/* |
|
* Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved. |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
package java.lang; |
|
import java.util.WeakHashMap; |
|
import java.lang.ref.WeakReference; |
|
import java.util.concurrent.atomic.AtomicInteger; |
|
import jdk.internal.misc.Unsafe; |
|
import static java.lang.ClassValue.ClassValueMap.probeHomeLocation; |
|
import static java.lang.ClassValue.ClassValueMap.probeBackupLocations; |
|
/** |
|
* Lazily associate a computed value with (potentially) every type. |
|
* For example, if a dynamic language needs to construct a message dispatch |
|
* table for each class encountered at a message send call site, |
|
* it can use a {@code ClassValue} to cache information needed to |
|
* perform the message send quickly, for each class encountered. |
|
* @author John Rose, JSR 292 EG |
|
* @since 1.7 |
|
*/ |
|
public abstract class ClassValue<T> { |
|
/** |
|
* Sole constructor. (For invocation by subclass constructors, typically |
|
* implicit.) |
|
*/ |
|
protected ClassValue() { |
|
} |
|
/** |
|
* Computes the given class's derived value for this {@code ClassValue}. |
|
* <p> |
|
* This method will be invoked within the first thread that accesses |
|
* the value with the {@link #get get} method. |
|
* <p> |
|
* Normally, this method is invoked at most once per class, |
|
* but it may be invoked again if there has been a call to |
|
* {@link #remove remove}. |
|
* <p> |
|
* If this method throws an exception, the corresponding call to {@code get} |
|
* will terminate abnormally with that exception, and no class value will be recorded. |
|
* |
|
* @param type the type whose class value must be computed |
|
* @return the newly computed value associated with this {@code ClassValue}, for the given class or interface |
|
* @see #get |
|
* @see #remove |
|
*/ |
|
protected abstract T computeValue(Class<?> type); |
|
/** |
|
* Returns the value for the given class. |
|
* If no value has yet been computed, it is obtained by |
|
* an invocation of the {@link #computeValue computeValue} method. |
|
* <p> |
|
* The actual installation of the value on the class |
|
* is performed atomically. |
|
* At that point, if several racing threads have |
|
* computed values, one is chosen, and returned to |
|
* all the racing threads. |
|
* <p> |
|
* The {@code type} parameter is typically a class, but it may be any type, |
|
* such as an interface, a primitive type (like {@code int.class}), or {@code void.class}. |
|
* <p> |
|
* In the absence of {@code remove} calls, a class value has a simple |
|
* state diagram: uninitialized and initialized. |
|
* When {@code remove} calls are made, |
|
* the rules for value observation are more complex. |
|
* See the documentation for {@link #remove remove} for more information. |
|
* |
|
* @param type the type whose class value must be computed or retrieved |
|
* @return the current value associated with this {@code ClassValue}, for the given class or interface |
|
* @throws NullPointerException if the argument is null |
|
* @see #remove |
|
* @see #computeValue |
|
*/ |
|
public T get(Class<?> type) { |
|
// non-racing this.hashCodeForCache : final int |
|
Entry<?>[] cache; |
|
Entry<T> e = probeHomeLocation(cache = getCacheCarefully(type), this); |
|
// racing e : current value <=> stale value from current cache or from stale cache |
|
// invariant: e is null or an Entry with readable Entry.version and Entry.value |
|
if (match(e)) |
|
// invariant: No false positive matches. False negatives are OK if rare. |
|
// The key fact that makes this work: if this.version == e.version, |
|
// then this thread has a right to observe (final) e.value. |
|
return e.value(); |
|
// The fast path can fail for any of these reasons: |
|
// 1. no entry has been computed yet |
|
// 2. hash code collision (before or after reduction mod cache.length) |
|
// 3. an entry has been removed (either on this type or another) |
|
// 4. the GC has somehow managed to delete e.version and clear the reference |
|
return getFromBackup(cache, type); |
|
} |
|
/** |
|
* Removes the associated value for the given class. |
|
* If this value is subsequently {@linkplain #get read} for the same class, |
|
* its value will be reinitialized by invoking its {@link #computeValue computeValue} method. |
|
* This may result in an additional invocation of the |
|
* {@code computeValue} method for the given class. |
|
* <p> |
|
* In order to explain the interaction between {@code get} and {@code remove} calls, |
|
* we must model the state transitions of a class value to take into account |
|
* the alternation between uninitialized and initialized states. |
|
* To do this, number these states sequentially from zero, and note that |
|
* uninitialized (or removed) states are numbered with even numbers, |
|
* while initialized (or re-initialized) states have odd numbers. |
|
* <p> |
|
* When a thread {@code T} removes a class value in state {@code 2N}, |
|
* nothing happens, since the class value is already uninitialized. |
|
* Otherwise, the state is advanced atomically to {@code 2N+1}. |
|
* <p> |
|
* When a thread {@code T} queries a class value in state {@code 2N}, |
|
* the thread first attempts to initialize the class value to state {@code 2N+1} |
|
* by invoking {@code computeValue} and installing the resulting value. |
|
* <p> |
|
* When {@code T} attempts to install the newly computed value, |
|
* if the state is still at {@code 2N}, the class value will be initialized |
|
* with the computed value, advancing it to state {@code 2N+1}. |
|
* <p> |
|
* Otherwise, whether the new state is even or odd, |
|
* {@code T} will discard the newly computed value |
|
* and retry the {@code get} operation. |
|
* <p> |
|
* Discarding and retrying is an important proviso, |
|
* since otherwise {@code T} could potentially install |
|
* a disastrously stale value. For example: |
|
* <ul> |
|
* <li>{@code T} calls {@code CV.get(C)} and sees state {@code 2N} |
|
* <li>{@code T} quickly computes a time-dependent value {@code V0} and gets ready to install it |
|
* <li>{@code T} is hit by an unlucky paging or scheduling event, and goes to sleep for a long time |
|
* <li>...meanwhile, {@code T2} also calls {@code CV.get(C)} and sees state {@code 2N} |
|
* <li>{@code T2} quickly computes a similar time-dependent value {@code V1} and installs it on {@code CV.get(C)} |
|
* <li>{@code T2} (or a third thread) then calls {@code CV.remove(C)}, undoing {@code T2}'s work |
|
* <li> the previous actions of {@code T2} are repeated several times |
|
* <li> also, the relevant computed values change over time: {@code V1}, {@code V2}, ... |
|
* <li>...meanwhile, {@code T} wakes up and attempts to install {@code V0}; <em>this must fail</em> |
|
* </ul> |
|
* We can assume in the above scenario that {@code CV.computeValue} uses locks to properly |
|
* observe the time-dependent states as it computes {@code V1}, etc. |
|
* This does not remove the threat of a stale value, since there is a window of time |
|
* between the return of {@code computeValue} in {@code T} and the installation |
|
* of the new value. No user synchronization is possible during this time. |
|
* |
|
* @param type the type whose class value must be removed |
|
* @throws NullPointerException if the argument is null |
|
*/ |
|
public void remove(Class<?> type) { |
|
ClassValueMap map = getMap(type); |
|
map.removeEntry(this); |
|
} |
|
// Possible functionality for JSR 292 MR 1 |
|
/*public*/ void put(Class<?> type, T value) { |
|
ClassValueMap map = getMap(type); |
|
map.changeEntry(this, value); |
|
} |
|
/// -------- |
|
/// Implementation... |
|
/// -------- |
|
/** Return the cache, if it exists, else a dummy empty cache. */ |
|
private static Entry<?>[] getCacheCarefully(Class<?> type) { |
|
// racing type.classValueMap{.cacheArray} : null => new Entry[X] <=> new Entry[Y] |
|
ClassValueMap map = type.classValueMap; |
|
if (map == null) return EMPTY_CACHE; |
|
Entry<?>[] cache = map.getCache(); |
|
return cache; |
|
// invariant: returned value is safe to dereference and check for an Entry |
|
} |
|
/** Initial, one-element, empty cache used by all Class instances. Must never be filled. */ |
|
private static final Entry<?>[] EMPTY_CACHE = { null }; |
|
/** |
|
* Slow tail of ClassValue.get to retry at nearby locations in the cache, |
|
* or take a slow lock and check the hash table. |
|
* Called only if the first probe was empty or a collision. |
|
* This is a separate method, so compilers can process it independently. |
|
*/ |
|
private T getFromBackup(Entry<?>[] cache, Class<?> type) { |
|
Entry<T> e = probeBackupLocations(cache, this); |
|
if (e != null) |
|
return e.value(); |
|
return getFromHashMap(type); |
|
} |
|
// Hack to suppress warnings on the (T) cast, which is a no-op. |
|
@SuppressWarnings("unchecked") |
|
Entry<T> castEntry(Entry<?> e) { return (Entry<T>) e; } |
|
/** Called when the fast path of get fails, and cache reprobe also fails. |
|
*/ |
|
private T getFromHashMap(Class<?> type) { |
|
// The fail-safe recovery is to fall back to the underlying classValueMap. |
|
ClassValueMap map = getMap(type); |
|
for (;;) { |
|
Entry<T> e = map.startEntry(this); |
|
if (!e.isPromise()) |
|
return e.value(); |
|
try { |
|
// Try to make a real entry for the promised version. |
|
e = makeEntry(e.version(), computeValue(type)); |
|
} finally { |
|
// Whether computeValue throws or returns normally, |
|
// be sure to remove the empty entry. |
|
e = map.finishEntry(this, e); |
|
} |
|
if (e != null) |
|
return e.value(); |
|
// else try again, in case a racing thread called remove (so e == null) |
|
} |
|
} |
|
/** Check that e is non-null, matches this ClassValue, and is live. */ |
|
boolean match(Entry<?> e) { |
|
// racing e.version : null (blank) => unique Version token => null (GC-ed version) |
|
// non-racing this.version : v1 => v2 => ... (updates are read faithfully from volatile) |
|
return (e != null && e.get() == this.version); |
|
// invariant: No false positives on version match. Null is OK for false negative. |
|
// invariant: If version matches, then e.value is readable (final set in Entry.<init>) |
|
} |
|
/** Internal hash code for accessing Class.classValueMap.cacheArray. */ |
|
final int hashCodeForCache = nextHashCode.getAndAdd(HASH_INCREMENT) & HASH_MASK; |
|
/** Value stream for hashCodeForCache. See similar structure in ThreadLocal. */ |
|
private static final AtomicInteger nextHashCode = new AtomicInteger(); |
|
/** Good for power-of-two tables. See similar structure in ThreadLocal. */ |
|
private static final int HASH_INCREMENT = 0x61c88647; |
|
/** Mask a hash code to be positive but not too large, to prevent wraparound. */ |
|
static final int HASH_MASK = (-1 >>> 2); |
|
/** |
|
* Private key for retrieval of this object from ClassValueMap. |
|
*/ |
|
static class Identity { |
|
} |
|
/** |
|
* This ClassValue's identity, expressed as an opaque object. |
|
* The main object {@code ClassValue.this} is incorrect since |
|
* subclasses may override {@code ClassValue.equals}, which |
|
* could confuse keys in the ClassValueMap. |
|
*/ |
|
final Identity identity = new Identity(); |
|
/** |
|
* Current version for retrieving this class value from the cache. |
|
* Any number of computeValue calls can be cached in association with one version. |
|
* But the version changes when a remove (on any type) is executed. |
|
* A version change invalidates all cache entries for the affected ClassValue, |
|
* by marking them as stale. Stale cache entries do not force another call |
|
* to computeValue, but they do require a synchronized visit to a backing map. |
|
* <p> |
|
* All user-visible state changes on the ClassValue take place under |
|
* a lock inside the synchronized methods of ClassValueMap. |
|
* Readers (of ClassValue.get) are notified of such state changes |
|
* when this.version is bumped to a new token. |
|
* This variable must be volatile so that an unsynchronized reader |
|
* will receive the notification without delay. |
|
* <p> |
|
* If version were not volatile, one thread T1 could persistently hold onto |
|
* a stale value this.value == V1, while another thread T2 advances |
|
* (under a lock) to this.value == V2. This will typically be harmless, |
|
* but if T1 and T2 interact causally via some other channel, such that |
|
* T1's further actions are constrained (in the JMM) to happen after |
|
* the V2 event, then T1's observation of V1 will be an error. |
|
* <p> |
|
* The practical effect of making this.version be volatile is that it cannot |
|
* be hoisted out of a loop (by an optimizing JIT) or otherwise cached. |
|
* Some machines may also require a barrier instruction to execute |
|
* before this.version. |
|
*/ |
|
private volatile Version<T> version = new Version<>(this); |
|
Version<T> version() { return version; } |
|
void bumpVersion() { version = new Version<>(this); } |
|
static class Version<T> { |
|
private final ClassValue<T> classValue; |
|
private final Entry<T> promise = new Entry<>(this); |
|
Version(ClassValue<T> classValue) { this.classValue = classValue; } |
|
ClassValue<T> classValue() { return classValue; } |
|
Entry<T> promise() { return promise; } |
|
boolean isLive() { return classValue.version() == this; } |
|
} |
|
/** One binding of a value to a class via a ClassValue. |
|
* States are:<ul> |
|
* <li> promise if value == Entry.this |
|
* <li> else dead if version == null |
|
* <li> else stale if version != classValue.version |
|
* <li> else live </ul> |
|
* Promises are never put into the cache; they only live in the |
|
* backing map while a computeValue call is in flight. |
|
* Once an entry goes stale, it can be reset at any time |
|
* into the dead state. |
|
*/ |
|
static class Entry<T> extends WeakReference<Version<T>> { |
|
final Object value; // usually of type T, but sometimes (Entry)this |
|
Entry(Version<T> version, T value) { |
|
super(version); |
|
this.value = value; // for a regular entry, value is of type T |
|
} |
|
private void assertNotPromise() { assert(!isPromise()); } |
|
/** For creating a promise. */ |
|
Entry(Version<T> version) { |
|
super(version); |
|
this.value = this; // for a promise, value is not of type T, but Entry! |
|
} |
|
/** Fetch the value. This entry must not be a promise. */ |
|
@SuppressWarnings("unchecked") // if !isPromise, type is T |
|
T value() { assertNotPromise(); return (T) value; } |
|
boolean isPromise() { return value == this; } |
|
Version<T> version() { return get(); } |
|
ClassValue<T> classValueOrNull() { |
|
Version<T> v = version(); |
|
return (v == null) ? null : v.classValue(); |
|
} |
|
boolean isLive() { |
|
Version<T> v = version(); |
|
if (v == null) return false; |
|
if (v.isLive()) return true; |
|
clear(); |
|
return false; |
|
} |
|
Entry<T> refreshVersion(Version<T> v2) { |
|
assertNotPromise(); |
|
@SuppressWarnings("unchecked") // if !isPromise, type is T |
|
Entry<T> e2 = new Entry<>(v2, (T) value); |
|
clear(); |
|
// value = null -- caller must drop |
|
return e2; |
|
} |
|
static final Entry<?> DEAD_ENTRY = new Entry<>(null, null); |
|
} |
|
/** Return the backing map associated with this type. */ |
|
private static ClassValueMap getMap(Class<?> type) { |
|
// racing type.classValueMap : null (blank) => unique ClassValueMap |
|
// if a null is observed, a map is created (lazily, synchronously, uniquely) |
|
// all further access to that map is synchronized |
|
ClassValueMap map = type.classValueMap; |
|
if (map != null) return map; |
|
return initializeMap(type); |
|
} |
|
private static final Object CRITICAL_SECTION = new Object(); |
|
private static final Unsafe UNSAFE = Unsafe.getUnsafe(); |
|
private static ClassValueMap initializeMap(Class<?> type) { |
|
ClassValueMap map; |
|
synchronized (CRITICAL_SECTION) { // private object to avoid deadlocks |
|
// happens about once per type |
|
if ((map = type.classValueMap) == null) { |
|
map = new ClassValueMap(); |
|
// Place a Store fence after construction and before publishing to emulate |
|
// ClassValueMap containing final fields. This ensures it can be |
|
// published safely in the non-volatile field Class.classValueMap, |
|
// since stores to the fields of ClassValueMap will not be reordered |
|
// to occur after the store to the field type.classValueMap |
|
UNSAFE.storeFence(); |
|
type.classValueMap = map; |
|
} |
|
} |
|
return map; |
|
} |
|
static <T> Entry<T> makeEntry(Version<T> explicitVersion, T value) { |
|
// Note that explicitVersion might be different from this.version. |
|
return new Entry<>(explicitVersion, value); |
|
// As soon as the Entry is put into the cache, the value will be |
|
// reachable via a data race (as defined by the Java Memory Model). |
|
// This race is benign, assuming the value object itself can be |
|
// read safely by multiple threads. This is up to the user. |
|
// |
|
// The entry and version fields themselves can be safely read via |
|
// a race because they are either final or have controlled states. |
|
// If the pointer from the entry to the version is still null, |
|
// or if the version goes immediately dead and is nulled out, |
|
// the reader will take the slow path and retry under a lock. |
|
} |
|
// The following class could also be top level and non-public: |
|
/** A backing map for all ClassValues. |
|
* Gives a fully serialized "true state" for each pair (ClassValue cv, Class type). |
|
* Also manages an unserialized fast-path cache. |
|
*/ |
|
static class ClassValueMap extends WeakHashMap<ClassValue.Identity, Entry<?>> { |
|
private Entry<?>[] cacheArray; |
|
private int cacheLoad, cacheLoadLimit; |
|
/** Number of entries initially allocated to each type when first used with any ClassValue. |
|
* It would be pointless to make this much smaller than the Class and ClassValueMap objects themselves. |
|
* Must be a power of 2. |
|
*/ |
|
private static final int INITIAL_ENTRIES = 32; |
|
/** Build a backing map for ClassValues. |
|
* Also, create an empty cache array and install it on the class. |
|
*/ |
|
ClassValueMap() { |
|
sizeCache(INITIAL_ENTRIES); |
|
} |
|
Entry<?>[] getCache() { return cacheArray; } |
|
/** Initiate a query. Store a promise (placeholder) if there is no value yet. */ |
|
synchronized |
|
<T> Entry<T> startEntry(ClassValue<T> classValue) { |
|
@SuppressWarnings("unchecked") // one map has entries for all value types <T> |
|
Entry<T> e = (Entry<T>) get(classValue.identity); |
|
Version<T> v = classValue.version(); |
|
if (e == null) { |
|
e = v.promise(); |
|
// The presence of a promise means that a value is pending for v. |
|
// Eventually, finishEntry will overwrite the promise. |
|
put(classValue.identity, e); |
|
// Note that the promise is never entered into the cache! |
|
return e; |
|
} else if (e.isPromise()) { |
|
// Somebody else has asked the same question. |
|
// Let the races begin! |
|
if (e.version() != v) { |
|
e = v.promise(); |
|
put(classValue.identity, e); |
|
} |
|
return e; |
|
} else { |
|
// there is already a completed entry here; report it |
|
if (e.version() != v) { |
|
// There is a stale but valid entry here; make it fresh again. |
|
// Once an entry is in the hash table, we don't care what its version is. |
|
e = e.refreshVersion(v); |
|
put(classValue.identity, e); |
|
} |
|
// Add to the cache, to enable the fast path, next time. |
|
checkCacheLoad(); |
|
addToCache(classValue, e); |
|
return e; |
|
} |
|
} |
|
/** Finish a query. Overwrite a matching placeholder. Drop stale incoming values. */ |
|
synchronized |
|
<T> Entry<T> finishEntry(ClassValue<T> classValue, Entry<T> e) { |
|
@SuppressWarnings("unchecked") // one map has entries for all value types <T> |
|
Entry<T> e0 = (Entry<T>) get(classValue.identity); |
|
if (e == e0) { |
|
// We can get here during exception processing, unwinding from computeValue. |
|
assert(e.isPromise()); |
|
remove(classValue.identity); |
|
return null; |
|
} else if (e0 != null && e0.isPromise() && e0.version() == e.version()) { |
|
// If e0 matches the intended entry, there has not been a remove call |
|
// between the previous startEntry and now. So now overwrite e0. |
|
Version<T> v = classValue.version(); |
|
if (e.version() != v) |
|
e = e.refreshVersion(v); |
|
put(classValue.identity, e); |
|
// Add to the cache, to enable the fast path, next time. |
|
checkCacheLoad(); |
|
addToCache(classValue, e); |
|
return e; |
|
} else { |
|
// Some sort of mismatch; caller must try again. |
|
return null; |
|
} |
|
} |
|
/** Remove an entry. */ |
|
synchronized |
|
void removeEntry(ClassValue<?> classValue) { |
|
Entry<?> e = remove(classValue.identity); |
|
if (e == null) { |
|
// Uninitialized, and no pending calls to computeValue. No change. |
|
} else if (e.isPromise()) { |
|
// State is uninitialized, with a pending call to finishEntry. |
|
// Since remove is a no-op in such a state, keep the promise |
|
// by putting it back into the map. |
|
put(classValue.identity, e); |
|
} else { |
|
// In an initialized state. Bump forward, and de-initialize. |
|
classValue.bumpVersion(); |
|
// Make all cache elements for this guy go stale. |
|
removeStaleEntries(classValue); |
|
} |
|
} |
|
/** Change the value for an entry. */ |
|
synchronized |
|
<T> void changeEntry(ClassValue<T> classValue, T value) { |
|
@SuppressWarnings("unchecked") // one map has entries for all value types <T> |
|
Entry<T> e0 = (Entry<T>) get(classValue.identity); |
|
Version<T> version = classValue.version(); |
|
if (e0 != null) { |
|
if (e0.version() == version && e0.value() == value) |
|
// no value change => no version change needed |
|
return; |
|
classValue.bumpVersion(); |
|
removeStaleEntries(classValue); |
|
} |
|
Entry<T> e = makeEntry(version, value); |
|
put(classValue.identity, e); |
|
// Add to the cache, to enable the fast path, next time. |
|
checkCacheLoad(); |
|
addToCache(classValue, e); |
|
} |
|
/// -------- |
|
/// Cache management. |
|
/// -------- |
|
// Statics do not need synchronization. |
|
/** Load the cache entry at the given (hashed) location. */ |
|
static Entry<?> loadFromCache(Entry<?>[] cache, int i) { |
|
// non-racing cache.length : constant |
|
// racing cache[i & (mask)] : null <=> Entry |
|
return cache[i & (cache.length-1)]; |
|
// invariant: returned value is null or well-constructed (ready to match) |
|
} |
|
/** Look in the cache, at the home location for the given ClassValue. */ |
|
static <T> Entry<T> probeHomeLocation(Entry<?>[] cache, ClassValue<T> classValue) { |
|
return classValue.castEntry(loadFromCache(cache, classValue.hashCodeForCache)); |
|
} |
|
/** Given that first probe was a collision, retry at nearby locations. */ |
|
static <T> Entry<T> probeBackupLocations(Entry<?>[] cache, ClassValue<T> classValue) { |
|
if (PROBE_LIMIT <= 0) return null; |
|
// Probe the cache carefully, in a range of slots. |
|
int mask = (cache.length-1); |
|
int home = (classValue.hashCodeForCache & mask); |
|
Entry<?> e2 = cache[home]; // victim, if we find the real guy |
|
if (e2 == null) { |
|
return null; // if nobody is at home, no need to search nearby |
|
} |
|
// assume !classValue.match(e2), but do not assert, because of races |
|
int pos2 = -1; |
|
for (int i = home + 1; i < home + PROBE_LIMIT; i++) { |
|
Entry<?> e = cache[i & mask]; |
|
if (e == null) { |
|
break; // only search within non-null runs |
|
} |
|
if (classValue.match(e)) { |
|
// relocate colliding entry e2 (from cache[home]) to first empty slot |
|
cache[home] = e; |
|
if (pos2 >= 0) { |
|
cache[i & mask] = Entry.DEAD_ENTRY; |
|
} else { |
|
pos2 = i; |
|
} |
|
cache[pos2 & mask] = ((entryDislocation(cache, pos2, e2) < PROBE_LIMIT) |
|
? e2 // put e2 here if it fits |
|
: Entry.DEAD_ENTRY); |
|
return classValue.castEntry(e); |
|
} |
|
// Remember first empty slot, if any: |
|
if (!e.isLive() && pos2 < 0) pos2 = i; |
|
} |
|
return null; |
|
} |
|
/** How far out of place is e? */ |
|
private static int entryDislocation(Entry<?>[] cache, int pos, Entry<?> e) { |
|
ClassValue<?> cv = e.classValueOrNull(); |
|
if (cv == null) return 0; // entry is not live! |
|
int mask = (cache.length-1); |
|
return (pos - cv.hashCodeForCache) & mask; |
|
} |
|
/// -------- |
|
/// Below this line all functions are private, and assume synchronized access. |
|
/// -------- |
|
private void sizeCache(int length) { |
|
assert((length & (length-1)) == 0); // must be power of 2 |
|
cacheLoad = 0; |
|
cacheLoadLimit = (int) ((double) length * CACHE_LOAD_LIMIT / 100); |
|
cacheArray = new Entry<?>[length]; |
|
} |
|
/** Make sure the cache load stays below its limit, if possible. */ |
|
private void checkCacheLoad() { |
|
if (cacheLoad >= cacheLoadLimit) { |
|
reduceCacheLoad(); |
|
} |
|
} |
|
private void reduceCacheLoad() { |
|
removeStaleEntries(); |
|
if (cacheLoad < cacheLoadLimit) |
|
return; // win |
|
Entry<?>[] oldCache = getCache(); |
|
if (oldCache.length > HASH_MASK) |
|
return; // lose |
|
sizeCache(oldCache.length * 2); |
|
for (Entry<?> e : oldCache) { |
|
if (e != null && e.isLive()) { |
|
addToCache(e); |
|
} |
|
} |
|
} |
|
/** Remove stale entries in the given range. |
|
* Should be executed under a Map lock. |
|
*/ |
|
private void removeStaleEntries(Entry<?>[] cache, int begin, int count) { |
|
if (PROBE_LIMIT <= 0) return; |
|
int mask = (cache.length-1); |
|
int removed = 0; |
|
for (int i = begin; i < begin + count; i++) { |
|
Entry<?> e = cache[i & mask]; |
|
if (e == null || e.isLive()) |
|
continue; // skip null and live entries |
|
Entry<?> replacement = null; |
|
if (PROBE_LIMIT > 1) { |
|
// avoid breaking up a non-null run |
|
replacement = findReplacement(cache, i); |
|
} |
|
cache[i & mask] = replacement; |
|
if (replacement == null) removed += 1; |
|
} |
|
cacheLoad = Math.max(0, cacheLoad - removed); |
|
} |
|
/** Clearing a cache slot risks disconnecting following entries |
|
* from the head of a non-null run, which would allow them |
|
* to be found via reprobes. Find an entry after cache[begin] |
|
* to plug into the hole, or return null if none is needed. |
|
*/ |
|
private Entry<?> findReplacement(Entry<?>[] cache, int home1) { |
|
Entry<?> replacement = null; |
|
int haveReplacement = -1, replacementPos = 0; |
|
int mask = (cache.length-1); |
|
for (int i2 = home1 + 1; i2 < home1 + PROBE_LIMIT; i2++) { |
|
Entry<?> e2 = cache[i2 & mask]; |
|
if (e2 == null) break; // End of non-null run. |
|
if (!e2.isLive()) continue; // Doomed anyway. |
|
int dis2 = entryDislocation(cache, i2, e2); |
|
if (dis2 == 0) continue; // e2 already optimally placed |
|
int home2 = i2 - dis2; |
|
if (home2 <= home1) { |
|
// e2 can replace entry at cache[home1] |
|
if (home2 == home1) { |
|
// Put e2 exactly where he belongs. |
|
haveReplacement = 1; |
|
replacementPos = i2; |
|
replacement = e2; |
|
} else if (haveReplacement <= 0) { |
|
haveReplacement = 0; |
|
replacementPos = i2; |
|
replacement = e2; |
|
} |
|
// And keep going, so we can favor larger dislocations. |
|
} |
|
} |
|
if (haveReplacement >= 0) { |
|
if (cache[(replacementPos+1) & mask] != null) { |
|
// Be conservative, to avoid breaking up a non-null run. |
|
cache[replacementPos & mask] = (Entry<?>) Entry.DEAD_ENTRY; |
|
} else { |
|
cache[replacementPos & mask] = null; |
|
cacheLoad -= 1; |
|
} |
|
} |
|
return replacement; |
|
} |
|
/** Remove stale entries in the range near classValue. */ |
|
private void removeStaleEntries(ClassValue<?> classValue) { |
|
removeStaleEntries(getCache(), classValue.hashCodeForCache, PROBE_LIMIT); |
|
} |
|
/** Remove all stale entries, everywhere. */ |
|
private void removeStaleEntries() { |
|
Entry<?>[] cache = getCache(); |
|
removeStaleEntries(cache, 0, cache.length + PROBE_LIMIT - 1); |
|
} |
|
/** Add the given entry to the cache, in its home location, unless it is out of date. */ |
|
private <T> void addToCache(Entry<T> e) { |
|
ClassValue<T> classValue = e.classValueOrNull(); |
|
if (classValue != null) |
|
addToCache(classValue, e); |
|
} |
|
/** Add the given entry to the cache, in its home location. */ |
|
private <T> void addToCache(ClassValue<T> classValue, Entry<T> e) { |
|
if (PROBE_LIMIT <= 0) return; // do not fill cache |
|
// Add e to the cache. |
|
Entry<?>[] cache = getCache(); |
|
int mask = (cache.length-1); |
|
int home = classValue.hashCodeForCache & mask; |
|
Entry<?> e2 = placeInCache(cache, home, e, false); |
|
if (e2 == null) return; // done |
|
if (PROBE_LIMIT > 1) { |
|
// try to move e2 somewhere else in his probe range |
|
int dis2 = entryDislocation(cache, home, e2); |
|
int home2 = home - dis2; |
|
for (int i2 = home2; i2 < home2 + PROBE_LIMIT; i2++) { |
|
if (placeInCache(cache, i2 & mask, e2, true) == null) { |
|
return; |
|
} |
|
} |
|
} |
|
// Note: At this point, e2 is just dropped from the cache. |
|
} |
|
/** Store the given entry. Update cacheLoad, and return any live victim. |
|
* 'Gently' means return self rather than dislocating a live victim. |
|
*/ |
|
private Entry<?> placeInCache(Entry<?>[] cache, int pos, Entry<?> e, boolean gently) { |
|
Entry<?> e2 = overwrittenEntry(cache[pos]); |
|
if (gently && e2 != null) { |
|
// do not overwrite a live entry |
|
return e; |
|
} else { |
|
cache[pos] = e; |
|
return e2; |
|
} |
|
} |
|
/** Note an entry that is about to be overwritten. |
|
* If it is not live, quietly replace it by null. |
|
* If it is an actual null, increment cacheLoad, |
|
* because the caller is going to store something |
|
* in its place. |
|
*/ |
|
private <T> Entry<T> overwrittenEntry(Entry<T> e2) { |
|
if (e2 == null) cacheLoad += 1; |
|
else if (e2.isLive()) return e2; |
|
return null; |
|
} |
|
/** Percent loading of cache before resize. */ |
|
private static final int CACHE_LOAD_LIMIT = 67; // 0..100 |
|
/** Maximum number of probes to attempt. */ |
|
private static final int PROBE_LIMIT = 6; // 1.. |
|
// N.B. Set PROBE_LIMIT=0 to disable all fast paths. |
|
} |
|
} |