/* |
|
* Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved. |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
package java.util; |
|
import java.lang.ref.WeakReference; |
|
import java.lang.ref.ReferenceQueue; |
|
import java.util.function.BiConsumer; |
|
import java.util.function.BiFunction; |
|
import java.util.function.Consumer; |
|
/** |
|
* Hash table based implementation of the {@code Map} interface, with |
|
* <em>weak keys</em>. |
|
* An entry in a {@code WeakHashMap} will automatically be removed when |
|
* its key is no longer in ordinary use. More precisely, the presence of a |
|
* mapping for a given key will not prevent the key from being discarded by the |
|
* garbage collector, that is, made finalizable, finalized, and then reclaimed. |
|
* When a key has been discarded its entry is effectively removed from the map, |
|
* so this class behaves somewhat differently from other {@code Map} |
|
* implementations. |
|
* |
|
* <p> Both null values and the null key are supported. This class has |
|
* performance characteristics similar to those of the {@code HashMap} |
|
* class, and has the same efficiency parameters of <em>initial capacity</em> |
|
* and <em>load factor</em>. |
|
* |
|
* <p> Like most collection classes, this class is not synchronized. |
|
* A synchronized {@code WeakHashMap} may be constructed using the |
|
* {@link Collections#synchronizedMap Collections.synchronizedMap} |
|
* method. |
|
* |
|
* <p> This class is intended primarily for use with key objects whose |
|
* {@code equals} methods test for object identity using the |
|
* {@code ==} operator. Once such a key is discarded it can never be |
|
* recreated, so it is impossible to do a lookup of that key in a |
|
* {@code WeakHashMap} at some later time and be surprised that its entry |
|
* has been removed. This class will work perfectly well with key objects |
|
* whose {@code equals} methods are not based upon object identity, such |
|
* as {@code String} instances. With such recreatable key objects, |
|
* however, the automatic removal of {@code WeakHashMap} entries whose |
|
* keys have been discarded may prove to be confusing. |
|
* |
|
* <p> The behavior of the {@code WeakHashMap} class depends in part upon |
|
* the actions of the garbage collector, so several familiar (though not |
|
* required) {@code Map} invariants do not hold for this class. Because |
|
* the garbage collector may discard keys at any time, a |
|
* {@code WeakHashMap} may behave as though an unknown thread is silently |
|
* removing entries. In particular, even if you synchronize on a |
|
* {@code WeakHashMap} instance and invoke none of its mutator methods, it |
|
* is possible for the {@code size} method to return smaller values over |
|
* time, for the {@code isEmpty} method to return {@code false} and |
|
* then {@code true}, for the {@code containsKey} method to return |
|
* {@code true} and later {@code false} for a given key, for the |
|
* {@code get} method to return a value for a given key but later return |
|
* {@code null}, for the {@code put} method to return |
|
* {@code null} and the {@code remove} method to return |
|
* {@code false} for a key that previously appeared to be in the map, and |
|
* for successive examinations of the key set, the value collection, and |
|
* the entry set to yield successively smaller numbers of elements. |
|
* |
|
* <p> Each key object in a {@code WeakHashMap} is stored indirectly as |
|
* the referent of a weak reference. Therefore a key will automatically be |
|
* removed only after the weak references to it, both inside and outside of the |
|
* map, have been cleared by the garbage collector. |
|
* |
|
* <p> <strong>Implementation note:</strong> The value objects in a |
|
* {@code WeakHashMap} are held by ordinary strong references. Thus care |
|
* should be taken to ensure that value objects do not strongly refer to their |
|
* own keys, either directly or indirectly, since that will prevent the keys |
|
* from being discarded. Note that a value object may refer indirectly to its |
|
* key via the {@code WeakHashMap} itself; that is, a value object may |
|
* strongly refer to some other key object whose associated value object, in |
|
* turn, strongly refers to the key of the first value object. If the values |
|
* in the map do not rely on the map holding strong references to them, one way |
|
* to deal with this is to wrap values themselves within |
|
* {@code WeakReferences} before |
|
* inserting, as in: {@code m.put(key, new WeakReference(value))}, |
|
* and then unwrapping upon each {@code get}. |
|
* |
|
* <p>The iterators returned by the {@code iterator} method of the collections |
|
* returned by all of this class's "collection view methods" are |
|
* <i>fail-fast</i>: if the map is structurally modified at any time after the |
|
* iterator is created, in any way except through the iterator's own |
|
* {@code remove} method, the iterator will throw a {@link |
|
* ConcurrentModificationException}. Thus, in the face of concurrent |
|
* modification, the iterator fails quickly and cleanly, rather than risking |
|
* arbitrary, non-deterministic behavior at an undetermined time in the future. |
|
* |
|
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed |
|
* as it is, generally speaking, impossible to make any hard guarantees in the |
|
* presence of unsynchronized concurrent modification. Fail-fast iterators |
|
* throw {@code ConcurrentModificationException} on a best-effort basis. |
|
* Therefore, it would be wrong to write a program that depended on this |
|
* exception for its correctness: <i>the fail-fast behavior of iterators |
|
* should be used only to detect bugs.</i> |
|
* |
|
* <p>This class is a member of the |
|
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework"> |
|
* Java Collections Framework</a>. |
|
* |
|
* @param <K> the type of keys maintained by this map |
|
* @param <V> the type of mapped values |
|
* |
|
* @author Doug Lea |
|
* @author Josh Bloch |
|
* @author Mark Reinhold |
|
* @since 1.2 |
|
* @see java.util.HashMap |
|
* @see java.lang.ref.WeakReference |
|
*/ |
|
public class WeakHashMap<K,V> |
|
extends AbstractMap<K,V> |
|
implements Map<K,V> { |
|
/** |
|
* The default initial capacity -- MUST be a power of two. |
|
*/ |
|
private static final int DEFAULT_INITIAL_CAPACITY = 16; |
|
/** |
|
* The maximum capacity, used if a higher value is implicitly specified |
|
* by either of the constructors with arguments. |
|
* MUST be a power of two <= 1<<30. |
|
*/ |
|
private static final int MAXIMUM_CAPACITY = 1 << 30; |
|
/** |
|
* The load factor used when none specified in constructor. |
|
*/ |
|
private static final float DEFAULT_LOAD_FACTOR = 0.75f; |
|
/** |
|
* The table, resized as necessary. Length MUST Always be a power of two. |
|
*/ |
|
Entry<K,V>[] table; |
|
/** |
|
* The number of key-value mappings contained in this weak hash map. |
|
*/ |
|
private int size; |
|
/** |
|
* The next size value at which to resize (capacity * load factor). |
|
*/ |
|
private int threshold; |
|
/** |
|
* The load factor for the hash table. |
|
*/ |
|
private final float loadFactor; |
|
/** |
|
* Reference queue for cleared WeakEntries |
|
*/ |
|
private final ReferenceQueue<Object> queue = new ReferenceQueue<>(); |
|
/** |
|
* The number of times this WeakHashMap has been structurally modified. |
|
* Structural modifications are those that change the number of |
|
* mappings in the map or otherwise modify its internal structure |
|
* (e.g., rehash). This field is used to make iterators on |
|
* Collection-views of the map fail-fast. |
|
* |
|
* @see ConcurrentModificationException |
|
*/ |
|
int modCount; |
|
@SuppressWarnings("unchecked") |
|
private Entry<K,V>[] newTable(int n) { |
|
return (Entry<K,V>[]) new Entry<?,?>[n]; |
|
} |
|
/** |
|
* Constructs a new, empty {@code WeakHashMap} with the given initial |
|
* capacity and the given load factor. |
|
* |
|
* @param initialCapacity The initial capacity of the {@code WeakHashMap} |
|
* @param loadFactor The load factor of the {@code WeakHashMap} |
|
* @throws IllegalArgumentException if the initial capacity is negative, |
|
* or if the load factor is nonpositive. |
|
*/ |
|
public WeakHashMap(int initialCapacity, float loadFactor) { |
|
if (initialCapacity < 0) |
|
throw new IllegalArgumentException("Illegal Initial Capacity: "+ |
|
initialCapacity); |
|
if (initialCapacity > MAXIMUM_CAPACITY) |
|
initialCapacity = MAXIMUM_CAPACITY; |
|
if (loadFactor <= 0 || Float.isNaN(loadFactor)) |
|
throw new IllegalArgumentException("Illegal Load factor: "+ |
|
loadFactor); |
|
int capacity = 1; |
|
while (capacity < initialCapacity) |
|
capacity <<= 1; |
|
table = newTable(capacity); |
|
this.loadFactor = loadFactor; |
|
threshold = (int)(capacity * loadFactor); |
|
} |
|
/** |
|
* Constructs a new, empty {@code WeakHashMap} with the given initial |
|
* capacity and the default load factor (0.75). |
|
* |
|
* @param initialCapacity The initial capacity of the {@code WeakHashMap} |
|
* @throws IllegalArgumentException if the initial capacity is negative |
|
*/ |
|
public WeakHashMap(int initialCapacity) { |
|
this(initialCapacity, DEFAULT_LOAD_FACTOR); |
|
} |
|
/** |
|
* Constructs a new, empty {@code WeakHashMap} with the default initial |
|
* capacity (16) and load factor (0.75). |
|
*/ |
|
public WeakHashMap() { |
|
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR); |
|
} |
|
/** |
|
* Constructs a new {@code WeakHashMap} with the same mappings as the |
|
* specified map. The {@code WeakHashMap} is created with the default |
|
* load factor (0.75) and an initial capacity sufficient to hold the |
|
* mappings in the specified map. |
|
* |
|
* @param m the map whose mappings are to be placed in this map |
|
* @throws NullPointerException if the specified map is null |
|
* @since 1.3 |
|
*/ |
|
public WeakHashMap(Map<? extends K, ? extends V> m) { |
|
this(Math.max((int) ((float)m.size() / DEFAULT_LOAD_FACTOR + 1.0F), |
|
DEFAULT_INITIAL_CAPACITY), |
|
DEFAULT_LOAD_FACTOR); |
|
putAll(m); |
|
} |
|
// internal utilities |
|
/** |
|
* Value representing null keys inside tables. |
|
*/ |
|
private static final Object NULL_KEY = new Object(); |
|
/** |
|
* Use NULL_KEY for key if it is null. |
|
*/ |
|
private static Object maskNull(Object key) { |
|
return (key == null) ? NULL_KEY : key; |
|
} |
|
/** |
|
* Returns internal representation of null key back to caller as null. |
|
*/ |
|
static Object unmaskNull(Object key) { |
|
return (key == NULL_KEY) ? null : key; |
|
} |
|
/** |
|
* Checks for equality of non-null reference x and possibly-null y. By |
|
* default uses Object.equals. |
|
*/ |
|
private boolean matchesKey(Entry<K,V> e, Object key) { |
|
// check if the given entry refers to the given key without |
|
// keeping a strong reference to the entry's referent |
|
if (e.refersTo(key)) return true; |
|
// then check for equality if the referent is not cleared |
|
Object k = e.get(); |
|
return k != null && key.equals(k); |
|
} |
|
/** |
|
* Retrieve object hash code and applies a supplemental hash function to the |
|
* result hash, which defends against poor quality hash functions. This is |
|
* critical because HashMap uses power-of-two length hash tables, that |
|
* otherwise encounter collisions for hashCodes that do not differ |
|
* in lower bits. |
|
*/ |
|
final int hash(Object k) { |
|
int h = k.hashCode(); |
|
// This function ensures that hashCodes that differ only by |
|
// constant multiples at each bit position have a bounded |
|
// number of collisions (approximately 8 at default load factor). |
|
h ^= (h >>> 20) ^ (h >>> 12); |
|
return h ^ (h >>> 7) ^ (h >>> 4); |
|
} |
|
/** |
|
* Returns index for hash code h. |
|
*/ |
|
private static int indexFor(int h, int length) { |
|
return h & (length-1); |
|
} |
|
/** |
|
* Expunges stale entries from the table. |
|
*/ |
|
private void expungeStaleEntries() { |
|
for (Object x; (x = queue.poll()) != null; ) { |
|
synchronized (queue) { |
|
@SuppressWarnings("unchecked") |
|
Entry<K,V> e = (Entry<K,V>) x; |
|
int i = indexFor(e.hash, table.length); |
|
Entry<K,V> prev = table[i]; |
|
Entry<K,V> p = prev; |
|
while (p != null) { |
|
Entry<K,V> next = p.next; |
|
if (p == e) { |
|
if (prev == e) |
|
table[i] = next; |
|
else |
|
prev.next = next; |
|
// Must not null out e.next; |
|
// stale entries may be in use by a HashIterator |
|
e.value = null; // Help GC |
|
size--; |
|
break; |
|
} |
|
prev = p; |
|
p = next; |
|
} |
|
} |
|
} |
|
} |
|
/** |
|
* Returns the table after first expunging stale entries. |
|
*/ |
|
private Entry<K,V>[] getTable() { |
|
expungeStaleEntries(); |
|
return table; |
|
} |
|
/** |
|
* Returns the number of key-value mappings in this map. |
|
* This result is a snapshot, and may not reflect unprocessed |
|
* entries that will be removed before next attempted access |
|
* because they are no longer referenced. |
|
*/ |
|
public int size() { |
|
if (size == 0) |
|
return 0; |
|
expungeStaleEntries(); |
|
return size; |
|
} |
|
/** |
|
* Returns {@code true} if this map contains no key-value mappings. |
|
* This result is a snapshot, and may not reflect unprocessed |
|
* entries that will be removed before next attempted access |
|
* because they are no longer referenced. |
|
*/ |
|
public boolean isEmpty() { |
|
return size() == 0; |
|
} |
|
/** |
|
* Returns the value to which the specified key is mapped, |
|
* or {@code null} if this map contains no mapping for the key. |
|
* |
|
* <p>More formally, if this map contains a mapping from a key |
|
* {@code k} to a value {@code v} such that |
|
* {@code Objects.equals(key, k)}, |
|
* then this method returns {@code v}; otherwise |
|
* it returns {@code null}. (There can be at most one such mapping.) |
|
* |
|
* <p>A return value of {@code null} does not <i>necessarily</i> |
|
* indicate that the map contains no mapping for the key; it's also |
|
* possible that the map explicitly maps the key to {@code null}. |
|
* The {@link #containsKey containsKey} operation may be used to |
|
* distinguish these two cases. |
|
* |
|
* @see #put(Object, Object) |
|
*/ |
|
public V get(Object key) { |
|
Object k = maskNull(key); |
|
int h = hash(k); |
|
Entry<K,V>[] tab = getTable(); |
|
int index = indexFor(h, tab.length); |
|
Entry<K,V> e = tab[index]; |
|
while (e != null) { |
|
if (e.hash == h && matchesKey(e, k)) |
|
return e.value; |
|
e = e.next; |
|
} |
|
return null; |
|
} |
|
/** |
|
* Returns {@code true} if this map contains a mapping for the |
|
* specified key. |
|
* |
|
* @param key The key whose presence in this map is to be tested |
|
* @return {@code true} if there is a mapping for {@code key}; |
|
* {@code false} otherwise |
|
*/ |
|
public boolean containsKey(Object key) { |
|
return getEntry(key) != null; |
|
} |
|
/** |
|
* Returns the entry associated with the specified key in this map. |
|
* Returns null if the map contains no mapping for this key. |
|
*/ |
|
Entry<K,V> getEntry(Object key) { |
|
Object k = maskNull(key); |
|
int h = hash(k); |
|
Entry<K,V>[] tab = getTable(); |
|
int index = indexFor(h, tab.length); |
|
Entry<K,V> e = tab[index]; |
|
while (e != null && !(e.hash == h && matchesKey(e, k))) |
|
e = e.next; |
|
return e; |
|
} |
|
/** |
|
* Associates the specified value with the specified key in this map. |
|
* If the map previously contained a mapping for this key, the old |
|
* value is replaced. |
|
* |
|
* @param key key with which the specified value is to be associated. |
|
* @param value value to be associated with the specified key. |
|
* @return the previous value associated with {@code key}, or |
|
* {@code null} if there was no mapping for {@code key}. |
|
* (A {@code null} return can also indicate that the map |
|
* previously associated {@code null} with {@code key}.) |
|
*/ |
|
public V put(K key, V value) { |
|
Object k = maskNull(key); |
|
int h = hash(k); |
|
Entry<K,V>[] tab = getTable(); |
|
int i = indexFor(h, tab.length); |
|
for (Entry<K,V> e = tab[i]; e != null; e = e.next) { |
|
if (h == e.hash && matchesKey(e, k)) { |
|
V oldValue = e.value; |
|
if (value != oldValue) |
|
e.value = value; |
|
return oldValue; |
|
} |
|
} |
|
modCount++; |
|
Entry<K,V> e = tab[i]; |
|
tab[i] = new Entry<>(k, value, queue, h, e); |
|
if (++size >= threshold) |
|
resize(tab.length * 2); |
|
return null; |
|
} |
|
/** |
|
* Rehashes the contents of this map into a new array with a |
|
* larger capacity. This method is called automatically when the |
|
* number of keys in this map reaches its threshold. |
|
* |
|
* If current capacity is MAXIMUM_CAPACITY, this method does not |
|
* resize the map, but sets threshold to Integer.MAX_VALUE. |
|
* This has the effect of preventing future calls. |
|
* |
|
* @param newCapacity the new capacity, MUST be a power of two; |
|
* must be greater than current capacity unless current |
|
* capacity is MAXIMUM_CAPACITY (in which case value |
|
* is irrelevant). |
|
*/ |
|
void resize(int newCapacity) { |
|
Entry<K,V>[] oldTable = getTable(); |
|
int oldCapacity = oldTable.length; |
|
if (oldCapacity == MAXIMUM_CAPACITY) { |
|
threshold = Integer.MAX_VALUE; |
|
return; |
|
} |
|
Entry<K,V>[] newTable = newTable(newCapacity); |
|
transfer(oldTable, newTable); |
|
table = newTable; |
|
/* |
|
* If ignoring null elements and processing ref queue caused massive |
|
* shrinkage, then restore old table. This should be rare, but avoids |
|
* unbounded expansion of garbage-filled tables. |
|
*/ |
|
if (size >= threshold / 2) { |
|
threshold = (int)(newCapacity * loadFactor); |
|
} else { |
|
expungeStaleEntries(); |
|
transfer(newTable, oldTable); |
|
table = oldTable; |
|
} |
|
} |
|
/** Transfers all entries from src to dest tables */ |
|
private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) { |
|
for (int j = 0; j < src.length; ++j) { |
|
Entry<K,V> e = src[j]; |
|
src[j] = null; |
|
while (e != null) { |
|
Entry<K,V> next = e.next; |
|
if (e.refersTo(null)) { |
|
e.next = null; // Help GC |
|
e.value = null; // " " |
|
size--; |
|
} else { |
|
int i = indexFor(e.hash, dest.length); |
|
e.next = dest[i]; |
|
dest[i] = e; |
|
} |
|
e = next; |
|
} |
|
} |
|
} |
|
/** |
|
* Copies all of the mappings from the specified map to this map. |
|
* These mappings will replace any mappings that this map had for any |
|
* of the keys currently in the specified map. |
|
* |
|
* @param m mappings to be stored in this map. |
|
* @throws NullPointerException if the specified map is null. |
|
*/ |
|
public void putAll(Map<? extends K, ? extends V> m) { |
|
int numKeysToBeAdded = m.size(); |
|
if (numKeysToBeAdded == 0) |
|
return; |
|
/* |
|
* Expand the map if the map if the number of mappings to be added |
|
* is greater than or equal to threshold. This is conservative; the |
|
* obvious condition is (m.size() + size) >= threshold, but this |
|
* condition could result in a map with twice the appropriate capacity, |
|
* if the keys to be added overlap with the keys already in this map. |
|
* By using the conservative calculation, we subject ourself |
|
* to at most one extra resize. |
|
*/ |
|
if (numKeysToBeAdded > threshold) { |
|
int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1); |
|
if (targetCapacity > MAXIMUM_CAPACITY) |
|
targetCapacity = MAXIMUM_CAPACITY; |
|
int newCapacity = table.length; |
|
while (newCapacity < targetCapacity) |
|
newCapacity <<= 1; |
|
if (newCapacity > table.length) |
|
resize(newCapacity); |
|
} |
|
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) |
|
put(e.getKey(), e.getValue()); |
|
} |
|
/** |
|
* Removes the mapping for a key from this weak hash map if it is present. |
|
* More formally, if this map contains a mapping from key {@code k} to |
|
* value {@code v} such that <code>(key==null ? k==null : |
|
* key.equals(k))</code>, that mapping is removed. (The map can contain |
|
* at most one such mapping.) |
|
* |
|
* <p>Returns the value to which this map previously associated the key, |
|
* or {@code null} if the map contained no mapping for the key. A |
|
* return value of {@code null} does not <i>necessarily</i> indicate |
|
* that the map contained no mapping for the key; it's also possible |
|
* that the map explicitly mapped the key to {@code null}. |
|
* |
|
* <p>The map will not contain a mapping for the specified key once the |
|
* call returns. |
|
* |
|
* @param key key whose mapping is to be removed from the map |
|
* @return the previous value associated with {@code key}, or |
|
* {@code null} if there was no mapping for {@code key} |
|
*/ |
|
public V remove(Object key) { |
|
Object k = maskNull(key); |
|
int h = hash(k); |
|
Entry<K,V>[] tab = getTable(); |
|
int i = indexFor(h, tab.length); |
|
Entry<K,V> prev = tab[i]; |
|
Entry<K,V> e = prev; |
|
while (e != null) { |
|
Entry<K,V> next = e.next; |
|
if (h == e.hash && matchesKey(e, k)) { |
|
modCount++; |
|
size--; |
|
if (prev == e) |
|
tab[i] = next; |
|
else |
|
prev.next = next; |
|
return e.value; |
|
} |
|
prev = e; |
|
e = next; |
|
} |
|
return null; |
|
} |
|
/** Special version of remove needed by Entry set */ |
|
boolean removeMapping(Object o) { |
|
if (!(o instanceof Map.Entry<?, ?> entry)) |
|
return false; |
|
Entry<K,V>[] tab = getTable(); |
|
Object k = maskNull(entry.getKey()); |
|
int h = hash(k); |
|
int i = indexFor(h, tab.length); |
|
Entry<K,V> prev = tab[i]; |
|
Entry<K,V> e = prev; |
|
while (e != null) { |
|
Entry<K,V> next = e.next; |
|
if (h == e.hash && e.equals(entry)) { |
|
modCount++; |
|
size--; |
|
if (prev == e) |
|
tab[i] = next; |
|
else |
|
prev.next = next; |
|
return true; |
|
} |
|
prev = e; |
|
e = next; |
|
} |
|
return false; |
|
} |
|
/** |
|
* Removes all of the mappings from this map. |
|
* The map will be empty after this call returns. |
|
*/ |
|
public void clear() { |
|
// clear out ref queue. We don't need to expunge entries |
|
// since table is getting cleared. |
|
while (queue.poll() != null) |
|
; |
|
modCount++; |
|
Arrays.fill(table, null); |
|
size = 0; |
|
// Allocation of array may have caused GC, which may have caused |
|
// additional entries to go stale. Removing these entries from the |
|
// reference queue will make them eligible for reclamation. |
|
while (queue.poll() != null) |
|
; |
|
} |
|
/** |
|
* Returns {@code true} if this map maps one or more keys to the |
|
* specified value. |
|
* |
|
* @param value value whose presence in this map is to be tested |
|
* @return {@code true} if this map maps one or more keys to the |
|
* specified value |
|
*/ |
|
public boolean containsValue(Object value) { |
|
if (value==null) |
|
return containsNullValue(); |
|
Entry<K,V>[] tab = getTable(); |
|
for (int i = tab.length; i-- > 0;) |
|
for (Entry<K,V> e = tab[i]; e != null; e = e.next) |
|
if (value.equals(e.value)) |
|
return true; |
|
return false; |
|
} |
|
/** |
|
* Special-case code for containsValue with null argument |
|
*/ |
|
private boolean containsNullValue() { |
|
Entry<K,V>[] tab = getTable(); |
|
for (int i = tab.length; i-- > 0;) |
|
for (Entry<K,V> e = tab[i]; e != null; e = e.next) |
|
if (e.value==null) |
|
return true; |
|
return false; |
|
} |
|
/** |
|
* The entries in this hash table extend WeakReference, using its main ref |
|
* field as the key. |
|
*/ |
|
private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> { |
|
V value; |
|
final int hash; |
|
Entry<K,V> next; |
|
/** |
|
* Creates new entry. |
|
*/ |
|
Entry(Object key, V value, |
|
ReferenceQueue<Object> queue, |
|
int hash, Entry<K,V> next) { |
|
super(key, queue); |
|
this.value = value; |
|
this.hash = hash; |
|
this.next = next; |
|
} |
|
@SuppressWarnings("unchecked") |
|
public K getKey() { |
|
return (K) WeakHashMap.unmaskNull(get()); |
|
} |
|
public V getValue() { |
|
return value; |
|
} |
|
public V setValue(V newValue) { |
|
V oldValue = value; |
|
value = newValue; |
|
return oldValue; |
|
} |
|
public boolean equals(Object o) { |
|
if (!(o instanceof Map.Entry<?, ?> e)) |
|
return false; |
|
K k1 = getKey(); |
|
Object k2 = e.getKey(); |
|
if (k1 == k2 || (k1 != null && k1.equals(k2))) { |
|
V v1 = getValue(); |
|
Object v2 = e.getValue(); |
|
if (v1 == v2 || (v1 != null && v1.equals(v2))) |
|
return true; |
|
} |
|
return false; |
|
} |
|
public int hashCode() { |
|
K k = getKey(); |
|
V v = getValue(); |
|
return Objects.hashCode(k) ^ Objects.hashCode(v); |
|
} |
|
public String toString() { |
|
return getKey() + "=" + getValue(); |
|
} |
|
} |
|
private abstract class HashIterator<T> implements Iterator<T> { |
|
private int index; |
|
private Entry<K,V> entry; |
|
private Entry<K,V> lastReturned; |
|
private int expectedModCount = modCount; |
|
/** |
|
* Strong reference needed to avoid disappearance of key |
|
* between hasNext and next |
|
*/ |
|
private Object nextKey; |
|
/** |
|
* Strong reference needed to avoid disappearance of key |
|
* between nextEntry() and any use of the entry |
|
*/ |
|
private Object currentKey; |
|
HashIterator() { |
|
index = isEmpty() ? 0 : table.length; |
|
} |
|
public boolean hasNext() { |
|
Entry<K,V>[] t = table; |
|
while (nextKey == null) { |
|
Entry<K,V> e = entry; |
|
int i = index; |
|
while (e == null && i > 0) |
|
e = t[--i]; |
|
entry = e; |
|
index = i; |
|
if (e == null) { |
|
currentKey = null; |
|
return false; |
|
} |
|
nextKey = e.get(); // hold on to key in strong ref |
|
if (nextKey == null) |
|
entry = entry.next; |
|
} |
|
return true; |
|
} |
|
/** The common parts of next() across different types of iterators */ |
|
protected Entry<K,V> nextEntry() { |
|
if (modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
if (nextKey == null && !hasNext()) |
|
throw new NoSuchElementException(); |
|
lastReturned = entry; |
|
entry = entry.next; |
|
currentKey = nextKey; |
|
nextKey = null; |
|
return lastReturned; |
|
} |
|
public void remove() { |
|
if (lastReturned == null) |
|
throw new IllegalStateException(); |
|
if (modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
WeakHashMap.this.remove(currentKey); |
|
expectedModCount = modCount; |
|
lastReturned = null; |
|
currentKey = null; |
|
} |
|
} |
|
private class ValueIterator extends HashIterator<V> { |
|
public V next() { |
|
return nextEntry().value; |
|
} |
|
} |
|
private class KeyIterator extends HashIterator<K> { |
|
public K next() { |
|
return nextEntry().getKey(); |
|
} |
|
} |
|
private class EntryIterator extends HashIterator<Map.Entry<K,V>> { |
|
public Map.Entry<K,V> next() { |
|
return nextEntry(); |
|
} |
|
} |
|
// Views |
|
private transient Set<Map.Entry<K,V>> entrySet; |
|
/** |
|
* Returns a {@link Set} view of the keys contained in this map. |
|
* The set is backed by the map, so changes to the map are |
|
* reflected in the set, and vice-versa. If the map is modified |
|
* while an iteration over the set is in progress (except through |
|
* the iterator's own {@code remove} operation), the results of |
|
* the iteration are undefined. The set supports element removal, |
|
* which removes the corresponding mapping from the map, via the |
|
* {@code Iterator.remove}, {@code Set.remove}, |
|
* {@code removeAll}, {@code retainAll}, and {@code clear} |
|
* operations. It does not support the {@code add} or {@code addAll} |
|
* operations. |
|
*/ |
|
public Set<K> keySet() { |
|
Set<K> ks = keySet; |
|
if (ks == null) { |
|
ks = new KeySet(); |
|
keySet = ks; |
|
} |
|
return ks; |
|
} |
|
private class KeySet extends AbstractSet<K> { |
|
public Iterator<K> iterator() { |
|
return new KeyIterator(); |
|
} |
|
public int size() { |
|
return WeakHashMap.this.size(); |
|
} |
|
public boolean contains(Object o) { |
|
return containsKey(o); |
|
} |
|
public boolean remove(Object o) { |
|
if (containsKey(o)) { |
|
WeakHashMap.this.remove(o); |
|
return true; |
|
} |
|
else |
|
return false; |
|
} |
|
public void clear() { |
|
WeakHashMap.this.clear(); |
|
} |
|
public Spliterator<K> spliterator() { |
|
return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0); |
|
} |
|
} |
|
/** |
|
* Returns a {@link Collection} view of the values contained in this map. |
|
* The collection is backed by the map, so changes to the map are |
|
* reflected in the collection, and vice-versa. If the map is |
|
* modified while an iteration over the collection is in progress |
|
* (except through the iterator's own {@code remove} operation), |
|
* the results of the iteration are undefined. The collection |
|
* supports element removal, which removes the corresponding |
|
* mapping from the map, via the {@code Iterator.remove}, |
|
* {@code Collection.remove}, {@code removeAll}, |
|
* {@code retainAll} and {@code clear} operations. It does not |
|
* support the {@code add} or {@code addAll} operations. |
|
*/ |
|
public Collection<V> values() { |
|
Collection<V> vs = values; |
|
if (vs == null) { |
|
vs = new Values(); |
|
values = vs; |
|
} |
|
return vs; |
|
} |
|
private class Values extends AbstractCollection<V> { |
|
public Iterator<V> iterator() { |
|
return new ValueIterator(); |
|
} |
|
public int size() { |
|
return WeakHashMap.this.size(); |
|
} |
|
public boolean contains(Object o) { |
|
return containsValue(o); |
|
} |
|
public void clear() { |
|
WeakHashMap.this.clear(); |
|
} |
|
public Spliterator<V> spliterator() { |
|
return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0); |
|
} |
|
} |
|
/** |
|
* Returns a {@link Set} view of the mappings contained in this map. |
|
* The set is backed by the map, so changes to the map are |
|
* reflected in the set, and vice-versa. If the map is modified |
|
* while an iteration over the set is in progress (except through |
|
* the iterator's own {@code remove} operation, or through the |
|
* {@code setValue} operation on a map entry returned by the |
|
* iterator) the results of the iteration are undefined. The set |
|
* supports element removal, which removes the corresponding |
|
* mapping from the map, via the {@code Iterator.remove}, |
|
* {@code Set.remove}, {@code removeAll}, {@code retainAll} and |
|
* {@code clear} operations. It does not support the |
|
* {@code add} or {@code addAll} operations. |
|
*/ |
|
public Set<Map.Entry<K,V>> entrySet() { |
|
Set<Map.Entry<K,V>> es = entrySet; |
|
return es != null ? es : (entrySet = new EntrySet()); |
|
} |
|
private class EntrySet extends AbstractSet<Map.Entry<K,V>> { |
|
public Iterator<Map.Entry<K,V>> iterator() { |
|
return new EntryIterator(); |
|
} |
|
public boolean contains(Object o) { |
|
return o instanceof Map.Entry<?, ?> e |
|
&& getEntry(e.getKey()) != null |
|
&& getEntry(e.getKey()).equals(e); |
|
} |
|
public boolean remove(Object o) { |
|
return removeMapping(o); |
|
} |
|
public int size() { |
|
return WeakHashMap.this.size(); |
|
} |
|
public void clear() { |
|
WeakHashMap.this.clear(); |
|
} |
|
private List<Map.Entry<K,V>> deepCopy() { |
|
List<Map.Entry<K,V>> list = new ArrayList<>(size()); |
|
for (Map.Entry<K,V> e : this) |
|
list.add(new AbstractMap.SimpleEntry<>(e)); |
|
return list; |
|
} |
|
public Object[] toArray() { |
|
return deepCopy().toArray(); |
|
} |
|
public <T> T[] toArray(T[] a) { |
|
return deepCopy().toArray(a); |
|
} |
|
public Spliterator<Map.Entry<K,V>> spliterator() { |
|
return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0); |
|
} |
|
} |
|
@SuppressWarnings("unchecked") |
|
@Override |
|
public void forEach(BiConsumer<? super K, ? super V> action) { |
|
Objects.requireNonNull(action); |
|
int expectedModCount = modCount; |
|
Entry<K, V>[] tab = getTable(); |
|
for (Entry<K, V> entry : tab) { |
|
while (entry != null) { |
|
Object key = entry.get(); |
|
if (key != null) { |
|
action.accept((K)WeakHashMap.unmaskNull(key), entry.value); |
|
} |
|
entry = entry.next; |
|
if (expectedModCount != modCount) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
} |
|
} |
|
@SuppressWarnings("unchecked") |
|
@Override |
|
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { |
|
Objects.requireNonNull(function); |
|
int expectedModCount = modCount; |
|
Entry<K, V>[] tab = getTable();; |
|
for (Entry<K, V> entry : tab) { |
|
while (entry != null) { |
|
Object key = entry.get(); |
|
if (key != null) { |
|
entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value); |
|
} |
|
entry = entry.next; |
|
if (expectedModCount != modCount) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
} |
|
} |
|
/** |
|
* Similar form as other hash Spliterators, but skips dead |
|
* elements. |
|
*/ |
|
static class WeakHashMapSpliterator<K,V> { |
|
final WeakHashMap<K,V> map; |
|
WeakHashMap.Entry<K,V> current; // current node |
|
int index; // current index, modified on advance/split |
|
int fence; // -1 until first use; then one past last index |
|
int est; // size estimate |
|
int expectedModCount; // for comodification checks |
|
WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin, |
|
int fence, int est, |
|
int expectedModCount) { |
|
this.map = m; |
|
this.index = origin; |
|
this.fence = fence; |
|
this.est = est; |
|
this.expectedModCount = expectedModCount; |
|
} |
|
final int getFence() { // initialize fence and size on first use |
|
int hi; |
|
if ((hi = fence) < 0) { |
|
WeakHashMap<K,V> m = map; |
|
est = m.size(); |
|
expectedModCount = m.modCount; |
|
hi = fence = m.table.length; |
|
} |
|
return hi; |
|
} |
|
public final long estimateSize() { |
|
getFence(); // force init |
|
return (long) est; |
|
} |
|
} |
|
static final class KeySpliterator<K,V> |
|
extends WeakHashMapSpliterator<K,V> |
|
implements Spliterator<K> { |
|
KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est, |
|
int expectedModCount) { |
|
super(m, origin, fence, est, expectedModCount); |
|
} |
|
public KeySpliterator<K,V> trySplit() { |
|
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; |
|
return (lo >= mid) ? null : |
|
new KeySpliterator<>(map, lo, index = mid, est >>>= 1, |
|
expectedModCount); |
|
} |
|
public void forEachRemaining(Consumer<? super K> action) { |
|
int i, hi, mc; |
|
if (action == null) |
|
throw new NullPointerException(); |
|
WeakHashMap<K,V> m = map; |
|
WeakHashMap.Entry<K,V>[] tab = m.table; |
|
if ((hi = fence) < 0) { |
|
mc = expectedModCount = m.modCount; |
|
hi = fence = tab.length; |
|
} |
|
else |
|
mc = expectedModCount; |
|
if (tab.length >= hi && (i = index) >= 0 && |
|
(i < (index = hi) || current != null)) { |
|
WeakHashMap.Entry<K,V> p = current; |
|
current = null; // exhaust |
|
do { |
|
if (p == null) |
|
p = tab[i++]; |
|
else { |
|
Object x = p.get(); |
|
p = p.next; |
|
if (x != null) { |
|
@SuppressWarnings("unchecked") K k = |
|
(K) WeakHashMap.unmaskNull(x); |
|
action.accept(k); |
|
} |
|
} |
|
} while (p != null || i < hi); |
|
} |
|
if (m.modCount != mc) |
|
throw new ConcurrentModificationException(); |
|
} |
|
public boolean tryAdvance(Consumer<? super K> action) { |
|
int hi; |
|
if (action == null) |
|
throw new NullPointerException(); |
|
WeakHashMap.Entry<K,V>[] tab = map.table; |
|
if (tab.length >= (hi = getFence()) && index >= 0) { |
|
while (current != null || index < hi) { |
|
if (current == null) |
|
current = tab[index++]; |
|
else { |
|
Object x = current.get(); |
|
current = current.next; |
|
if (x != null) { |
|
@SuppressWarnings("unchecked") K k = |
|
(K) WeakHashMap.unmaskNull(x); |
|
action.accept(k); |
|
if (map.modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
return true; |
|
} |
|
} |
|
} |
|
} |
|
return false; |
|
} |
|
public int characteristics() { |
|
return Spliterator.DISTINCT; |
|
} |
|
} |
|
static final class ValueSpliterator<K,V> |
|
extends WeakHashMapSpliterator<K,V> |
|
implements Spliterator<V> { |
|
ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est, |
|
int expectedModCount) { |
|
super(m, origin, fence, est, expectedModCount); |
|
} |
|
public ValueSpliterator<K,V> trySplit() { |
|
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; |
|
return (lo >= mid) ? null : |
|
new ValueSpliterator<>(map, lo, index = mid, est >>>= 1, |
|
expectedModCount); |
|
} |
|
public void forEachRemaining(Consumer<? super V> action) { |
|
int i, hi, mc; |
|
if (action == null) |
|
throw new NullPointerException(); |
|
WeakHashMap<K,V> m = map; |
|
WeakHashMap.Entry<K,V>[] tab = m.table; |
|
if ((hi = fence) < 0) { |
|
mc = expectedModCount = m.modCount; |
|
hi = fence = tab.length; |
|
} |
|
else |
|
mc = expectedModCount; |
|
if (tab.length >= hi && (i = index) >= 0 && |
|
(i < (index = hi) || current != null)) { |
|
WeakHashMap.Entry<K,V> p = current; |
|
current = null; // exhaust |
|
do { |
|
if (p == null) |
|
p = tab[i++]; |
|
else { |
|
Object x = p.get(); |
|
V v = p.value; |
|
p = p.next; |
|
if (x != null) |
|
action.accept(v); |
|
} |
|
} while (p != null || i < hi); |
|
} |
|
if (m.modCount != mc) |
|
throw new ConcurrentModificationException(); |
|
} |
|
public boolean tryAdvance(Consumer<? super V> action) { |
|
int hi; |
|
if (action == null) |
|
throw new NullPointerException(); |
|
WeakHashMap.Entry<K,V>[] tab = map.table; |
|
if (tab.length >= (hi = getFence()) && index >= 0) { |
|
while (current != null || index < hi) { |
|
if (current == null) |
|
current = tab[index++]; |
|
else { |
|
Object x = current.get(); |
|
V v = current.value; |
|
current = current.next; |
|
if (x != null) { |
|
action.accept(v); |
|
if (map.modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
return true; |
|
} |
|
} |
|
} |
|
} |
|
return false; |
|
} |
|
public int characteristics() { |
|
return 0; |
|
} |
|
} |
|
static final class EntrySpliterator<K,V> |
|
extends WeakHashMapSpliterator<K,V> |
|
implements Spliterator<Map.Entry<K,V>> { |
|
EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est, |
|
int expectedModCount) { |
|
super(m, origin, fence, est, expectedModCount); |
|
} |
|
public EntrySpliterator<K,V> trySplit() { |
|
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; |
|
return (lo >= mid) ? null : |
|
new EntrySpliterator<>(map, lo, index = mid, est >>>= 1, |
|
expectedModCount); |
|
} |
|
public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) { |
|
int i, hi, mc; |
|
if (action == null) |
|
throw new NullPointerException(); |
|
WeakHashMap<K,V> m = map; |
|
WeakHashMap.Entry<K,V>[] tab = m.table; |
|
if ((hi = fence) < 0) { |
|
mc = expectedModCount = m.modCount; |
|
hi = fence = tab.length; |
|
} |
|
else |
|
mc = expectedModCount; |
|
if (tab.length >= hi && (i = index) >= 0 && |
|
(i < (index = hi) || current != null)) { |
|
WeakHashMap.Entry<K,V> p = current; |
|
current = null; // exhaust |
|
do { |
|
if (p == null) |
|
p = tab[i++]; |
|
else { |
|
Object x = p.get(); |
|
V v = p.value; |
|
p = p.next; |
|
if (x != null) { |
|
@SuppressWarnings("unchecked") K k = |
|
(K) WeakHashMap.unmaskNull(x); |
|
action.accept |
|
(new AbstractMap.SimpleImmutableEntry<>(k, v)); |
|
} |
|
} |
|
} while (p != null || i < hi); |
|
} |
|
if (m.modCount != mc) |
|
throw new ConcurrentModificationException(); |
|
} |
|
public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) { |
|
int hi; |
|
if (action == null) |
|
throw new NullPointerException(); |
|
WeakHashMap.Entry<K,V>[] tab = map.table; |
|
if (tab.length >= (hi = getFence()) && index >= 0) { |
|
while (current != null || index < hi) { |
|
if (current == null) |
|
current = tab[index++]; |
|
else { |
|
Object x = current.get(); |
|
V v = current.value; |
|
current = current.next; |
|
if (x != null) { |
|
@SuppressWarnings("unchecked") K k = |
|
(K) WeakHashMap.unmaskNull(x); |
|
action.accept |
|
(new AbstractMap.SimpleImmutableEntry<>(k, v)); |
|
if (map.modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
return true; |
|
} |
|
} |
|
} |
|
} |
|
return false; |
|
} |
|
public int characteristics() { |
|
return Spliterator.DISTINCT; |
|
} |
|
} |
|
} |