to be copied, inclusive |
|
* @param to the final index of the range to be copied, exclusive. |
|
* (This index may lie outside the array.) |
|
* @return a new array containing the specified range from the original array, |
|
* truncated or padded with zeros to obtain the required length |
|
* @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
|
* or {@code from > original.length} |
|
* @throws IllegalArgumentException if <tt>from > to</tt> |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
public static int[] copyOfRange(int[] original, int from, int to) { |
|
int newLength = to - from; |
|
if (newLength < 0) |
|
throw new IllegalArgumentException(from + " > " + to); |
|
int[] copy = new int[newLength]; |
|
System.arraycopy(original, from, copy, 0, |
|
Math.min(original.length - from, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified range of the specified array into a new array. |
|
* The initial index of the range (<tt>from</tt>) must lie between zero |
|
* and <tt>original.length</tt>, inclusive. The value at |
|
* <tt>original[from]</tt> is placed into the initial element of the copy |
|
* (unless <tt>from == original.length</tt> or <tt>from == to</tt>). |
|
* Values from subsequent elements in the original array are placed into |
|
* subsequent elements in the copy. The final index of the range |
|
* (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>, |
|
* may be greater than <tt>original.length</tt>, in which case |
|
* <tt>0L</tt> is placed in all elements of the copy whose index is |
|
* greater than or equal to <tt>original.length - from</tt>. The length |
|
* of the returned array will be <tt>to - from</tt>. |
|
* |
|
* @param original the array from which a range is to be copied |
|
* @param from the initial index of the range to be copied, inclusive |
|
* @param to the final index of the range to be copied, exclusive. |
|
* (This index may lie outside the array.) |
|
* @return a new array containing the specified range from the original array, |
|
* truncated or padded with zeros to obtain the required length |
|
* @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
|
* or {@code from > original.length} |
|
* @throws IllegalArgumentException if <tt>from > to</tt> |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
public static long[] copyOfRange(long[] original, int from, int to) { |
|
int newLength = to - from; |
|
if (newLength < 0) |
|
throw new IllegalArgumentException(from + " > " + to); |
|
long[] copy = new long[newLength]; |
|
System.arraycopy(original, from, copy, 0, |
|
Math.min(original.length - from, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified range of the specified array into a new array. |
|
* The initial index of the range (<tt>from</tt>) must lie between zero |
|
* and <tt>original.length</tt>, inclusive. The value at |
|
* <tt>original[from]</tt> is placed into the initial element of the copy |
|
* (unless <tt>from == original.length</tt> or <tt>from == to</tt>). |
|
* Values from subsequent elements in the original array are placed into |
|
* subsequent elements in the copy. The final index of the range |
|
* (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>, |
|
* may be greater than <tt>original.length</tt>, in which case |
|
* <tt>'\\u000'</tt> is placed in all elements of the copy whose index is |
|
* greater than or equal to <tt>original.length - from</tt>. The length |
|
* of the returned array will be <tt>to - from</tt>. |
|
* |
|
* @param original the array from which a range is to be copied |
|
* @param from the initial index of the range to be copied, inclusive |
|
* @param to the final index of the range to be copied, exclusive. |
|
* (This index may lie outside the array.) |
|
* @return a new array containing the specified range from the original array, |
|
* truncated or padded with null characters to obtain the required length |
|
* @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
|
* or {@code from > original.length} |
|
* @throws IllegalArgumentException if <tt>from > to</tt> |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
public static char[] copyOfRange(char[] original, int from, int to) { |
|
int newLength = to - from; |
|
if (newLength < 0) |
|
throw new IllegalArgumentException(from + " > " + to); |
|
char[] copy = new char[newLength]; |
|
System.arraycopy(original, from, copy, 0, |
|
Math.min(original.length - from, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified range of the specified array into a new array. |
|
* The initial index of the range (<tt>from</tt>) must lie between zero |
|
* and <tt>original.length</tt>, inclusive. The value at |
|
* <tt>original[from]</tt> is placed into the initial element of the copy |
|
* (unless <tt>from == original.length</tt> or <tt>from == to</tt>). |
|
* Values from subsequent elements in the original array are placed into |
|
* subsequent elements in the copy. The final index of the range |
|
* (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>, |
|
* may be greater than <tt>original.length</tt>, in which case |
|
* <tt>0f</tt> is placed in all elements of the copy whose index is |
|
* greater than or equal to <tt>original.length - from</tt>. The length |
|
* of the returned array will be <tt>to - from</tt>. |
|
* |
|
* @param original the array from which a range is to be copied |
|
* @param from the initial index of the range to be copied, inclusive |
|
* @param to the final index of the range to be copied, exclusive. |
|
* (This index may lie outside the array.) |
|
* @return a new array containing the specified range from the original array, |
|
* truncated or padded with zeros to obtain the required length |
|
* @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
|
* or {@code from > original.length} |
|
* @throws IllegalArgumentException if <tt>from > to</tt> |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
public static float[] copyOfRange(float[] original, int from, int to) { |
|
int newLength = to - from; |
|
if (newLength < 0) |
|
throw new IllegalArgumentException(from + " > " + to); |
|
float[] copy = new float[newLength]; |
|
System.arraycopy(original, from, copy, 0, |
|
Math.min(original.length - from, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified range of the specified array into a new array. |
|
* The initial index of the range (<tt>from</tt>) must lie between zero |
|
* and <tt>original.length</tt>, inclusive. The value at |
|
* <tt>original[from]</tt> is placed into the initial element of the copy |
|
* (unless <tt>from == original.length</tt> or <tt>from == to</tt>). |
|
* Values from subsequent elements in the original array are placed into |
|
* subsequent elements in the copy. The final index of the range |
|
* (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>, |
|
* may be greater than <tt>original.length</tt>, in which case |
|
* <tt>0d</tt> is placed in all elements of the copy whose index is |
|
* greater than or equal to <tt>original.length - from</tt>. The length |
|
* of the returned array will be <tt>to - from</tt>. |
|
* |
|
* @param original the array from which a range is to be copied |
|
* @param from the initial index of the range to be copied, inclusive |
|
* @param to the final index of the range to be copied, exclusive. |
|
* (This index may lie outside the array.) |
|
* @return a new array containing the specified range from the original array, |
|
* truncated or padded with zeros to obtain the required length |
|
* @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
|
* or {@code from > original.length} |
|
* @throws IllegalArgumentException if <tt>from > to</tt> |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
public static double[] copyOfRange(double[] original, int from, int to) { |
|
int newLength = to - from; |
|
if (newLength < 0) |
|
throw new IllegalArgumentException(from + " > " + to); |
|
double[] copy = new double[newLength]; |
|
System.arraycopy(original, from, copy, 0, |
|
Math.min(original.length - from, newLength)); |
|
return copy; |
|
} |
|
/** |
|
* Copies the specified range of the specified array into a new array. |
|
* The initial index of the range (<tt>from</tt>) must lie between zero |
|
* and <tt>original.length</tt>, inclusive. The value at |
|
* <tt>original[from]</tt> is placed into the initial element of the copy |
|
* (unless <tt>from == original.length</tt> or <tt>from == to</tt>). |
|
* Values from subsequent elements in the original array are placed into |
|
* subsequent elements in the copy. The final index of the range |
|
* (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>, |
|
* may be greater than <tt>original.length</tt>, in which case |
|
* <tt>false</tt> is placed in all elements of the copy whose index is |
|
* greater than or equal to <tt>original.length - from</tt>. The length |
|
* of the returned array will be <tt>to - from</tt>. |
|
* |
|
* @param original the array from which a range is to be copied |
|
* @param from the initial index of the range to be copied, inclusive |
|
* @param to the final index of the range to be copied, exclusive. |
|
* (This index may lie outside the array.) |
|
* @return a new array containing the specified range from the original array, |
|
* truncated or padded with false elements to obtain the required length |
|
* @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
|
* or {@code from > original.length} |
|
* @throws IllegalArgumentException if <tt>from > to</tt> |
|
* @throws NullPointerException if <tt>original</tt> is null |
|
* @since 1.6 |
|
*/ |
|
public static boolean[] copyOfRange(boolean[] original, int from, int to) { |
|
int newLength = to - from; |
|
if (newLength < 0) |
|
throw new IllegalArgumentException(from + " > " + to); |
|
boolean[] copy = new boolean[newLength]; |
|
System.arraycopy(original, from, copy, 0, |
|
Math.min(original.length - from, newLength)); |
|
return copy; |
|
} |
|
// Misc |
|
/** |
|
* Returns a fixed-size list backed by the specified array. (Changes to |
|
* the returned list "write through" to the array.) This method acts |
|
* as bridge between array-based and collection-based APIs, in |
|
* combination with {@link Collection#toArray}. The returned list is |
|
* serializable and implements {@link RandomAccess}. |
|
* |
|
* <p>This method also provides a convenient way to create a fixed-size |
|
* list initialized to contain several elements: |
|
* <pre> |
|
* List<String> stooges = Arrays.asList("Larry", "Moe", "Curly"); |
|
* </pre> |
|
* |
|
* @param <T> the class of the objects in the array |
|
* @param a the array by which the list will be backed |
|
* @return a list view of the specified array |
|
*/ |
|
@SafeVarargs |
|
@SuppressWarnings("varargs") |
|
public static <T> List<T> asList(T... a) { |
|
return new ArrayList<>(a); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
private static class ArrayList<E> extends AbstractList<E> |
|
implements RandomAccess, java.io.Serializable |
|
{ |
|
private static final long serialVersionUID = -2764017481108945198L; |
|
private final E[] a; |
|
ArrayList(E[] array) { |
|
a = Objects.requireNonNull(array); |
|
} |
|
@Override |
|
public int size() { |
|
return a.length; |
|
} |
|
@Override |
|
public Object[] toArray() { |
|
return a.clone(); |
|
} |
|
@Override |
|
@SuppressWarnings("unchecked") |
|
public <T> T[] toArray(T[] a) { |
|
int size = size(); |
|
if (a.length < size) |
|
return Arrays.copyOf(this.a, size, |
|
(Class<? extends T[]>) a.getClass()); |
|
System.arraycopy(this.a, 0, a, 0, size); |
|
if (a.length > size) |
|
a[size] = null; |
|
return a; |
|
} |
|
@Override |
|
public E get(int index) { |
|
return a[index]; |
|
} |
|
@Override |
|
public E set(int index, E element) { |
|
E oldValue = a[index]; |
|
a[index] = element; |
|
return oldValue; |
|
} |
|
@Override |
|
public int indexOf(Object o) { |
|
E[] a = this.a; |
|
if (o == null) { |
|
for (int i = 0; i < a.length; i++) |
|
if (a[i] == null) |
|
return i; |
|
} else { |
|
for (int i = 0; i < a.length; i++) |
|
if (o.equals(a[i])) |
|
return i; |
|
} |
|
return -1; |
|
} |
|
@Override |
|
public boolean contains(Object o) { |
|
return indexOf(o) != -1; |
|
} |
|
@Override |
|
public Spliterator<E> spliterator() { |
|
return Spliterators.spliterator(a, Spliterator.ORDERED); |
|
} |
|
@Override |
|
public void forEach(Consumer<? super E> action) { |
|
Objects.requireNonNull(action); |
|
for (E e : a) { |
|
action.accept(e); |
|
} |
|
} |
|
@Override |
|
public void replaceAll(UnaryOperator<E> operator) { |
|
Objects.requireNonNull(operator); |
|
E[] a = this.a; |
|
for (int i = 0; i < a.length; i++) { |
|
a[i] = operator.apply(a[i]); |
|
} |
|
} |
|
@Override |
|
public void sort(Comparator<? super E> c) { |
|
Arrays.sort(a, c); |
|
} |
|
} |
|
/** |
|
* Returns a hash code based on the contents of the specified array. |
|
* For any two <tt>long</tt> arrays <tt>a</tt> and <tt>b</tt> |
|
* such that <tt>Arrays.equals(a, b)</tt>, it is also the case that |
|
* <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>. |
|
* |
|
* <p>The value returned by this method is the same value that would be |
|
* obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>} |
|
* method on a {@link List} containing a sequence of {@link Long} |
|
* instances representing the elements of <tt>a</tt> in the same order. |
|
* If <tt>a</tt> is <tt>null</tt>, this method returns 0. |
|
* |
|
* @param a the array whose hash value to compute |
|
* @return a content-based hash code for <tt>a</tt> |
|
* @since 1.5 |
|
*/ |
|
public static int hashCode(long a[]) { |
|
if (a == null) |
|
return 0; |
|
int result = 1; |
|
for (long element : a) { |
|
int elementHash = (int)(element ^ (element >>> 32)); |
|
result = 31 * result + elementHash; |
|
} |
|
return result; |
|
} |
|
/** |
|
* Returns a hash code based on the contents of the specified array. |
|
* For any two non-null <tt>int</tt> arrays <tt>a</tt> and <tt>b</tt> |
|
* such that <tt>Arrays.equals(a, b)</tt>, it is also the case that |
|
* <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>. |
|
* |
|
* <p>The value returned by this method is the same value that would be |
|
* obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>} |
|
* method on a {@link List} containing a sequence of {@link Integer} |
|
* instances representing the elements of <tt>a</tt> in the same order. |
|
* If <tt>a</tt> is <tt>null</tt>, this method returns 0. |
|
* |
|
* @param a the array whose hash value to compute |
|
* @return a content-based hash code for <tt>a</tt> |
|
* @since 1.5 |
|
*/ |
|
public static int hashCode(int a[]) { |
|
if (a == null) |
|
return 0; |
|
int result = 1; |
|
for (int element : a) |
|
result = 31 * result + element; |
|
return result; |
|
} |
|
/** |
|
* Returns a hash code based on the contents of the specified array. |
|
* For any two <tt>short</tt> arrays <tt>a</tt> and <tt>b</tt> |
|
* such that <tt>Arrays.equals(a, b)</tt>, it is also the case that |
|
* <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>. |
|
* |
|
* <p>The value returned by this method is the same value that would be |
|
* obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>} |
|
* method on a {@link List} containing a sequence of {@link Short} |
|
* instances representing the elements of <tt>a</tt> in the same order. |
|
* If <tt>a</tt> is <tt>null</tt>, this method returns 0. |
|
* |
|
* @param a the array whose hash value to compute |
|
* @return a content-based hash code for <tt>a</tt> |
|
* @since 1.5 |
|
*/ |
|
public static int hashCode(short a[]) { |
|
if (a == null) |
|
return 0; |
|
int result = 1; |
|
for (short element : a) |
|
result = 31 * result + element; |
|
return result; |
|
} |
|
/** |
|
* Returns a hash code based on the contents of the specified array. |
|
* For any two <tt>char</tt> arrays <tt>a</tt> and <tt>b</tt> |
|
* such that <tt>Arrays.equals(a, b)</tt>, it is also the case that |
|
* <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>. |
|
* |
|
* <p>The value returned by this method is the same value that would be |
|
* obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>} |
|
* method on a {@link List} containing a sequence of {@link Character} |
|
* instances representing the elements of <tt>a</tt> in the same order. |
|
* If <tt>a</tt> is <tt>null</tt>, this method returns 0. |
|
* |
|
* @param a the array whose hash value to compute |
|
* @return a content-based hash code for <tt>a</tt> |
|
* @since 1.5 |
|
*/ |
|
public static int hashCode(char a[]) { |
|
if (a == null) |
|
return 0; |
|
int result = 1; |
|
for (char element : a) |
|
result = 31 * result + element; |
|
return result; |
|
} |
|
/** |
|
* Returns a hash code based on the contents of the specified array. |
|
* For any two <tt>byte</tt> arrays <tt>a</tt> and <tt>b</tt> |
|
* such that <tt>Arrays.equals(a, b)</tt>, it is also the case that |
|
* <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>. |
|
* |
|
* <p>The value returned by this method is the same value that would be |
|
* obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>} |
|
* method on a {@link List} containing a sequence of {@link Byte} |
|
* instances representing the elements of <tt>a</tt> in the same order. |
|
* If <tt>a</tt> is <tt>null</tt>, this method returns 0. |
|
* |
|
* @param a the array whose hash value to compute |
|
* @return a content-based hash code for <tt>a</tt> |
|
* @since 1.5 |
|
*/ |
|
public static int hashCode(byte a[]) { |
|
if (a == null) |
|
return 0; |
|
int result = 1; |
|
for (byte element : a) |
|
result = 31 * result + element; |
|
return result; |
|
} |
|
/** |
|
* Returns a hash code based on the contents of the specified array. |
|
* For any two <tt>boolean</tt> arrays <tt>a</tt> and <tt>b</tt> |
|
* such that <tt>Arrays.equals(a, b)</tt>, it is also the case that |
|
* <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>. |
|
* |
|
* <p>The value returned by this method is the same value that would be |
|
* obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>} |
|
* method on a {@link List} containing a sequence of {@link Boolean} |
|
* instances representing the elements of <tt>a</tt> in the same order. |
|
* If <tt>a</tt> is <tt>null</tt>, this method returns 0. |
|
* |
|
* @param a the array whose hash value to compute |
|
* @return a content-based hash code for <tt>a</tt> |
|
* @since 1.5 |
|
*/ |
|
public static int hashCode(boolean a[]) { |
|
if (a == null) |
|
return 0; |
|
int result = 1; |
|
for (boolean element : a) |
|
result = 31 * result + (element ? 1231 : 1237); |
|
return result; |
|
} |
|
/** |
|
* Returns a hash code based on the contents of the specified array. |
|
* For any two <tt>float</tt> arrays <tt>a</tt> and <tt>b</tt> |
|
* such that <tt>Arrays.equals(a, b)</tt>, it is also the case that |
|
* <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>. |
|
* |
|
* <p>The value returned by this method is the same value that would be |
|
* obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>} |
|
* method on a {@link List} containing a sequence of {@link Float} |
|
* instances representing the elements of <tt>a</tt> in the same order. |
|
* If <tt>a</tt> is <tt>null</tt>, this method returns 0. |
|
* |
|
* @param a the array whose hash value to compute |
|
* @return a content-based hash code for <tt>a</tt> |
|
* @since 1.5 |
|
*/ |
|
public static int hashCode(float a[]) { |
|
if (a == null) |
|
return 0; |
|
int result = 1; |
|
for (float element : a) |
|
result = 31 * result + Float.floatToIntBits(element); |
|
return result; |
|
} |
|
/** |
|
* Returns a hash code based on the contents of the specified array. |
|
* For any two <tt>double</tt> arrays <tt>a</tt> and <tt>b</tt> |
|
* such that <tt>Arrays.equals(a, b)</tt>, it is also the case that |
|
* <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>. |
|
* |
|
* <p>The value returned by this method is the same value that would be |
|
* obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>} |
|
* method on a {@link List} containing a sequence of {@link Double} |
|
* instances representing the elements of <tt>a</tt> in the same order. |
|
* If <tt>a</tt> is <tt>null</tt>, this method returns 0. |
|
* |
|
* @param a the array whose hash value to compute |
|
* @return a content-based hash code for <tt>a</tt> |
|
* @since 1.5 |
|
*/ |
|
public static int hashCode(double a[]) { |
|
if (a == null) |
|
return 0; |
|
int result = 1; |
|
for (double element : a) { |
|
long bits = Double.doubleToLongBits(element); |
|
result = 31 * result + (int)(bits ^ (bits >>> 32)); |
|
} |
|
return result; |
|
} |
|
/** |
|
* Returns a hash code based on the contents of the specified array. If |
|
* the array contains other arrays as elements, the hash code is based on |
|
* their identities rather than their contents. It is therefore |
|
* acceptable to invoke this method on an array that contains itself as an |
|
* element, either directly or indirectly through one or more levels of |
|
* arrays. |
|
* |
|
* <p>For any two arrays <tt>a</tt> and <tt>b</tt> such that |
|
* <tt>Arrays.equals(a, b)</tt>, it is also the case that |
|
* <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>. |
|
* |
|
* <p>The value returned by this method is equal to the value that would |
|
* be returned by <tt>Arrays.asList(a).hashCode()</tt>, unless <tt>a</tt> |
|
* is <tt>null</tt>, in which case <tt>0</tt> is returned. |
|
* |
|
* @param a the array whose content-based hash code to compute |
|
* @return a content-based hash code for <tt>a</tt> |
|
* @see #deepHashCode(Object[]) |
|
* @since 1.5 |
|
*/ |
|
public static int hashCode(Object a[]) { |
|
if (a == null) |
|
return 0; |
|
int result = 1; |
|
for (Object element : a) |
|
result = 31 * result + (element == null ? 0 : element.hashCode()); |
|
return result; |
|
} |
|
/** |
|
* Returns a hash code based on the "deep contents" of the specified |
|
* array. If the array contains other arrays as elements, the |
|
* hash code is based on their contents and so on, ad infinitum. |
|
* It is therefore unacceptable to invoke this method on an array that |
|
* contains itself as an element, either directly or indirectly through |
|
* one or more levels of arrays. The behavior of such an invocation is |
|
* undefined. |
|
* |
|
* <p>For any two arrays <tt>a</tt> and <tt>b</tt> such that |
|
* <tt>Arrays.deepEquals(a, b)</tt>, it is also the case that |
|
* <tt>Arrays.deepHashCode(a) == Arrays.deepHashCode(b)</tt>. |
|
* |
|
* <p>The computation of the value returned by this method is similar to |
|
* that of the value returned by {@link List#hashCode()} on a list |
|
* containing the same elements as <tt>a</tt> in the same order, with one |
|
* difference: If an element <tt>e</tt> of <tt>a</tt> is itself an array, |
|
* its hash code is computed not by calling <tt>e.hashCode()</tt>, but as |
|
* by calling the appropriate overloading of <tt>Arrays.hashCode(e)</tt> |
|
* if <tt>e</tt> is an array of a primitive type, or as by calling |
|
* <tt>Arrays.deepHashCode(e)</tt> recursively if <tt>e</tt> is an array |
|
* of a reference type. If <tt>a</tt> is <tt>null</tt>, this method |
|
* returns 0. |
|
* |
|
* @param a the array whose deep-content-based hash code to compute |
|
* @return a deep-content-based hash code for <tt>a</tt> |
|
* @see #hashCode(Object[]) |
|
* @since 1.5 |
|
*/ |
|
public static int deepHashCode(Object a[]) { |
|
if (a == null) |
|
return 0; |
|
int result = 1; |
|
for (Object element : a) { |
|
int elementHash = 0; |
|
if (element instanceof Object[]) |
|
elementHash = deepHashCode((Object[]) element); |
|
else if (element instanceof byte[]) |
|
elementHash = hashCode((byte[]) element); |
|
else if (element instanceof short[]) |
|
elementHash = hashCode((short[]) element); |
|
else if (element instanceof int[]) |
|
elementHash = hashCode((int[]) element); |
|
else if (element instanceof long[]) |
|
elementHash = hashCode((long[]) element); |
|
else if (element instanceof char[]) |
|
elementHash = hashCode((char[]) element); |
|
else if (element instanceof float[]) |
|
elementHash = hashCode((float[]) element); |
|
else if (element instanceof double[]) |
|
elementHash = hashCode((double[]) element); |
|
else if (element instanceof boolean[]) |
|
elementHash = hashCode((boolean[]) element); |
|
else if (element != null) |
|
elementHash = element.hashCode(); |
|
result = 31 * result + elementHash; |
|
} |
|
return result; |
|
} |
|
/** |
|
* Returns <tt>true</tt> if the two specified arrays are <i>deeply |
|
* equal</i> to one another. Unlike the {@link #equals(Object[],Object[])} |
|
* method, this method is appropriate for use with nested arrays of |
|
* arbitrary depth. |
|
* |
|
* <p>Two array references are considered deeply equal if both |
|
* are <tt>null</tt>, or if they refer to arrays that contain the same |
|
* number of elements and all corresponding pairs of elements in the two |
|
* arrays are deeply equal. |
|
* |
|
* <p>Two possibly <tt>null</tt> elements <tt>e1</tt> and <tt>e2</tt> are |
|
* deeply equal if any of the following conditions hold: |
|
* <ul> |
|
* <li> <tt>e1</tt> and <tt>e2</tt> are both arrays of object reference |
|
* types, and <tt>Arrays.deepEquals(e1, e2) would return true</tt> |
|
* <li> <tt>e1</tt> and <tt>e2</tt> are arrays of the same primitive |
|
* type, and the appropriate overloading of |
|
* <tt>Arrays.equals(e1, e2)</tt> would return true. |
|
* <li> <tt>e1 == e2</tt> |
|
* <li> <tt>e1.equals(e2)</tt> would return true. |
|
* </ul> |
|
* Note that this definition permits <tt>null</tt> elements at any depth. |
|
* |
|
* <p>If either of the specified arrays contain themselves as elements |
|
* either directly or indirectly through one or more levels of arrays, |
|
* the behavior of this method is undefined. |
|
* |
|
* @param a1 one array to be tested for equality |
|
* @param a2 the other array to be tested for equality |
|
* @return <tt>true</tt> if the two arrays are equal |
|
* @see #equals(Object[],Object[]) |
|
* @see Objects#deepEquals(Object, Object) |
|
* @since 1.5 |
|
*/ |
|
public static boolean deepEquals(Object[] a1, Object[] a2) { |
|
if (a1 == a2) |
|
return true; |
|
if (a1 == null || a2==null) |
|
return false; |
|
int length = a1.length; |
|
if (a2.length != length) |
|
return false; |
|
for (int i = 0; i < length; i++) { |
|
Object e1 = a1[i]; |
|
Object e2 = a2[i]; |
|
if (e1 == e2) |
|
continue; |
|
if (e1 == null) |
|
return false; |
|
// Figure out whether the two elements are equal |
|
boolean eq = deepEquals0(e1, e2); |
|
if (!eq) |
|
return false; |
|
} |
|
return true; |
|
} |
|
static boolean deepEquals0(Object e1, Object e2) { |
|
assert e1 != null; |
|
boolean eq; |
|
if (e1 instanceof Object[] && e2 instanceof Object[]) |
|
eq = deepEquals ((Object[]) e1, (Object[]) e2); |
|
else if (e1 instanceof byte[] && e2 instanceof byte[]) |
|
eq = equals((byte[]) e1, (byte[]) e2); |
|
else if (e1 instanceof short[] && e2 instanceof short[]) |
|
eq = equals((short[]) e1, (short[]) e2); |
|
else if (e1 instanceof int[] && e2 instanceof int[]) |
|
eq = equals((int[]) e1, (int[]) e2); |
|
else if (e1 instanceof long[] && e2 instanceof long[]) |
|
eq = equals((long[]) e1, (long[]) e2); |
|
else if (e1 instanceof char[] && e2 instanceof char[]) |
|
eq = equals((char[]) e1, (char[]) e2); |
|
else if (e1 instanceof float[] && e2 instanceof float[]) |
|
eq = equals((float[]) e1, (float[]) e2); |
|
else if (e1 instanceof double[] && e2 instanceof double[]) |
|
eq = equals((double[]) e1, (double[]) e2); |
|
else if (e1 instanceof boolean[] && e2 instanceof boolean[]) |
|
eq = equals((boolean[]) e1, (boolean[]) e2); |
|
else |
|
eq = e1.equals(e2); |
|
return eq; |
|
} |
|
/** |
|
* Returns a string representation of the contents of the specified array. |
|
* The string representation consists of a list of the array's elements, |
|
* enclosed in square brackets (<tt>"[]"</tt>). Adjacent elements are |
|
* separated by the characters <tt>", "</tt> (a comma followed by a |
|
* space). Elements are converted to strings as by |
|
* <tt>String.valueOf(long)</tt>. Returns <tt>"null"</tt> if <tt>a</tt> |
|
* is <tt>null</tt>. |
|
* |
|
* @param a the array whose string representation to return |
|
* @return a string representation of <tt>a</tt> |
|
* @since 1.5 |
|
*/ |
|
public static String toString(long[] a) { |
|
if (a == null) |
|
return "null"; |
|
int iMax = a.length - 1; |
|
if (iMax == -1) |
|
return "[]"; |
|
StringBuilder b = new StringBuilder(); |
|
b.append('['); |
|
for (int i = 0; ; i++) { |
|
b.append(a[i]); |
|
if (i == iMax) |
|
return b.append(']').toString(); |
|
b.append(", "); |
|
} |
|
} |
|
/** |
|
* Returns a string representation of the contents of the specified array. |
|
* The string representation consists of a list of the array's elements, |
|
* enclosed in square brackets (<tt>"[]"</tt>). Adjacent elements are |
|
* separated by the characters <tt>", "</tt> (a comma followed by a |
|
* space). Elements are converted to strings as by |
|
* <tt>String.valueOf(int)</tt>. Returns <tt>"null"</tt> if <tt>a</tt> is |
|
* <tt>null</tt>. |
|
* |
|
* @param a the array whose string representation to return |
|
* @return a string representation of <tt>a</tt> |
|
* @since 1.5 |
|
*/ |
|
public static String toString(int[] a) { |
|
if (a == null) |
|
return "null"; |
|
int iMax = a.length - 1; |
|
if (iMax == -1) |
|
return "[]"; |
|
StringBuilder b = new StringBuilder(); |
|
b.append('['); |
|
for (int i = 0; ; i++) { |
|
b.append(a[i]); |
|
if (i == iMax) |
|
return b.append(']').toString(); |
|
b.append(", "); |
|
} |
|
} |
|
/** |
|
* Returns a string representation of the contents of the specified array. |
|
* The string representation consists of a list of the array's elements, |
|
* enclosed in square brackets (<tt>"[]"</tt>). Adjacent elements are |
|
* separated by the characters <tt>", "</tt> (a comma followed by a |
|
* space). Elements are converted to strings as by |
|
* <tt>String.valueOf(short)</tt>. Returns <tt>"null"</tt> if <tt>a</tt> |
|
* is <tt>null</tt>. |
|
* |
|
* @param a the array whose string representation to return |
|
* @return a string representation of <tt>a</tt> |
|
* @since 1.5 |
|
*/ |
|
public static String toString(short[] a) { |
|
if (a == null) |
|
return "null"; |
|
int iMax = a.length - 1; |
|
if (iMax == -1) |
|
return "[]"; |
|
StringBuilder b = new StringBuilder(); |
|
b.append('['); |
|
for (int i = 0; ; i++) { |
|
b.append(a[i]); |
|
if (i == iMax) |
|
return b.append(']').toString(); |
|
b.append(", "); |
|
} |
|
} |
|
/** |
|
* Returns a string representation of the contents of the specified array. |
|
* The string representation consists of a list of the array's elements, |
|
* enclosed in square brackets (<tt>"[]"</tt>). Adjacent elements are |
|
* separated by the characters <tt>", "</tt> (a comma followed by a |
|
* space). Elements are converted to strings as by |
|
* <tt>String.valueOf(char)</tt>. Returns <tt>"null"</tt> if <tt>a</tt> |
|
* is <tt>null</tt>. |
|
* |
|
* @param a the array whose string representation to return |
|
* @return a string representation of <tt>a</tt> |
|
* @since 1.5 |
|
*/ |
|
public static String toString(char[] a) { |
|
if (a == null) |
|
return "null"; |
|
int iMax = a.length - 1; |
|
if (iMax == -1) |
|
return "[]"; |
|
StringBuilder b = new StringBuilder(); |
|
b.append('['); |
|
for (int i = 0; ; i++) { |
|
b.append(a[i]); |
|
if (i == iMax) |
|
return b.append(']').toString(); |
|
b.append(", "); |
|
} |
|
} |
|
/** |
|
* Returns a string representation of the contents of the specified array. |
|
* The string representation consists of a list of the array's elements, |
|
* enclosed in square brackets (<tt>"[]"</tt>). Adjacent elements |
|
* are separated by the characters <tt>", "</tt> (a comma followed |
|
* by a space). Elements are converted to strings as by |
|
* <tt>String.valueOf(byte)</tt>. Returns <tt>"null"</tt> if |
|
* <tt>a</tt> is <tt>null</tt>. |
|
* |
|
* @param a the array whose string representation to return |
|
* @return a string representation of <tt>a</tt> |
|
* @since 1.5 |
|
*/ |
|
public static String toString(byte[] a) { |
|
if (a == null) |
|
return "null"; |
|
int iMax = a.length - 1; |
|
if (iMax == -1) |
|
return "[]"; |
|
StringBuilder b = new StringBuilder(); |
|
b.append('['); |
|
for (int i = 0; ; i++) { |
|
b.append(a[i]); |
|
if (i == iMax) |
|
return b.append(']').toString(); |
|
b.append(", "); |
|
} |
|
} |
|
/** |
|
* Returns a string representation of the contents of the specified array. |
|
* The string representation consists of a list of the array's elements, |
|
* enclosed in square brackets (<tt>"[]"</tt>). Adjacent elements are |
|
* separated by the characters <tt>", "</tt> (a comma followed by a |
|
* space). Elements are converted to strings as by |
|
* <tt>String.valueOf(boolean)</tt>. Returns <tt>"null"</tt> if |
|
* <tt>a</tt> is <tt>null</tt>. |
|
* |
|
* @param a the array whose string representation to return |
|
* @return a string representation of <tt>a</tt> |
|
* @since 1.5 |
|
*/ |
|
public static String toString(boolean[] a) { |
|
if (a == null) |
|
return "null"; |
|
int iMax = a.length - 1; |
|
if (iMax == -1) |
|
return "[]"; |
|
StringBuilder b = new StringBuilder(); |
|
b.append('['); |
|
for (int i = 0; ; i++) { |
|
b.append(a[i]); |
|
if (i == iMax) |
|
return b.append(']').toString(); |
|
b.append(", "); |
|
} |
|
} |
|
/** |
|
* Returns a string representation of the contents of the specified array. |
|
* The string representation consists of a list of the array's elements, |
|
* enclosed in square brackets (<tt>"[]"</tt>). Adjacent elements are |
|
* separated by the characters <tt>", "</tt> (a comma followed by a |
|
* space). Elements are converted to strings as by |
|
* <tt>String.valueOf(float)</tt>. Returns <tt>"null"</tt> if <tt>a</tt> |
|
* is <tt>null</tt>. |
|
* |
|
* @param a the array whose string representation to return |
|
* @return a string representation of <tt>a</tt> |
|
* @since 1.5 |
|
*/ |
|
public static String toString(float[] a) { |
|
if (a == null) |
|
return "null"; |
|
int iMax = a.length - 1; |
|
if (iMax == -1) |
|
return "[]"; |
|
StringBuilder b = new StringBuilder(); |
|
b.append('['); |
|
for (int i = 0; ; i++) { |
|
b.append(a[i]); |
|
if (i == iMax) |
|
return b.append(']').toString(); |
|
b.append(", "); |
|
} |
|
} |
|
/** |
|
* Returns a string representation of the contents of the specified array. |
|
* The string representation consists of a list of the array's elements, |
|
* enclosed in square brackets (<tt>"[]"</tt>). Adjacent elements are |
|
* separated by the characters <tt>", "</tt> (a comma followed by a |
|
* space). Elements are converted to strings as by |
|
* <tt>String.valueOf(double)</tt>. Returns <tt>"null"</tt> if <tt>a</tt> |
|
* is <tt>null</tt>. |
|
* |
|
* @param a the array whose string representation to return |
|
* @return a string representation of <tt>a</tt> |
|
* @since 1.5 |
|
*/ |
|
public static String toString(double[] a) { |
|
if (a == null) |
|
return "null"; |
|
int iMax = a.length - 1; |
|
if (iMax == -1) |
|
return "[]"; |
|
StringBuilder b = new StringBuilder(); |
|
b.append('['); |
|
for (int i = 0; ; i++) { |
|
b.append(a[i]); |
|
if (i == iMax) |
|
return b.append(']').toString(); |
|
b.append(", "); |
|
} |
|
} |
|
/** |
|
* Returns a string representation of the contents of the specified array. |
|
* If the array contains other arrays as elements, they are converted to |
|
* strings by the {@link Object#toString} method inherited from |
|
* <tt>Object</tt>, which describes their <i>identities</i> rather than |
|
* their contents. |
|
* |
|
* <p>The value returned by this method is equal to the value that would |
|
* be returned by <tt>Arrays.asList(a).toString()</tt>, unless <tt>a</tt> |
|
* is <tt>null</tt>, in which case <tt>"null"</tt> is returned. |
|
* |
|
* @param a the array whose string representation to return |
|
* @return a string representation of <tt>a</tt> |
|
* @see #deepToString(Object[]) |
|
* @since 1.5 |
|
*/ |
|
public static String toString(Object[] a) { |
|
if (a == null) |
|
return "null"; |
|
int iMax = a.length - 1; |
|
if (iMax == -1) |
|
return "[]"; |
|
StringBuilder b = new StringBuilder(); |
|
b.append('['); |
|
for (int i = 0; ; i++) { |
|
b.append(String.valueOf(a[i])); |
|
if (i == iMax) |
|
return b.append(']').toString(); |
|
b.append(", "); |
|
} |
|
} |
|
/** |
|
* Returns a string representation of the "deep contents" of the specified |
|
* array. If the array contains other arrays as elements, the string |
|
* representation contains their contents and so on. This method is |
|
* designed for converting multidimensional arrays to strings. |
|
* |
|
* <p>The string representation consists of a list of the array's |
|
* elements, enclosed in square brackets (<tt>"[]"</tt>). Adjacent |
|
* elements are separated by the characters <tt>", "</tt> (a comma |
|
* followed by a space). Elements are converted to strings as by |
|
* <tt>String.valueOf(Object)</tt>, unless they are themselves |
|
* arrays. |
|
* |
|
* <p>If an element <tt>e</tt> is an array of a primitive type, it is |
|
* converted to a string as by invoking the appropriate overloading of |
|
* <tt>Arrays.toString(e)</tt>. If an element <tt>e</tt> is an array of a |
|
* reference type, it is converted to a string as by invoking |
|
* this method recursively. |
|
* |
|
* <p>To avoid infinite recursion, if the specified array contains itself |
|
* as an element, or contains an indirect reference to itself through one |
|
* or more levels of arrays, the self-reference is converted to the string |
|
* <tt>"[...]"</tt>. For example, an array containing only a reference |
|
* to itself would be rendered as <tt>"[[...]]"</tt>. |
|
* |
|
* <p>This method returns <tt>"null"</tt> if the specified array |
|
* is <tt>null</tt>. |
|
* |
|
* @param a the array whose string representation to return |
|
* @return a string representation of <tt>a</tt> |
|
* @see #toString(Object[]) |
|
* @since 1.5 |
|
*/ |
|
public static String deepToString(Object[] a) { |
|
if (a == null) |
|
return "null"; |
|
int bufLen = 20 * a.length; |
|
if (a.length != 0 && bufLen <= 0) |
|
bufLen = Integer.MAX_VALUE; |
|
StringBuilder buf = new StringBuilder(bufLen); |
|
deepToString(a, buf, new HashSet<Object[]>()); |
|
return buf.toString(); |
|
} |
|
private static void deepToString(Object[] a, StringBuilder buf, |
|
Set<Object[]> dejaVu) { |
|
if (a == null) { |
|
buf.append("null"); |
|
return; |
|
} |
|
int iMax = a.length - 1; |
|
if (iMax == -1) { |
|
buf.append("[]"); |
|
return; |
|
} |
|
dejaVu.add(a); |
|
buf.append('['); |
|
for (int i = 0; ; i++) { |
|
Object element = a[i]; |
|
if (element == null) { |
|
buf.append("null"); |
|
} else { |
|
Class<?> eClass = element.getClass(); |
|
if (eClass.isArray()) { |
|
if (eClass == byte[].class) |
|
buf.append(toString((byte[]) element)); |
|
else if (eClass == short[].class) |
|
buf.append(toString((short[]) element)); |
|
else if (eClass == int[].class) |
|
buf.append(toString((int[]) element)); |
|
else if (eClass == long[].class) |
|
buf.append(toString((long[]) element)); |
|
else if (eClass == char[].class) |
|
buf.append(toString((char[]) element)); |
|
else if (eClass == float[].class) |
|
buf.append(toString((float[]) element)); |
|
else if (eClass == double[].class) |
|
buf.append(toString((double[]) element)); |
|
else if (eClass == boolean[].class) |
|
buf.append(toString((boolean[]) element)); |
|
else { // element is an array of object references |
|
if (dejaVu.contains(element)) |
|
buf.append("[...]"); |
|
else |
|
deepToString((Object[])element, buf, dejaVu); |
|
} |
|
} else { // element is non-null and not an array |
|
buf.append(element.toString()); |
|
} |
|
} |
|
if (i == iMax) |
|
break; |
|
buf.append(", "); |
|
} |
|
buf.append(']'); |
|
dejaVu.remove(a); |
|
} |
|
/** |
|
* Set all elements of the specified array, using the provided |
|
* generator function to compute each element. |
|
* |
|
* <p>If the generator function throws an exception, it is relayed to |
|
* the caller and the array is left in an indeterminate state. |
|
* |
|
* @param <T> type of elements of the array |
|
* @param array array to be initialized |
|
* @param generator a function accepting an index and producing the desired |
|
* value for that position |
|
* @throws NullPointerException if the generator is null |
|
* @since 1.8 |
|
*/ |
|
public static <T> void setAll(T[] array, IntFunction<? extends T> generator) { |
|
Objects.requireNonNull(generator); |
|
for (int i = 0; i < array.length; i++) |
|
array[i] = generator.apply(i); |
|
} |
|
/** |
|
* Set all elements of the specified array, in parallel, using the |
|
* provided generator function to compute each element. |
|
* |
|
* <p>If the generator function throws an exception, an unchecked exception |
|
* is thrown from {@code parallelSetAll} and the array is left in an |
|
* indeterminate state. |
|
* |
|
* @param <T> type of elements of the array |
|
* @param array array to be initialized |
|
* @param generator a function accepting an index and producing the desired |
|
* value for that position |
|
* @throws NullPointerException if the generator is null |
|
* @since 1.8 |
|
*/ |
|
public static <T> void parallelSetAll(T[] array, IntFunction<? extends T> generator) { |
|
Objects.requireNonNull(generator); |
|
IntStream.range(0, array.length).parallel().forEach(i -> { array[i] = generator.apply(i); }); |
|
} |
|
/** |
|
* Set all elements of the specified array, using the provided |
|
* generator function to compute each element. |
|
* |
|
* <p>If the generator function throws an exception, it is relayed to |
|
* the caller and the array is left in an indeterminate state. |
|
* |
|
* @param array array to be initialized |
|
* @param generator a function accepting an index and producing the desired |
|
* value for that position |
|
* @throws NullPointerException if the generator is null |
|
* @since 1.8 |
|
*/ |
|
public static void setAll(int[] array, IntUnaryOperator generator) { |
|
Objects.requireNonNull(generator); |
|
for (int i = 0; i < array.length; i++) |
|
array[i] = generator.applyAsInt(i); |
|
} |
|
/** |
|
* Set all elements of the specified array, in parallel, using the |
|
* provided generator function to compute each element. |
|
* |
|
* <p>If the generator function throws an exception, an unchecked exception |
|
* is thrown from {@code parallelSetAll} and the array is left in an |
|
* indeterminate state. |
|
* |
|
* @param array array to be initialized |
|
* @param generator a function accepting an index and producing the desired |
|
* value for that position |
|
* @throws NullPointerException if the generator is null |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSetAll(int[] array, IntUnaryOperator generator) { |
|
Objects.requireNonNull(generator); |
|
IntStream.range(0, array.length).parallel().forEach(i -> { array[i] = generator.applyAsInt(i); }); |
|
} |
|
/** |
|
* Set all elements of the specified array, using the provided |
|
* generator function to compute each element. |
|
* |
|
* <p>If the generator function throws an exception, it is relayed to |
|
* the caller and the array is left in an indeterminate state. |
|
* |
|
* @param array array to be initialized |
|
* @param generator a function accepting an index and producing the desired |
|
* value for that position |
|
* @throws NullPointerException if the generator is null |
|
* @since 1.8 |
|
*/ |
|
public static void setAll(long[] array, IntToLongFunction generator) { |
|
Objects.requireNonNull(generator); |
|
for (int i = 0; i < array.length; i++) |
|
array[i] = generator.applyAsLong(i); |
|
} |
|
/** |
|
* Set all elements of the specified array, in parallel, using the |
|
* provided generator function to compute each element. |
|
* |
|
* <p>If the generator function throws an exception, an unchecked exception |
|
* is thrown from {@code parallelSetAll} and the array is left in an |
|
* indeterminate state. |
|
* |
|
* @param array array to be initialized |
|
* @param generator a function accepting an index and producing the desired |
|
* value for that position |
|
* @throws NullPointerException if the generator is null |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSetAll(long[] array, IntToLongFunction generator) { |
|
Objects.requireNonNull(generator); |
|
IntStream.range(0, array.length).parallel().forEach(i -> { array[i] = generator.applyAsLong(i); }); |
|
} |
|
/** |
|
* Set all elements of the specified array, using the provided |
|
* generator function to compute each element. |
|
* |
|
* <p>If the generator function throws an exception, it is relayed to |
|
* the caller and the array is left in an indeterminate state. |
|
* |
|
* @param array array to be initialized |
|
* @param generator a function accepting an index and producing the desired |
|
* value for that position |
|
* @throws NullPointerException if the generator is null |
|
* @since 1.8 |
|
*/ |
|
public static void setAll(double[] array, IntToDoubleFunction generator) { |
|
Objects.requireNonNull(generator); |
|
for (int i = 0; i < array.length; i++) |
|
array[i] = generator.applyAsDouble(i); |
|
} |
|
/** |
|
* Set all elements of the specified array, in parallel, using the |
|
* provided generator function to compute each element. |
|
* |
|
* <p>If the generator function throws an exception, an unchecked exception |
|
* is thrown from {@code parallelSetAll} and the array is left in an |
|
* indeterminate state. |
|
* |
|
* @param array array to be initialized |
|
* @param generator a function accepting an index and producing the desired |
|
* value for that position |
|
* @throws NullPointerException if the generator is null |
|
* @since 1.8 |
|
*/ |
|
public static void parallelSetAll(double[] array, IntToDoubleFunction generator) { |
|
Objects.requireNonNull(generator); |
|
IntStream.range(0, array.length).parallel().forEach(i -> { array[i] = generator.applyAsDouble(i); }); |
|
} |
|
/** |
|
* Returns a {@link Spliterator} covering all of the specified array. |
|
* |
|
* <p>The spliterator reports {@link Spliterator#SIZED}, |
|
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and |
|
* {@link Spliterator#IMMUTABLE}. |
|
* |
|
* @param <T> type of elements |
|
* @param array the array, assumed to be unmodified during use |
|
* @return a spliterator for the array elements |
|
* @since 1.8 |
|
*/ |
|
public static <T> Spliterator<T> spliterator(T[] array) { |
|
return Spliterators.spliterator(array, |
|
Spliterator.ORDERED | Spliterator.IMMUTABLE); |
|
} |
|
/** |
|
* Returns a {@link Spliterator} covering the specified range of the |
|
* specified array. |
|
* |
|
* <p>The spliterator reports {@link Spliterator#SIZED}, |
|
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and |
|
* {@link Spliterator#IMMUTABLE}. |
|
* |
|
* @param <T> type of elements |
|
* @param array the array, assumed to be unmodified during use |
|
* @param startInclusive the first index to cover, inclusive |
|
* @param endExclusive index immediately past the last index to cover |
|
* @return a spliterator for the array elements |
|
* @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is |
|
* negative, {@code endExclusive} is less than |
|
* {@code startInclusive}, or {@code endExclusive} is greater than |
|
* the array size |
|
* @since 1.8 |
|
*/ |
|
public static <T> Spliterator<T> spliterator(T[] array, int startInclusive, int endExclusive) { |
|
return Spliterators.spliterator(array, startInclusive, endExclusive, |
|
Spliterator.ORDERED | Spliterator.IMMUTABLE); |
|
} |
|
/** |
|
* Returns a {@link Spliterator.OfInt} covering all of the specified array. |
|
* |
|
* <p>The spliterator reports {@link Spliterator#SIZED}, |
|
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and |
|
* {@link Spliterator#IMMUTABLE}. |
|
* |
|
* @param array the array, assumed to be unmodified during use |
|
* @return a spliterator for the array elements |
|
* @since 1.8 |
|
*/ |
|
public static Spliterator.OfInt spliterator(int[] array) { |
|
return Spliterators.spliterator(array, |
|
Spliterator.ORDERED | Spliterator.IMMUTABLE); |
|
} |
|
/** |
|
* Returns a {@link Spliterator.OfInt} covering the specified range of the |
|
* specified array. |
|
* |
|
* <p>The spliterator reports {@link Spliterator#SIZED}, |
|
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and |
|
* {@link Spliterator#IMMUTABLE}. |
|
* |
|
* @param array the array, assumed to be unmodified during use |
|
* @param startInclusive the first index to cover, inclusive |
|
* @param endExclusive index immediately past the last index to cover |
|
* @return a spliterator for the array elements |
|
* @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is |
|
* negative, {@code endExclusive} is less than |
|
* {@code startInclusive}, or {@code endExclusive} is greater than |
|
* the array size |
|
* @since 1.8 |
|
*/ |
|
public static Spliterator.OfInt spliterator(int[] array, int startInclusive, int endExclusive) { |
|
return Spliterators.spliterator(array, startInclusive, endExclusive, |
|
Spliterator.ORDERED | Spliterator.IMMUTABLE); |
|
} |
|
/** |
|
* Returns a {@link Spliterator.OfLong} covering all of the specified array. |
|
* |
|
* <p>The spliterator reports {@link Spliterator#SIZED}, |
|
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and |
|
* {@link Spliterator#IMMUTABLE}. |
|
* |
|
* @param array the array, assumed to be unmodified during use |
|
* @return the spliterator for the array elements |
|
* @since 1.8 |
|
*/ |
|
public static Spliterator.OfLong spliterator(long[] array) { |
|
return Spliterators.spliterator(array, |
|
Spliterator.ORDERED | Spliterator.IMMUTABLE); |
|
} |
|
/** |
|
* Returns a {@link Spliterator.OfLong} covering the specified range of the |
|
* specified array. |
|
* |
|
* <p>The spliterator reports {@link Spliterator#SIZED}, |
|
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and |
|
* {@link Spliterator#IMMUTABLE}. |
|
* |
|
* @param array the array, assumed to be unmodified during use |
|
* @param startInclusive the first index to cover, inclusive |
|
* @param endExclusive index immediately past the last index to cover |
|
* @return a spliterator for the array elements |
|
* @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is |
|
* negative, {@code endExclusive} is less than |
|
* {@code startInclusive}, or {@code endExclusive} is greater than |
|
* the array size |
|
* @since 1.8 |
|
*/ |
|
public static Spliterator.OfLong spliterator(long[] array, int startInclusive, int endExclusive) { |
|
return Spliterators.spliterator(array, startInclusive, endExclusive, |
|
Spliterator.ORDERED | Spliterator.IMMUTABLE); |
|
} |
|
/** |
|
* Returns a {@link Spliterator.OfDouble} covering all of the specified |
|
* array. |
|
* |
|
* <p>The spliterator reports {@link Spliterator#SIZED}, |
|
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and |
|
* {@link Spliterator#IMMUTABLE}. |
|
* |
|
* @param array the array, assumed to be unmodified during use |
|
* @return a spliterator for the array elements |
|
* @since 1.8 |
|
*/ |
|
public static Spliterator.OfDouble spliterator(double[] array) { |
|
return Spliterators.spliterator(array, |
|
Spliterator.ORDERED | Spliterator.IMMUTABLE); |
|
} |
|
/** |
|
* Returns a {@link Spliterator.OfDouble} covering the specified range of |
|
* the specified array. |
|
* |
|
* <p>The spliterator reports {@link Spliterator#SIZED}, |
|
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and |
|
* {@link Spliterator#IMMUTABLE}. |
|
* |
|
* @param array the array, assumed to be unmodified during use |
|
* @param startInclusive the first index to cover, inclusive |
|
* @param endExclusive index immediately past the last index to cover |
|
* @return a spliterator for the array elements |
|
* @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is |
|
* negative, {@code endExclusive} is less than |
|
* {@code startInclusive}, or {@code endExclusive} is greater than |
|
* the array size |
|
* @since 1.8 |
|
*/ |
|
public static Spliterator.OfDouble spliterator(double[] array, int startInclusive, int endExclusive) { |
|
return Spliterators.spliterator(array, startInclusive, endExclusive, |
|
Spliterator.ORDERED | Spliterator.IMMUTABLE); |
|
} |
|
/** |
|
* Returns a sequential {@link Stream} with the specified array as its |
|
* source. |
|
* |
|
* @param <T> The type of the array elements |
|
* @param array The array, assumed to be unmodified during use |
|
* @return a {@code Stream} for the array |
|
* @since 1.8 |
|
*/ |
|
public static <T> Stream<T> stream(T[] array) { |
|
return stream(array, 0, array.length); |
|
} |
|
/** |
|
* Returns a sequential {@link Stream} with the specified range of the |
|
* specified array as its source. |
|
* |
|
* @param <T> the type of the array elements |
|
* @param array the array, assumed to be unmodified during use |
|
* @param startInclusive the first index to cover, inclusive |
|
* @param endExclusive index immediately past the last index to cover |
|
* @return a {@code Stream} for the array range |
|
* @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is |
|
* negative, {@code endExclusive} is less than |
|
* {@code startInclusive}, or {@code endExclusive} is greater than |
|
* the array size |
|
* @since 1.8 |
|
*/ |
|
public static <T> Stream<T> stream(T[] array, int startInclusive, int endExclusive) { |
|
return StreamSupport.stream(spliterator(array, startInclusive, endExclusive), false); |
|
} |
|
/** |
|
* Returns a sequential {@link IntStream} with the specified array as its |
|
* source. |
|
* |
|
* @param array the array, assumed to be unmodified during use |
|
* @return an {@code IntStream} for the array |
|
* @since 1.8 |
|
*/ |
|
public static IntStream stream(int[] array) { |
|
return stream(array, 0, array.length); |
|
} |
|
/** |
|
* Returns a sequential {@link IntStream} with the specified range of the |
|
* specified array as its source. |
|
* |
|
* @param array the array, assumed to be unmodified during use |
|
* @param startInclusive the first index to cover, inclusive |
|
* @param endExclusive index immediately past the last index to cover |
|
* @return an {@code IntStream} for the array range |
|
* @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is |
|
* negative, {@code endExclusive} is less than |
|
* {@code startInclusive}, or {@code endExclusive} is greater than |
|
* the array size |
|
* @since 1.8 |
|
*/ |
|
public static IntStream stream(int[] array, int startInclusive, int endExclusive) { |
|
return StreamSupport.intStream(spliterator(array, startInclusive, endExclusive), false); |
|
} |
|
/** |
|
* Returns a sequential {@link LongStream} with the specified array as its |
|
* source. |
|
* |
|
* @param array the array, assumed to be unmodified during use |
|
* @return a {@code LongStream} for the array |
|
* @since 1.8 |
|
*/ |
|
public static LongStream stream(long[] array) { |
|
return stream(array, 0, array.length); |
|
} |
|
/** |
|
* Returns a sequential {@link LongStream} with the specified range of the |
|
* specified array as its source. |
|
* |
|
* @param array the array, assumed to be unmodified during use |
|
* @param startInclusive the first index to cover, inclusive |
|
* @param endExclusive index immediately past the last index to cover |
|
* @return a {@code LongStream} for the array range |
|
* @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is |
|
* negative, {@code endExclusive} is less than |
|
* {@code startInclusive}, or {@code endExclusive} is greater than |
|
* the array size |
|
* @since 1.8 |
|
*/ |
|
public static LongStream stream(long[] array, int startInclusive, int endExclusive) { |
|
return StreamSupport.longStream(spliterator(array, startInclusive, endExclusive), false); |
|
} |
|
/** |
|
* Returns a sequential {@link DoubleStream} with the specified array as its |
|
* source. |
|
* |
|
* @param array the array, assumed to be unmodified during use |
|
* @return a {@code DoubleStream} for the array |
|
* @since 1.8 |
|
*/ |
|
public static DoubleStream stream(double[] array) { |
|
return stream(array, 0, array.length); |
|
} |
|
/** |
|
* Returns a sequential {@link DoubleStream} with the specified range of the |
|
* specified array as its source. |
|
* |
|
* @param array the array, assumed to be unmodified during use |
|
* @param startInclusive the first index to cover, inclusive |
|
* @param endExclusive index immediately past the last index to cover |
|
* @return a {@code DoubleStream} for the array range |
|
* @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is |
|
* negative, {@code endExclusive} is less than |
|
* {@code startInclusive}, or {@code endExclusive} is greater than |
|
* the array size |
|
* @since 1.8 |
|
*/ |
|
public static DoubleStream stream(double[] array, int startInclusive, int endExclusive) { |
|
return StreamSupport.doubleStream(spliterator(array, startInclusive, endExclusive), false); |
|
} |
|
} |