/* |
|
* Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved. |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
package java.util; |
|
import java.util.function.Consumer; |
|
import java.util.function.Predicate; |
|
import jdk.internal.misc.SharedSecrets; |
|
/** |
|
* An unbounded priority {@linkplain Queue queue} based on a priority heap. |
|
* The elements of the priority queue are ordered according to their |
|
* {@linkplain Comparable natural ordering}, or by a {@link Comparator} |
|
* provided at queue construction time, depending on which constructor is |
|
* used. A priority queue does not permit {@code null} elements. |
|
* A priority queue relying on natural ordering also does not permit |
|
* insertion of non-comparable objects (doing so may result in |
|
* {@code ClassCastException}). |
|
* |
|
* <p>The <em>head</em> of this queue is the <em>least</em> element |
|
* with respect to the specified ordering. If multiple elements are |
|
* tied for least value, the head is one of those elements -- ties are |
|
* broken arbitrarily. The queue retrieval operations {@code poll}, |
|
* {@code remove}, {@code peek}, and {@code element} access the |
|
* element at the head of the queue. |
|
* |
|
* <p>A priority queue is unbounded, but has an internal |
|
* <i>capacity</i> governing the size of an array used to store the |
|
* elements on the queue. It is always at least as large as the queue |
|
* size. As elements are added to a priority queue, its capacity |
|
* grows automatically. The details of the growth policy are not |
|
* specified. |
|
* |
|
* <p>This class and its iterator implement all of the |
|
* <em>optional</em> methods of the {@link Collection} and {@link |
|
* Iterator} interfaces. The Iterator provided in method {@link |
|
* #iterator()} and the Spliterator provided in method {@link #spliterator()} |
|
* are <em>not</em> guaranteed to traverse the elements of |
|
* the priority queue in any particular order. If you need ordered |
|
* traversal, consider using {@code Arrays.sort(pq.toArray())}. |
|
* |
|
* <p><strong>Note that this implementation is not synchronized.</strong> |
|
* Multiple threads should not access a {@code PriorityQueue} |
|
* instance concurrently if any of the threads modifies the queue. |
|
* Instead, use the thread-safe {@link |
|
* java.util.concurrent.PriorityBlockingQueue} class. |
|
* |
|
* <p>Implementation note: this implementation provides |
|
* O(log(n)) time for the enqueuing and dequeuing methods |
|
* ({@code offer}, {@code poll}, {@code remove()} and {@code add}); |
|
* linear time for the {@code remove(Object)} and {@code contains(Object)} |
|
* methods; and constant time for the retrieval methods |
|
* ({@code peek}, {@code element}, and {@code size}). |
|
* |
|
* <p>This class is a member of the |
|
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework"> |
|
* Java Collections Framework</a>. |
|
* |
|
* @since 1.5 |
|
* @author Josh Bloch, Doug Lea |
|
* @param <E> the type of elements held in this queue |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public class PriorityQueue<E> extends AbstractQueue<E> |
|
implements java.io.Serializable { |
|
private static final long serialVersionUID = -7720805057305804111L; |
|
private static final int DEFAULT_INITIAL_CAPACITY = 11; |
|
/** |
|
* Priority queue represented as a balanced binary heap: the two |
|
* children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The |
|
* priority queue is ordered by comparator, or by the elements' |
|
* natural ordering, if comparator is null: For each node n in the |
|
* heap and each descendant d of n, n <= d. The element with the |
|
* lowest value is in queue[0], assuming the queue is nonempty. |
|
*/ |
|
transient Object[] queue; // non-private to simplify nested class access |
|
/** |
|
* The number of elements in the priority queue. |
|
*/ |
|
int size; |
|
/** |
|
* The comparator, or null if priority queue uses elements' |
|
* natural ordering. |
|
*/ |
|
private final Comparator<? super E> comparator; |
|
/** |
|
* The number of times this priority queue has been |
|
* <i>structurally modified</i>. See AbstractList for gory details. |
|
*/ |
|
transient int modCount; // non-private to simplify nested class access |
|
/** |
|
* Creates a {@code PriorityQueue} with the default initial |
|
* capacity (11) that orders its elements according to their |
|
* {@linkplain Comparable natural ordering}. |
|
*/ |
|
public PriorityQueue() { |
|
this(DEFAULT_INITIAL_CAPACITY, null); |
|
} |
|
/** |
|
* Creates a {@code PriorityQueue} with the specified initial |
|
* capacity that orders its elements according to their |
|
* {@linkplain Comparable natural ordering}. |
|
* |
|
* @param initialCapacity the initial capacity for this priority queue |
|
* @throws IllegalArgumentException if {@code initialCapacity} is less |
|
* than 1 |
|
*/ |
|
public PriorityQueue(int initialCapacity) { |
|
this(initialCapacity, null); |
|
} |
|
/** |
|
* Creates a {@code PriorityQueue} with the default initial capacity and |
|
* whose elements are ordered according to the specified comparator. |
|
* |
|
* @param comparator the comparator that will be used to order this |
|
* priority queue. If {@code null}, the {@linkplain Comparable |
|
* natural ordering} of the elements will be used. |
|
* @since 1.8 |
|
*/ |
|
public PriorityQueue(Comparator<? super E> comparator) { |
|
this(DEFAULT_INITIAL_CAPACITY, comparator); |
|
} |
|
/** |
|
* Creates a {@code PriorityQueue} with the specified initial capacity |
|
* that orders its elements according to the specified comparator. |
|
* |
|
* @param initialCapacity the initial capacity for this priority queue |
|
* @param comparator the comparator that will be used to order this |
|
* priority queue. If {@code null}, the {@linkplain Comparable |
|
* natural ordering} of the elements will be used. |
|
* @throws IllegalArgumentException if {@code initialCapacity} is |
|
* less than 1 |
|
*/ |
|
public PriorityQueue(int initialCapacity, |
|
Comparator<? super E> comparator) { |
|
// Note: This restriction of at least one is not actually needed, |
|
// but continues for 1.5 compatibility |
|
if (initialCapacity < 1) |
|
throw new IllegalArgumentException(); |
|
this.queue = new Object[initialCapacity]; |
|
this.comparator = comparator; |
|
} |
|
/** |
|
* Creates a {@code PriorityQueue} containing the elements in the |
|
* specified collection. If the specified collection is an instance of |
|
* a {@link SortedSet} or is another {@code PriorityQueue}, this |
|
* priority queue will be ordered according to the same ordering. |
|
* Otherwise, this priority queue will be ordered according to the |
|
* {@linkplain Comparable natural ordering} of its elements. |
|
* |
|
* @param c the collection whose elements are to be placed |
|
* into this priority queue |
|
* @throws ClassCastException if elements of the specified collection |
|
* cannot be compared to one another according to the priority |
|
* queue's ordering |
|
* @throws NullPointerException if the specified collection or any |
|
* of its elements are null |
|
*/ |
|
public PriorityQueue(Collection<? extends E> c) { |
|
if (c instanceof SortedSet<?>) { |
|
SortedSet<? extends E> ss = (SortedSet<? extends E>) c; |
|
this.comparator = (Comparator<? super E>) ss.comparator(); |
|
initElementsFromCollection(ss); |
|
} |
|
else if (c instanceof PriorityQueue<?>) { |
|
PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c; |
|
this.comparator = (Comparator<? super E>) pq.comparator(); |
|
initFromPriorityQueue(pq); |
|
} |
|
else { |
|
this.comparator = null; |
|
initFromCollection(c); |
|
} |
|
} |
|
/** |
|
* Creates a {@code PriorityQueue} containing the elements in the |
|
* specified priority queue. This priority queue will be |
|
* ordered according to the same ordering as the given priority |
|
* queue. |
|
* |
|
* @param c the priority queue whose elements are to be placed |
|
* into this priority queue |
|
* @throws ClassCastException if elements of {@code c} cannot be |
|
* compared to one another according to {@code c}'s |
|
* ordering |
|
* @throws NullPointerException if the specified priority queue or any |
|
* of its elements are null |
|
*/ |
|
public PriorityQueue(PriorityQueue<? extends E> c) { |
|
this.comparator = (Comparator<? super E>) c.comparator(); |
|
initFromPriorityQueue(c); |
|
} |
|
/** |
|
* Creates a {@code PriorityQueue} containing the elements in the |
|
* specified sorted set. This priority queue will be ordered |
|
* according to the same ordering as the given sorted set. |
|
* |
|
* @param c the sorted set whose elements are to be placed |
|
* into this priority queue |
|
* @throws ClassCastException if elements of the specified sorted |
|
* set cannot be compared to one another according to the |
|
* sorted set's ordering |
|
* @throws NullPointerException if the specified sorted set or any |
|
* of its elements are null |
|
*/ |
|
public PriorityQueue(SortedSet<? extends E> c) { |
|
this.comparator = (Comparator<? super E>) c.comparator(); |
|
initElementsFromCollection(c); |
|
} |
|
/** Ensures that queue[0] exists, helping peek() and poll(). */ |
|
private static Object[] ensureNonEmpty(Object[] es) { |
|
return (es.length > 0) ? es : new Object[1]; |
|
} |
|
private void initFromPriorityQueue(PriorityQueue<? extends E> c) { |
|
if (c.getClass() == PriorityQueue.class) { |
|
this.queue = ensureNonEmpty(c.toArray()); |
|
this.size = c.size(); |
|
} else { |
|
initFromCollection(c); |
|
} |
|
} |
|
private void initElementsFromCollection(Collection<? extends E> c) { |
|
Object[] es = c.toArray(); |
|
int len = es.length; |
|
// If c.toArray incorrectly doesn't return Object[], copy it. |
|
if (es.getClass() != Object[].class) |
|
es = Arrays.copyOf(es, len, Object[].class); |
|
if (len == 1 || this.comparator != null) |
|
for (Object e : es) |
|
if (e == null) |
|
throw new NullPointerException(); |
|
this.queue = ensureNonEmpty(es); |
|
this.size = len; |
|
} |
|
/** |
|
* Initializes queue array with elements from the given Collection. |
|
* |
|
* @param c the collection |
|
*/ |
|
private void initFromCollection(Collection<? extends E> c) { |
|
initElementsFromCollection(c); |
|
heapify(); |
|
} |
|
/** |
|
* The maximum size of array to allocate. |
|
* Some VMs reserve some header words in an array. |
|
* Attempts to allocate larger arrays may result in |
|
* OutOfMemoryError: Requested array size exceeds VM limit |
|
*/ |
|
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; |
|
/** |
|
* Increases the capacity of the array. |
|
* |
|
* @param minCapacity the desired minimum capacity |
|
*/ |
|
private void grow(int minCapacity) { |
|
int oldCapacity = queue.length; |
|
// Double size if small; else grow by 50% |
|
int newCapacity = oldCapacity + ((oldCapacity < 64) ? |
|
(oldCapacity + 2) : |
|
(oldCapacity >> 1)); |
|
// overflow-conscious code |
|
if (newCapacity - MAX_ARRAY_SIZE > 0) |
|
newCapacity = hugeCapacity(minCapacity); |
|
queue = Arrays.copyOf(queue, newCapacity); |
|
} |
|
private static int hugeCapacity(int minCapacity) { |
|
if (minCapacity < 0) // overflow |
|
throw new OutOfMemoryError(); |
|
return (minCapacity > MAX_ARRAY_SIZE) ? |
|
Integer.MAX_VALUE : |
|
MAX_ARRAY_SIZE; |
|
} |
|
/** |
|
* Inserts the specified element into this priority queue. |
|
* |
|
* @return {@code true} (as specified by {@link Collection#add}) |
|
* @throws ClassCastException if the specified element cannot be |
|
* compared with elements currently in this priority queue |
|
* according to the priority queue's ordering |
|
* @throws NullPointerException if the specified element is null |
|
*/ |
|
public boolean add(E e) { |
|
return offer(e); |
|
} |
|
/** |
|
* Inserts the specified element into this priority queue. |
|
* |
|
* @return {@code true} (as specified by {@link Queue#offer}) |
|
* @throws ClassCastException if the specified element cannot be |
|
* compared with elements currently in this priority queue |
|
* according to the priority queue's ordering |
|
* @throws NullPointerException if the specified element is null |
|
*/ |
|
public boolean offer(E e) { |
|
if (e == null) |
|
throw new NullPointerException(); |
|
modCount++; |
|
int i = size; |
|
if (i >= queue.length) |
|
grow(i + 1); |
|
siftUp(i, e); |
|
size = i + 1; |
|
return true; |
|
} |
|
public E peek() { |
|
return (E) queue[0]; |
|
} |
|
private int indexOf(Object o) { |
|
if (o != null) { |
|
final Object[] es = queue; |
|
for (int i = 0, n = size; i < n; i++) |
|
if (o.equals(es[i])) |
|
return i; |
|
} |
|
return -1; |
|
} |
|
/** |
|
* Removes a single instance of the specified element from this queue, |
|
* if it is present. More formally, removes an element {@code e} such |
|
* that {@code o.equals(e)}, if this queue contains one or more such |
|
* elements. Returns {@code true} if and only if this queue contained |
|
* the specified element (or equivalently, if this queue changed as a |
|
* result of the call). |
|
* |
|
* @param o element to be removed from this queue, if present |
|
* @return {@code true} if this queue changed as a result of the call |
|
*/ |
|
public boolean remove(Object o) { |
|
int i = indexOf(o); |
|
if (i == -1) |
|
return false; |
|
else { |
|
removeAt(i); |
|
return true; |
|
} |
|
} |
|
/** |
|
* Identity-based version for use in Itr.remove. |
|
* |
|
* @param o element to be removed from this queue, if present |
|
*/ |
|
void removeEq(Object o) { |
|
final Object[] es = queue; |
|
for (int i = 0, n = size; i < n; i++) { |
|
if (o == es[i]) { |
|
removeAt(i); |
|
break; |
|
} |
|
} |
|
} |
|
/** |
|
* Returns {@code true} if this queue contains the specified element. |
|
* More formally, returns {@code true} if and only if this queue contains |
|
* at least one element {@code e} such that {@code o.equals(e)}. |
|
* |
|
* @param o object to be checked for containment in this queue |
|
* @return {@code true} if this queue contains the specified element |
|
*/ |
|
public boolean contains(Object o) { |
|
return indexOf(o) >= 0; |
|
} |
|
/** |
|
* Returns an array containing all of the elements in this queue. |
|
* The elements are in no particular order. |
|
* |
|
* <p>The returned array will be "safe" in that no references to it are |
|
* maintained by this queue. (In other words, this method must allocate |
|
* a new array). The caller is thus free to modify the returned array. |
|
* |
|
* <p>This method acts as bridge between array-based and collection-based |
|
* APIs. |
|
* |
|
* @return an array containing all of the elements in this queue |
|
*/ |
|
public Object[] toArray() { |
|
return Arrays.copyOf(queue, size); |
|
} |
|
/** |
|
* Returns an array containing all of the elements in this queue; the |
|
* runtime type of the returned array is that of the specified array. |
|
* The returned array elements are in no particular order. |
|
* If the queue fits in the specified array, it is returned therein. |
|
* Otherwise, a new array is allocated with the runtime type of the |
|
* specified array and the size of this queue. |
|
* |
|
* <p>If the queue fits in the specified array with room to spare |
|
* (i.e., the array has more elements than the queue), the element in |
|
* the array immediately following the end of the collection is set to |
|
* {@code null}. |
|
* |
|
* <p>Like the {@link #toArray()} method, this method acts as bridge between |
|
* array-based and collection-based APIs. Further, this method allows |
|
* precise control over the runtime type of the output array, and may, |
|
* under certain circumstances, be used to save allocation costs. |
|
* |
|
* <p>Suppose {@code x} is a queue known to contain only strings. |
|
* The following code can be used to dump the queue into a newly |
|
* allocated array of {@code String}: |
|
* |
|
* <pre> {@code String[] y = x.toArray(new String[0]);}</pre> |
|
* |
|
* Note that {@code toArray(new Object[0])} is identical in function to |
|
* {@code toArray()}. |
|
* |
|
* @param a the array into which the elements of the queue are to |
|
* be stored, if it is big enough; otherwise, a new array of the |
|
* same runtime type is allocated for this purpose. |
|
* @return an array containing all of the elements in this queue |
|
* @throws ArrayStoreException if the runtime type of the specified array |
|
* is not a supertype of the runtime type of every element in |
|
* this queue |
|
* @throws NullPointerException if the specified array is null |
|
*/ |
|
public <T> T[] toArray(T[] a) { |
|
final int size = this.size; |
|
if (a.length < size) |
|
// Make a new array of a's runtime type, but my contents: |
|
return (T[]) Arrays.copyOf(queue, size, a.getClass()); |
|
System.arraycopy(queue, 0, a, 0, size); |
|
if (a.length > size) |
|
a[size] = null; |
|
return a; |
|
} |
|
/** |
|
* Returns an iterator over the elements in this queue. The iterator |
|
* does not return the elements in any particular order. |
|
* |
|
* @return an iterator over the elements in this queue |
|
*/ |
|
public Iterator<E> iterator() { |
|
return new Itr(); |
|
} |
|
private final class Itr implements Iterator<E> { |
|
/** |
|
* Index (into queue array) of element to be returned by |
|
* subsequent call to next. |
|
*/ |
|
private int cursor; |
|
/** |
|
* Index of element returned by most recent call to next, |
|
* unless that element came from the forgetMeNot list. |
|
* Set to -1 if element is deleted by a call to remove. |
|
*/ |
|
private int lastRet = -1; |
|
/** |
|
* A queue of elements that were moved from the unvisited portion of |
|
* the heap into the visited portion as a result of "unlucky" element |
|
* removals during the iteration. (Unlucky element removals are those |
|
* that require a siftup instead of a siftdown.) We must visit all of |
|
* the elements in this list to complete the iteration. We do this |
|
* after we've completed the "normal" iteration. |
|
* |
|
* We expect that most iterations, even those involving removals, |
|
* will not need to store elements in this field. |
|
*/ |
|
private ArrayDeque<E> forgetMeNot; |
|
/** |
|
* Element returned by the most recent call to next iff that |
|
* element was drawn from the forgetMeNot list. |
|
*/ |
|
private E lastRetElt; |
|
/** |
|
* The modCount value that the iterator believes that the backing |
|
* Queue should have. If this expectation is violated, the iterator |
|
* has detected concurrent modification. |
|
*/ |
|
private int expectedModCount = modCount; |
|
Itr() {} // prevent access constructor creation |
|
public boolean hasNext() { |
|
return cursor < size || |
|
(forgetMeNot != null && !forgetMeNot.isEmpty()); |
|
} |
|
public E next() { |
|
if (expectedModCount != modCount) |
|
throw new ConcurrentModificationException(); |
|
if (cursor < size) |
|
return (E) queue[lastRet = cursor++]; |
|
if (forgetMeNot != null) { |
|
lastRet = -1; |
|
lastRetElt = forgetMeNot.poll(); |
|
if (lastRetElt != null) |
|
return lastRetElt; |
|
} |
|
throw new NoSuchElementException(); |
|
} |
|
public void remove() { |
|
if (expectedModCount != modCount) |
|
throw new ConcurrentModificationException(); |
|
if (lastRet != -1) { |
|
E moved = PriorityQueue.this.removeAt(lastRet); |
|
lastRet = -1; |
|
if (moved == null) |
|
cursor--; |
|
else { |
|
if (forgetMeNot == null) |
|
forgetMeNot = new ArrayDeque<>(); |
|
forgetMeNot.add(moved); |
|
} |
|
} else if (lastRetElt != null) { |
|
PriorityQueue.this.removeEq(lastRetElt); |
|
lastRetElt = null; |
|
} else { |
|
throw new IllegalStateException(); |
|
} |
|
expectedModCount = modCount; |
|
} |
|
} |
|
public int size() { |
|
return size; |
|
} |
|
/** |
|
* Removes all of the elements from this priority queue. |
|
* The queue will be empty after this call returns. |
|
*/ |
|
public void clear() { |
|
modCount++; |
|
final Object[] es = queue; |
|
for (int i = 0, n = size; i < n; i++) |
|
es[i] = null; |
|
size = 0; |
|
} |
|
public E poll() { |
|
final Object[] es; |
|
final E result; |
|
if ((result = (E) ((es = queue)[0])) != null) { |
|
modCount++; |
|
final int n; |
|
final E x = (E) es[(n = --size)]; |
|
es[n] = null; |
|
if (n > 0) { |
|
final Comparator<? super E> cmp; |
|
if ((cmp = comparator) == null) |
|
siftDownComparable(0, x, es, n); |
|
else |
|
siftDownUsingComparator(0, x, es, n, cmp); |
|
} |
|
} |
|
return result; |
|
} |
|
/** |
|
* Removes the ith element from queue. |
|
* |
|
* Normally this method leaves the elements at up to i-1, |
|
* inclusive, untouched. Under these circumstances, it returns |
|
* null. Occasionally, in order to maintain the heap invariant, |
|
* it must swap a later element of the list with one earlier than |
|
* i. Under these circumstances, this method returns the element |
|
* that was previously at the end of the list and is now at some |
|
* position before i. This fact is used by iterator.remove so as to |
|
* avoid missing traversing elements. |
|
*/ |
|
E removeAt(int i) { |
|
// assert i >= 0 && i < size; |
|
final Object[] es = queue; |
|
modCount++; |
|
int s = --size; |
|
if (s == i) // removed last element |
|
es[i] = null; |
|
else { |
|
E moved = (E) es[s]; |
|
es[s] = null; |
|
siftDown(i, moved); |
|
if (es[i] == moved) { |
|
siftUp(i, moved); |
|
if (es[i] != moved) |
|
return moved; |
|
} |
|
} |
|
return null; |
|
} |
|
/** |
|
* Inserts item x at position k, maintaining heap invariant by |
|
* promoting x up the tree until it is greater than or equal to |
|
* its parent, or is the root. |
|
* |
|
* To simplify and speed up coercions and comparisons, the |
|
* Comparable and Comparator versions are separated into different |
|
* methods that are otherwise identical. (Similarly for siftDown.) |
|
* |
|
* @param k the position to fill |
|
* @param x the item to insert |
|
*/ |
|
private void siftUp(int k, E x) { |
|
if (comparator != null) |
|
siftUpUsingComparator(k, x, queue, comparator); |
|
else |
|
siftUpComparable(k, x, queue); |
|
} |
|
private static <T> void siftUpComparable(int k, T x, Object[] es) { |
|
Comparable<? super T> key = (Comparable<? super T>) x; |
|
while (k > 0) { |
|
int parent = (k - 1) >>> 1; |
|
Object e = es[parent]; |
|
if (key.compareTo((T) e) >= 0) |
|
break; |
|
es[k] = e; |
|
k = parent; |
|
} |
|
es[k] = key; |
|
} |
|
private static <T> void siftUpUsingComparator( |
|
int k, T x, Object[] es, Comparator<? super T> cmp) { |
|
while (k > 0) { |
|
int parent = (k - 1) >>> 1; |
|
Object e = es[parent]; |
|
if (cmp.compare(x, (T) e) >= 0) |
|
break; |
|
es[k] = e; |
|
k = parent; |
|
} |
|
es[k] = x; |
|
} |
|
/** |
|
* Inserts item x at position k, maintaining heap invariant by |
|
* demoting x down the tree repeatedly until it is less than or |
|
* equal to its children or is a leaf. |
|
* |
|
* @param k the position to fill |
|
* @param x the item to insert |
|
*/ |
|
private void siftDown(int k, E x) { |
|
if (comparator != null) |
|
siftDownUsingComparator(k, x, queue, size, comparator); |
|
else |
|
siftDownComparable(k, x, queue, size); |
|
} |
|
private static <T> void siftDownComparable(int k, T x, Object[] es, int n) { |
|
// assert n > 0; |
|
Comparable<? super T> key = (Comparable<? super T>)x; |
|
int half = n >>> 1; // loop while a non-leaf |
|
while (k < half) { |
|
int child = (k << 1) + 1; // assume left child is least |
|
Object c = es[child]; |
|
int right = child + 1; |
|
if (right < n && |
|
((Comparable<? super T>) c).compareTo((T) es[right]) > 0) |
|
c = es[child = right]; |
|
if (key.compareTo((T) c) <= 0) |
|
break; |
|
es[k] = c; |
|
k = child; |
|
} |
|
es[k] = key; |
|
} |
|
private static <T> void siftDownUsingComparator( |
|
int k, T x, Object[] es, int n, Comparator<? super T> cmp) { |
|
// assert n > 0; |
|
int half = n >>> 1; |
|
while (k < half) { |
|
int child = (k << 1) + 1; |
|
Object c = es[child]; |
|
int right = child + 1; |
|
if (right < n && cmp.compare((T) c, (T) es[right]) > 0) |
|
c = es[child = right]; |
|
if (cmp.compare(x, (T) c) <= 0) |
|
break; |
|
es[k] = c; |
|
k = child; |
|
} |
|
es[k] = x; |
|
} |
|
/** |
|
* Establishes the heap invariant (described above) in the entire tree, |
|
* assuming nothing about the order of the elements prior to the call. |
|
* This classic algorithm due to Floyd (1964) is known to be O(size). |
|
*/ |
|
private void heapify() { |
|
final Object[] es = queue; |
|
int n = size, i = (n >>> 1) - 1; |
|
final Comparator<? super E> cmp; |
|
if ((cmp = comparator) == null) |
|
for (; i >= 0; i--) |
|
siftDownComparable(i, (E) es[i], es, n); |
|
else |
|
for (; i >= 0; i--) |
|
siftDownUsingComparator(i, (E) es[i], es, n, cmp); |
|
} |
|
/** |
|
* Returns the comparator used to order the elements in this |
|
* queue, or {@code null} if this queue is sorted according to |
|
* the {@linkplain Comparable natural ordering} of its elements. |
|
* |
|
* @return the comparator used to order this queue, or |
|
* {@code null} if this queue is sorted according to the |
|
* natural ordering of its elements |
|
*/ |
|
public Comparator<? super E> comparator() { |
|
return comparator; |
|
} |
|
/** |
|
* Saves this queue to a stream (that is, serializes it). |
|
* |
|
* @param s the stream |
|
* @throws java.io.IOException if an I/O error occurs |
|
* @serialData The length of the array backing the instance is |
|
* emitted (int), followed by all of its elements |
|
* (each an {@code Object}) in the proper order. |
|
*/ |
|
private void writeObject(java.io.ObjectOutputStream s) |
|
throws java.io.IOException { |
|
// Write out element count, and any hidden stuff |
|
s.defaultWriteObject(); |
|
// Write out array length, for compatibility with 1.5 version |
|
s.writeInt(Math.max(2, size + 1)); |
|
// Write out all elements in the "proper order". |
|
final Object[] es = queue; |
|
for (int i = 0, n = size; i < n; i++) |
|
s.writeObject(es[i]); |
|
} |
|
/** |
|
* Reconstitutes the {@code PriorityQueue} instance from a stream |
|
* (that is, deserializes it). |
|
* |
|
* @param s the stream |
|
* @throws ClassNotFoundException if the class of a serialized object |
|
* could not be found |
|
* @throws java.io.IOException if an I/O error occurs |
|
*/ |
|
private void readObject(java.io.ObjectInputStream s) |
|
throws java.io.IOException, ClassNotFoundException { |
|
// Read in size, and any hidden stuff |
|
s.defaultReadObject(); |
|
// Read in (and discard) array length |
|
s.readInt(); |
|
SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size); |
|
final Object[] es = queue = new Object[Math.max(size, 1)]; |
|
// Read in all elements. |
|
for (int i = 0, n = size; i < n; i++) |
|
es[i] = s.readObject(); |
|
// Elements are guaranteed to be in "proper order", but the |
|
// spec has never explained what that might be. |
|
heapify(); |
|
} |
|
/** |
|
* Creates a <em><a href="Spliterator.html#binding">late-binding</a></em> |
|
* and <em>fail-fast</em> {@link Spliterator} over the elements in this |
|
* queue. The spliterator does not traverse elements in any particular order |
|
* (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported). |
|
* |
|
* <p>The {@code Spliterator} reports {@link Spliterator#SIZED}, |
|
* {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}. |
|
* Overriding implementations should document the reporting of additional |
|
* characteristic values. |
|
* |
|
* @return a {@code Spliterator} over the elements in this queue |
|
* @since 1.8 |
|
*/ |
|
public final Spliterator<E> spliterator() { |
|
return new PriorityQueueSpliterator(0, -1, 0); |
|
} |
|
final class PriorityQueueSpliterator implements Spliterator<E> { |
|
private int index; // current index, modified on advance/split |
|
private int fence; // -1 until first use |
|
private int expectedModCount; // initialized when fence set |
|
/** Creates new spliterator covering the given range. */ |
|
PriorityQueueSpliterator(int origin, int fence, int expectedModCount) { |
|
this.index = origin; |
|
this.fence = fence; |
|
this.expectedModCount = expectedModCount; |
|
} |
|
private int getFence() { // initialize fence to size on first use |
|
int hi; |
|
if ((hi = fence) < 0) { |
|
expectedModCount = modCount; |
|
hi = fence = size; |
|
} |
|
return hi; |
|
} |
|
public PriorityQueueSpliterator trySplit() { |
|
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; |
|
return (lo >= mid) ? null : |
|
new PriorityQueueSpliterator(lo, index = mid, expectedModCount); |
|
} |
|
public void forEachRemaining(Consumer<? super E> action) { |
|
if (action == null) |
|
throw new NullPointerException(); |
|
if (fence < 0) { fence = size; expectedModCount = modCount; } |
|
final Object[] es = queue; |
|
int i, hi; E e; |
|
for (i = index, index = hi = fence; i < hi; i++) { |
|
if ((e = (E) es[i]) == null) |
|
break; // must be CME |
|
action.accept(e); |
|
} |
|
if (modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
} |
|
public boolean tryAdvance(Consumer<? super E> action) { |
|
if (action == null) |
|
throw new NullPointerException(); |
|
if (fence < 0) { fence = size; expectedModCount = modCount; } |
|
int i; |
|
if ((i = index) < fence) { |
|
index = i + 1; |
|
E e; |
|
if ((e = (E) queue[i]) == null |
|
|| modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
action.accept(e); |
|
return true; |
|
} |
|
return false; |
|
} |
|
public long estimateSize() { |
|
return getFence() - index; |
|
} |
|
public int characteristics() { |
|
return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL; |
|
} |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public boolean removeIf(Predicate<? super E> filter) { |
|
Objects.requireNonNull(filter); |
|
return bulkRemove(filter); |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public boolean removeAll(Collection<?> c) { |
|
Objects.requireNonNull(c); |
|
return bulkRemove(e -> c.contains(e)); |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public boolean retainAll(Collection<?> c) { |
|
Objects.requireNonNull(c); |
|
return bulkRemove(e -> !c.contains(e)); |
|
} |
|
// A tiny bit set implementation |
|
private static long[] nBits(int n) { |
|
return new long[((n - 1) >> 6) + 1]; |
|
} |
|
private static void setBit(long[] bits, int i) { |
|
bits[i >> 6] |= 1L << i; |
|
} |
|
private static boolean isClear(long[] bits, int i) { |
|
return (bits[i >> 6] & (1L << i)) == 0; |
|
} |
|
/** Implementation of bulk remove methods. */ |
|
private boolean bulkRemove(Predicate<? super E> filter) { |
|
final int expectedModCount = ++modCount; |
|
final Object[] es = queue; |
|
final int end = size; |
|
int i; |
|
// Optimize for initial run of survivors |
|
for (i = 0; i < end && !filter.test((E) es[i]); i++) |
|
; |
|
if (i >= end) { |
|
if (modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
return false; |
|
} |
|
// Tolerate predicates that reentrantly access the collection for |
|
// read (but writers still get CME), so traverse once to find |
|
// elements to delete, a second pass to physically expunge. |
|
final int beg = i; |
|
final long[] deathRow = nBits(end - beg); |
|
deathRow[0] = 1L; // set bit 0 |
|
for (i = beg + 1; i < end; i++) |
|
if (filter.test((E) es[i])) |
|
setBit(deathRow, i - beg); |
|
if (modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
int w = beg; |
|
for (i = beg; i < end; i++) |
|
if (isClear(deathRow, i - beg)) |
|
es[w++] = es[i]; |
|
for (i = size = w; i < end; i++) |
|
es[i] = null; |
|
heapify(); |
|
return true; |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
public void forEach(Consumer<? super E> action) { |
|
Objects.requireNonNull(action); |
|
final int expectedModCount = modCount; |
|
final Object[] es = queue; |
|
for (int i = 0, n = size; i < n; i++) |
|
action.accept((E) es[i]); |
|
if (expectedModCount != modCount) |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |