/* |
|
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
package java.util; |
|
import java.util.function.Consumer; |
|
/** |
|
* Doubly-linked list implementation of the {@code List} and {@code Deque} |
|
* interfaces. Implements all optional list operations, and permits all |
|
* elements (including {@code null}). |
|
* |
|
* <p>All of the operations perform as could be expected for a doubly-linked |
|
* list. Operations that index into the list will traverse the list from |
|
* the beginning or the end, whichever is closer to the specified index. |
|
* |
|
* <p><strong>Note that this implementation is not synchronized.</strong> |
|
* If multiple threads access a linked list concurrently, and at least |
|
* one of the threads modifies the list structurally, it <i>must</i> be |
|
* synchronized externally. (A structural modification is any operation |
|
* that adds or deletes one or more elements; merely setting the value of |
|
* an element is not a structural modification.) This is typically |
|
* accomplished by synchronizing on some object that naturally |
|
* encapsulates the list. |
|
* |
|
* If no such object exists, the list should be "wrapped" using the |
|
* {@link Collections#synchronizedList Collections.synchronizedList} |
|
* method. This is best done at creation time, to prevent accidental |
|
* unsynchronized access to the list:<pre> |
|
* List list = Collections.synchronizedList(new LinkedList(...));</pre> |
|
* |
|
* <p>The iterators returned by this class's {@code iterator} and |
|
* {@code listIterator} methods are <i>fail-fast</i>: if the list is |
|
* structurally modified at any time after the iterator is created, in |
|
* any way except through the Iterator's own {@code remove} or |
|
* {@code add} methods, the iterator will throw a {@link |
|
* ConcurrentModificationException}. Thus, in the face of concurrent |
|
* modification, the iterator fails quickly and cleanly, rather than |
|
* risking arbitrary, non-deterministic behavior at an undetermined |
|
* time in the future. |
|
* |
|
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed |
|
* as it is, generally speaking, impossible to make any hard guarantees in the |
|
* presence of unsynchronized concurrent modification. Fail-fast iterators |
|
* throw {@code ConcurrentModificationException} on a best-effort basis. |
|
* Therefore, it would be wrong to write a program that depended on this |
|
* exception for its correctness: <i>the fail-fast behavior of iterators |
|
* should be used only to detect bugs.</i> |
|
* |
|
* <p>This class is a member of the |
|
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework"> |
|
* Java Collections Framework</a>. |
|
* |
|
* @author Josh Bloch |
|
* @see List |
|
* @see ArrayList |
|
* @since 1.2 |
|
* @param <E> the type of elements held in this collection |
|
*/ |
|
public class LinkedList<E> |
|
extends AbstractSequentialList<E> |
|
implements List<E>, Deque<E>, Cloneable, java.io.Serializable |
|
{ |
|
transient int size = 0; |
|
/** |
|
* Pointer to first node. |
|
*/ |
|
transient Node<E> first; |
|
/** |
|
* Pointer to last node. |
|
*/ |
|
transient Node<E> last; |
|
/* |
|
void dataStructureInvariants() { |
|
assert (size == 0) |
|
? (first == null && last == null) |
|
: (first.prev == null && last.next == null); |
|
} |
|
*/ |
|
/** |
|
* Constructs an empty list. |
|
*/ |
|
public LinkedList() { |
|
} |
|
/** |
|
* Constructs a list containing the elements of the specified |
|
* collection, in the order they are returned by the collection's |
|
* iterator. |
|
* |
|
* @param c the collection whose elements are to be placed into this list |
|
* @throws NullPointerException if the specified collection is null |
|
*/ |
|
public LinkedList(Collection<? extends E> c) { |
|
this(); |
|
addAll(c); |
|
} |
|
/** |
|
* Links e as first element. |
|
*/ |
|
private void linkFirst(E e) { |
|
final Node<E> f = first; |
|
final Node<E> newNode = new Node<>(null, e, f); |
|
first = newNode; |
|
if (f == null) |
|
last = newNode; |
|
else |
|
f.prev = newNode; |
|
size++; |
|
modCount++; |
|
} |
|
/** |
|
* Links e as last element. |
|
*/ |
|
void linkLast(E e) { |
|
final Node<E> l = last; |
|
final Node<E> newNode = new Node<>(l, e, null); |
|
last = newNode; |
|
if (l == null) |
|
first = newNode; |
|
else |
|
l.next = newNode; |
|
size++; |
|
modCount++; |
|
} |
|
/** |
|
* Inserts element e before non-null Node succ. |
|
*/ |
|
void linkBefore(E e, Node<E> succ) { |
|
// assert succ != null; |
|
final Node<E> pred = succ.prev; |
|
final Node<E> newNode = new Node<>(pred, e, succ); |
|
succ.prev = newNode; |
|
if (pred == null) |
|
first = newNode; |
|
else |
|
pred.next = newNode; |
|
size++; |
|
modCount++; |
|
} |
|
/** |
|
* Unlinks non-null first node f. |
|
*/ |
|
private E unlinkFirst(Node<E> f) { |
|
// assert f == first && f != null; |
|
final E element = f.item; |
|
final Node<E> next = f.next; |
|
f.item = null; |
|
f.next = null; // help GC |
|
first = next; |
|
if (next == null) |
|
last = null; |
|
else |
|
next.prev = null; |
|
size--; |
|
modCount++; |
|
return element; |
|
} |
|
/** |
|
* Unlinks non-null last node l. |
|
*/ |
|
private E unlinkLast(Node<E> l) { |
|
// assert l == last && l != null; |
|
final E element = l.item; |
|
final Node<E> prev = l.prev; |
|
l.item = null; |
|
l.prev = null; // help GC |
|
last = prev; |
|
if (prev == null) |
|
first = null; |
|
else |
|
prev.next = null; |
|
size--; |
|
modCount++; |
|
return element; |
|
} |
|
/** |
|
* Unlinks non-null node x. |
|
*/ |
|
E unlink(Node<E> x) { |
|
// assert x != null; |
|
final E element = x.item; |
|
final Node<E> next = x.next; |
|
final Node<E> prev = x.prev; |
|
if (prev == null) { |
|
first = next; |
|
} else { |
|
prev.next = next; |
|
x.prev = null; |
|
} |
|
if (next == null) { |
|
last = prev; |
|
} else { |
|
next.prev = prev; |
|
x.next = null; |
|
} |
|
x.item = null; |
|
size--; |
|
modCount++; |
|
return element; |
|
} |
|
/** |
|
* Returns the first element in this list. |
|
* |
|
* @return the first element in this list |
|
* @throws NoSuchElementException if this list is empty |
|
*/ |
|
public E getFirst() { |
|
final Node<E> f = first; |
|
if (f == null) |
|
throw new NoSuchElementException(); |
|
return f.item; |
|
} |
|
/** |
|
* Returns the last element in this list. |
|
* |
|
* @return the last element in this list |
|
* @throws NoSuchElementException if this list is empty |
|
*/ |
|
public E getLast() { |
|
final Node<E> l = last; |
|
if (l == null) |
|
throw new NoSuchElementException(); |
|
return l.item; |
|
} |
|
/** |
|
* Removes and returns the first element from this list. |
|
* |
|
* @return the first element from this list |
|
* @throws NoSuchElementException if this list is empty |
|
*/ |
|
public E removeFirst() { |
|
final Node<E> f = first; |
|
if (f == null) |
|
throw new NoSuchElementException(); |
|
return unlinkFirst(f); |
|
} |
|
/** |
|
* Removes and returns the last element from this list. |
|
* |
|
* @return the last element from this list |
|
* @throws NoSuchElementException if this list is empty |
|
*/ |
|
public E removeLast() { |
|
final Node<E> l = last; |
|
if (l == null) |
|
throw new NoSuchElementException(); |
|
return unlinkLast(l); |
|
} |
|
/** |
|
* Inserts the specified element at the beginning of this list. |
|
* |
|
* @param e the element to add |
|
*/ |
|
public void addFirst(E e) { |
|
linkFirst(e); |
|
} |
|
/** |
|
* Appends the specified element to the end of this list. |
|
* |
|
* <p>This method is equivalent to {@link #add}. |
|
* |
|
* @param e the element to add |
|
*/ |
|
public void addLast(E e) { |
|
linkLast(e); |
|
} |
|
/** |
|
* Returns {@code true} if this list contains the specified element. |
|
* More formally, returns {@code true} if and only if this list contains |
|
* at least one element {@code e} such that |
|
* {@code Objects.equals(o, e)}. |
|
* |
|
* @param o element whose presence in this list is to be tested |
|
* @return {@code true} if this list contains the specified element |
|
*/ |
|
public boolean contains(Object o) { |
|
return indexOf(o) >= 0; |
|
} |
|
/** |
|
* Returns the number of elements in this list. |
|
* |
|
* @return the number of elements in this list |
|
*/ |
|
public int size() { |
|
return size; |
|
} |
|
/** |
|
* Appends the specified element to the end of this list. |
|
* |
|
* <p>This method is equivalent to {@link #addLast}. |
|
* |
|
* @param e element to be appended to this list |
|
* @return {@code true} (as specified by {@link Collection#add}) |
|
*/ |
|
public boolean add(E e) { |
|
linkLast(e); |
|
return true; |
|
} |
|
/** |
|
* Removes the first occurrence of the specified element from this list, |
|
* if it is present. If this list does not contain the element, it is |
|
* unchanged. More formally, removes the element with the lowest index |
|
* {@code i} such that |
|
* {@code Objects.equals(o, get(i))} |
|
* (if such an element exists). Returns {@code true} if this list |
|
* contained the specified element (or equivalently, if this list |
|
* changed as a result of the call). |
|
* |
|
* @param o element to be removed from this list, if present |
|
* @return {@code true} if this list contained the specified element |
|
*/ |
|
public boolean remove(Object o) { |
|
if (o == null) { |
|
for (Node<E> x = first; x != null; x = x.next) { |
|
if (x.item == null) { |
|
unlink(x); |
|
return true; |
|
} |
|
} |
|
} else { |
|
for (Node<E> x = first; x != null; x = x.next) { |
|
if (o.equals(x.item)) { |
|
unlink(x); |
|
return true; |
|
} |
|
} |
|
} |
|
return false; |
|
} |
|
/** |
|
* Appends all of the elements in the specified collection to the end of |
|
* this list, in the order that they are returned by the specified |
|
* collection's iterator. The behavior of this operation is undefined if |
|
* the specified collection is modified while the operation is in |
|
* progress. (Note that this will occur if the specified collection is |
|
* this list, and it's nonempty.) |
|
* |
|
* @param c collection containing elements to be added to this list |
|
* @return {@code true} if this list changed as a result of the call |
|
* @throws NullPointerException if the specified collection is null |
|
*/ |
|
public boolean addAll(Collection<? extends E> c) { |
|
return addAll(size, c); |
|
} |
|
/** |
|
* Inserts all of the elements in the specified collection into this |
|
* list, starting at the specified position. Shifts the element |
|
* currently at that position (if any) and any subsequent elements to |
|
* the right (increases their indices). The new elements will appear |
|
* in the list in the order that they are returned by the |
|
* specified collection's iterator. |
|
* |
|
* @param index index at which to insert the first element |
|
* from the specified collection |
|
* @param c collection containing elements to be added to this list |
|
* @return {@code true} if this list changed as a result of the call |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
* @throws NullPointerException if the specified collection is null |
|
*/ |
|
public boolean addAll(int index, Collection<? extends E> c) { |
|
checkPositionIndex(index); |
|
Object[] a = c.toArray(); |
|
int numNew = a.length; |
|
if (numNew == 0) |
|
return false; |
|
Node<E> pred, succ; |
|
if (index == size) { |
|
succ = null; |
|
pred = last; |
|
} else { |
|
succ = node(index); |
|
pred = succ.prev; |
|
} |
|
for (Object o : a) { |
|
@SuppressWarnings("unchecked") E e = (E) o; |
|
Node<E> newNode = new Node<>(pred, e, null); |
|
if (pred == null) |
|
first = newNode; |
|
else |
|
pred.next = newNode; |
|
pred = newNode; |
|
} |
|
if (succ == null) { |
|
last = pred; |
|
} else { |
|
pred.next = succ; |
|
succ.prev = pred; |
|
} |
|
size += numNew; |
|
modCount++; |
|
return true; |
|
} |
|
/** |
|
* Removes all of the elements from this list. |
|
* The list will be empty after this call returns. |
|
*/ |
|
public void clear() { |
|
// Clearing all of the links between nodes is "unnecessary", but: |
|
// - helps a generational GC if the discarded nodes inhabit |
|
// more than one generation |
|
// - is sure to free memory even if there is a reachable Iterator |
|
for (Node<E> x = first; x != null; ) { |
|
Node<E> next = x.next; |
|
x.item = null; |
|
x.next = null; |
|
x.prev = null; |
|
x = next; |
|
} |
|
first = last = null; |
|
size = 0; |
|
modCount++; |
|
} |
|
// Positional Access Operations |
|
/** |
|
* Returns the element at the specified position in this list. |
|
* |
|
* @param index index of the element to return |
|
* @return the element at the specified position in this list |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
*/ |
|
public E get(int index) { |
|
checkElementIndex(index); |
|
return node(index).item; |
|
} |
|
/** |
|
* Replaces the element at the specified position in this list with the |
|
* specified element. |
|
* |
|
* @param index index of the element to replace |
|
* @param element element to be stored at the specified position |
|
* @return the element previously at the specified position |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
*/ |
|
public E set(int index, E element) { |
|
checkElementIndex(index); |
|
Node<E> x = node(index); |
|
E oldVal = x.item; |
|
x.item = element; |
|
return oldVal; |
|
} |
|
/** |
|
* Inserts the specified element at the specified position in this list. |
|
* Shifts the element currently at that position (if any) and any |
|
* subsequent elements to the right (adds one to their indices). |
|
* |
|
* @param index index at which the specified element is to be inserted |
|
* @param element element to be inserted |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
*/ |
|
public void add(int index, E element) { |
|
checkPositionIndex(index); |
|
if (index == size) |
|
linkLast(element); |
|
else |
|
linkBefore(element, node(index)); |
|
} |
|
/** |
|
* Removes the element at the specified position in this list. Shifts any |
|
* subsequent elements to the left (subtracts one from their indices). |
|
* Returns the element that was removed from the list. |
|
* |
|
* @param index the index of the element to be removed |
|
* @return the element previously at the specified position |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
*/ |
|
public E remove(int index) { |
|
checkElementIndex(index); |
|
return unlink(node(index)); |
|
} |
|
/** |
|
* Tells if the argument is the index of an existing element. |
|
*/ |
|
private boolean isElementIndex(int index) { |
|
return index >= 0 && index < size; |
|
} |
|
/** |
|
* Tells if the argument is the index of a valid position for an |
|
* iterator or an add operation. |
|
*/ |
|
private boolean isPositionIndex(int index) { |
|
return index >= 0 && index <= size; |
|
} |
|
/** |
|
* Constructs an IndexOutOfBoundsException detail message. |
|
* Of the many possible refactorings of the error handling code, |
|
* this "outlining" performs best with both server and client VMs. |
|
*/ |
|
private String outOfBoundsMsg(int index) { |
|
return "Index: "+index+", Size: "+size; |
|
} |
|
private void checkElementIndex(int index) { |
|
if (!isElementIndex(index)) |
|
throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); |
|
} |
|
private void checkPositionIndex(int index) { |
|
if (!isPositionIndex(index)) |
|
throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); |
|
} |
|
/** |
|
* Returns the (non-null) Node at the specified element index. |
|
*/ |
|
Node<E> node(int index) { |
|
// assert isElementIndex(index); |
|
if (index < (size >> 1)) { |
|
Node<E> x = first; |
|
for (int i = 0; i < index; i++) |
|
x = x.next; |
|
return x; |
|
} else { |
|
Node<E> x = last; |
|
for (int i = size - 1; i > index; i--) |
|
x = x.prev; |
|
return x; |
|
} |
|
} |
|
// Search Operations |
|
/** |
|
* Returns the index of the first occurrence of the specified element |
|
* in this list, or -1 if this list does not contain the element. |
|
* More formally, returns the lowest index {@code i} such that |
|
* {@code Objects.equals(o, get(i))}, |
|
* or -1 if there is no such index. |
|
* |
|
* @param o element to search for |
|
* @return the index of the first occurrence of the specified element in |
|
* this list, or -1 if this list does not contain the element |
|
*/ |
|
public int indexOf(Object o) { |
|
int index = 0; |
|
if (o == null) { |
|
for (Node<E> x = first; x != null; x = x.next) { |
|
if (x.item == null) |
|
return index; |
|
index++; |
|
} |
|
} else { |
|
for (Node<E> x = first; x != null; x = x.next) { |
|
if (o.equals(x.item)) |
|
return index; |
|
index++; |
|
} |
|
} |
|
return -1; |
|
} |
|
/** |
|
* Returns the index of the last occurrence of the specified element |
|
* in this list, or -1 if this list does not contain the element. |
|
* More formally, returns the highest index {@code i} such that |
|
* {@code Objects.equals(o, get(i))}, |
|
* or -1 if there is no such index. |
|
* |
|
* @param o element to search for |
|
* @return the index of the last occurrence of the specified element in |
|
* this list, or -1 if this list does not contain the element |
|
*/ |
|
public int lastIndexOf(Object o) { |
|
int index = size; |
|
if (o == null) { |
|
for (Node<E> x = last; x != null; x = x.prev) { |
|
index--; |
|
if (x.item == null) |
|
return index; |
|
} |
|
} else { |
|
for (Node<E> x = last; x != null; x = x.prev) { |
|
index--; |
|
if (o.equals(x.item)) |
|
return index; |
|
} |
|
} |
|
return -1; |
|
} |
|
// Queue operations. |
|
/** |
|
* Retrieves, but does not remove, the head (first element) of this list. |
|
* |
|
* @return the head of this list, or {@code null} if this list is empty |
|
* @since 1.5 |
|
*/ |
|
public E peek() { |
|
final Node<E> f = first; |
|
return (f == null) ? null : f.item; |
|
} |
|
/** |
|
* Retrieves, but does not remove, the head (first element) of this list. |
|
* |
|
* @return the head of this list |
|
* @throws NoSuchElementException if this list is empty |
|
* @since 1.5 |
|
*/ |
|
public E element() { |
|
return getFirst(); |
|
} |
|
/** |
|
* Retrieves and removes the head (first element) of this list. |
|
* |
|
* @return the head of this list, or {@code null} if this list is empty |
|
* @since 1.5 |
|
*/ |
|
public E poll() { |
|
final Node<E> f = first; |
|
return (f == null) ? null : unlinkFirst(f); |
|
} |
|
/** |
|
* Retrieves and removes the head (first element) of this list. |
|
* |
|
* @return the head of this list |
|
* @throws NoSuchElementException if this list is empty |
|
* @since 1.5 |
|
*/ |
|
public E remove() { |
|
return removeFirst(); |
|
} |
|
/** |
|
* Adds the specified element as the tail (last element) of this list. |
|
* |
|
* @param e the element to add |
|
* @return {@code true} (as specified by {@link Queue#offer}) |
|
* @since 1.5 |
|
*/ |
|
public boolean offer(E e) { |
|
return add(e); |
|
} |
|
// Deque operations |
|
/** |
|
* Inserts the specified element at the front of this list. |
|
* |
|
* @param e the element to insert |
|
* @return {@code true} (as specified by {@link Deque#offerFirst}) |
|
* @since 1.6 |
|
*/ |
|
public boolean offerFirst(E e) { |
|
addFirst(e); |
|
return true; |
|
} |
|
/** |
|
* Inserts the specified element at the end of this list. |
|
* |
|
* @param e the element to insert |
|
* @return {@code true} (as specified by {@link Deque#offerLast}) |
|
* @since 1.6 |
|
*/ |
|
public boolean offerLast(E e) { |
|
addLast(e); |
|
return true; |
|
} |
|
/** |
|
* Retrieves, but does not remove, the first element of this list, |
|
* or returns {@code null} if this list is empty. |
|
* |
|
* @return the first element of this list, or {@code null} |
|
* if this list is empty |
|
* @since 1.6 |
|
*/ |
|
public E peekFirst() { |
|
final Node<E> f = first; |
|
return (f == null) ? null : f.item; |
|
} |
|
/** |
|
* Retrieves, but does not remove, the last element of this list, |
|
* or returns {@code null} if this list is empty. |
|
* |
|
* @return the last element of this list, or {@code null} |
|
* if this list is empty |
|
* @since 1.6 |
|
*/ |
|
public E peekLast() { |
|
final Node<E> l = last; |
|
return (l == null) ? null : l.item; |
|
} |
|
/** |
|
* Retrieves and removes the first element of this list, |
|
* or returns {@code null} if this list is empty. |
|
* |
|
* @return the first element of this list, or {@code null} if |
|
* this list is empty |
|
* @since 1.6 |
|
*/ |
|
public E pollFirst() { |
|
final Node<E> f = first; |
|
return (f == null) ? null : unlinkFirst(f); |
|
} |
|
/** |
|
* Retrieves and removes the last element of this list, |
|
* or returns {@code null} if this list is empty. |
|
* |
|
* @return the last element of this list, or {@code null} if |
|
* this list is empty |
|
* @since 1.6 |
|
*/ |
|
public E pollLast() { |
|
final Node<E> l = last; |
|
return (l == null) ? null : unlinkLast(l); |
|
} |
|
/** |
|
* Pushes an element onto the stack represented by this list. In other |
|
* words, inserts the element at the front of this list. |
|
* |
|
* <p>This method is equivalent to {@link #addFirst}. |
|
* |
|
* @param e the element to push |
|
* @since 1.6 |
|
*/ |
|
public void push(E e) { |
|
addFirst(e); |
|
} |
|
/** |
|
* Pops an element from the stack represented by this list. In other |
|
* words, removes and returns the first element of this list. |
|
* |
|
* <p>This method is equivalent to {@link #removeFirst()}. |
|
* |
|
* @return the element at the front of this list (which is the top |
|
* of the stack represented by this list) |
|
* @throws NoSuchElementException if this list is empty |
|
* @since 1.6 |
|
*/ |
|
public E pop() { |
|
return removeFirst(); |
|
} |
|
/** |
|
* Removes the first occurrence of the specified element in this |
|
* list (when traversing the list from head to tail). If the list |
|
* does not contain the element, it is unchanged. |
|
* |
|
* @param o element to be removed from this list, if present |
|
* @return {@code true} if the list contained the specified element |
|
* @since 1.6 |
|
*/ |
|
public boolean removeFirstOccurrence(Object o) { |
|
return remove(o); |
|
} |
|
/** |
|
* Removes the last occurrence of the specified element in this |
|
* list (when traversing the list from head to tail). If the list |
|
* does not contain the element, it is unchanged. |
|
* |
|
* @param o element to be removed from this list, if present |
|
* @return {@code true} if the list contained the specified element |
|
* @since 1.6 |
|
*/ |
|
public boolean removeLastOccurrence(Object o) { |
|
if (o == null) { |
|
for (Node<E> x = last; x != null; x = x.prev) { |
|
if (x.item == null) { |
|
unlink(x); |
|
return true; |
|
} |
|
} |
|
} else { |
|
for (Node<E> x = last; x != null; x = x.prev) { |
|
if (o.equals(x.item)) { |
|
unlink(x); |
|
return true; |
|
} |
|
} |
|
} |
|
return false; |
|
} |
|
/** |
|
* Returns a list-iterator of the elements in this list (in proper |
|
* sequence), starting at the specified position in the list. |
|
* Obeys the general contract of {@code List.listIterator(int)}.<p> |
|
* |
|
* The list-iterator is <i>fail-fast</i>: if the list is structurally |
|
* modified at any time after the Iterator is created, in any way except |
|
* through the list-iterator's own {@code remove} or {@code add} |
|
* methods, the list-iterator will throw a |
|
* {@code ConcurrentModificationException}. Thus, in the face of |
|
* concurrent modification, the iterator fails quickly and cleanly, rather |
|
* than risking arbitrary, non-deterministic behavior at an undetermined |
|
* time in the future. |
|
* |
|
* @param index index of the first element to be returned from the |
|
* list-iterator (by a call to {@code next}) |
|
* @return a ListIterator of the elements in this list (in proper |
|
* sequence), starting at the specified position in the list |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
* @see List#listIterator(int) |
|
*/ |
|
public ListIterator<E> listIterator(int index) { |
|
checkPositionIndex(index); |
|
return new ListItr(index); |
|
} |
|
private class ListItr implements ListIterator<E> { |
|
private Node<E> lastReturned; |
|
private Node<E> next; |
|
private int nextIndex; |
|
private int expectedModCount = modCount; |
|
ListItr(int index) { |
|
// assert isPositionIndex(index); |
|
next = (index == size) ? null : node(index); |
|
nextIndex = index; |
|
} |
|
public boolean hasNext() { |
|
return nextIndex < size; |
|
} |
|
public E next() { |
|
checkForComodification(); |
|
if (!hasNext()) |
|
throw new NoSuchElementException(); |
|
lastReturned = next; |
|
next = next.next; |
|
nextIndex++; |
|
return lastReturned.item; |
|
} |
|
public boolean hasPrevious() { |
|
return nextIndex > 0; |
|
} |
|
public E previous() { |
|
checkForComodification(); |
|
if (!hasPrevious()) |
|
throw new NoSuchElementException(); |
|
lastReturned = next = (next == null) ? last : next.prev; |
|
nextIndex--; |
|
return lastReturned.item; |
|
} |
|
public int nextIndex() { |
|
return nextIndex; |
|
} |
|
public int previousIndex() { |
|
return nextIndex - 1; |
|
} |
|
public void remove() { |
|
checkForComodification(); |
|
if (lastReturned == null) |
|
throw new IllegalStateException(); |
|
Node<E> lastNext = lastReturned.next; |
|
unlink(lastReturned); |
|
if (next == lastReturned) |
|
next = lastNext; |
|
else |
|
nextIndex--; |
|
lastReturned = null; |
|
expectedModCount++; |
|
} |
|
public void set(E e) { |
|
if (lastReturned == null) |
|
throw new IllegalStateException(); |
|
checkForComodification(); |
|
lastReturned.item = e; |
|
} |
|
public void add(E e) { |
|
checkForComodification(); |
|
lastReturned = null; |
|
if (next == null) |
|
linkLast(e); |
|
else |
|
linkBefore(e, next); |
|
nextIndex++; |
|
expectedModCount++; |
|
} |
|
public void forEachRemaining(Consumer<? super E> action) { |
|
Objects.requireNonNull(action); |
|
while (modCount == expectedModCount && nextIndex < size) { |
|
action.accept(next.item); |
|
lastReturned = next; |
|
next = next.next; |
|
nextIndex++; |
|
} |
|
checkForComodification(); |
|
} |
|
final void checkForComodification() { |
|
if (modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
private static class Node<E> { |
|
E item; |
|
Node<E> next; |
|
Node<E> prev; |
|
Node(Node<E> prev, E element, Node<E> next) { |
|
this.item = element; |
|
this.next = next; |
|
this.prev = prev; |
|
} |
|
} |
|
/** |
|
* @since 1.6 |
|
*/ |
|
public Iterator<E> descendingIterator() { |
|
return new DescendingIterator(); |
|
} |
|
/** |
|
* Adapter to provide descending iterators via ListItr.previous |
|
*/ |
|
private class DescendingIterator implements Iterator<E> { |
|
private final ListItr itr = new ListItr(size()); |
|
public boolean hasNext() { |
|
return itr.hasPrevious(); |
|
} |
|
public E next() { |
|
return itr.previous(); |
|
} |
|
public void remove() { |
|
itr.remove(); |
|
} |
|
} |
|
@SuppressWarnings("unchecked") |
|
private LinkedList<E> superClone() { |
|
try { |
|
return (LinkedList<E>) super.clone(); |
|
} catch (CloneNotSupportedException e) { |
|
throw new InternalError(e); |
|
} |
|
} |
|
/** |
|
* Returns a shallow copy of this {@code LinkedList}. (The elements |
|
* themselves are not cloned.) |
|
* |
|
* @return a shallow copy of this {@code LinkedList} instance |
|
*/ |
|
public Object clone() { |
|
LinkedList<E> clone = superClone(); |
|
// Put clone into "virgin" state |
|
clone.first = clone.last = null; |
|
clone.size = 0; |
|
clone.modCount = 0; |
|
// Initialize clone with our elements |
|
for (Node<E> x = first; x != null; x = x.next) |
|
clone.add(x.item); |
|
return clone; |
|
} |
|
/** |
|
* Returns an array containing all of the elements in this list |
|
* in proper sequence (from first to last element). |
|
* |
|
* <p>The returned array will be "safe" in that no references to it are |
|
* maintained by this list. (In other words, this method must allocate |
|
* a new array). The caller is thus free to modify the returned array. |
|
* |
|
* <p>This method acts as bridge between array-based and collection-based |
|
* APIs. |
|
* |
|
* @return an array containing all of the elements in this list |
|
* in proper sequence |
|
*/ |
|
public Object[] toArray() { |
|
Object[] result = new Object[size]; |
|
int i = 0; |
|
for (Node<E> x = first; x != null; x = x.next) |
|
result[i++] = x.item; |
|
return result; |
|
} |
|
/** |
|
* Returns an array containing all of the elements in this list in |
|
* proper sequence (from first to last element); the runtime type of |
|
* the returned array is that of the specified array. If the list fits |
|
* in the specified array, it is returned therein. Otherwise, a new |
|
* array is allocated with the runtime type of the specified array and |
|
* the size of this list. |
|
* |
|
* <p>If the list fits in the specified array with room to spare (i.e., |
|
* the array has more elements than the list), the element in the array |
|
* immediately following the end of the list is set to {@code null}. |
|
* (This is useful in determining the length of the list <i>only</i> if |
|
* the caller knows that the list does not contain any null elements.) |
|
* |
|
* <p>Like the {@link #toArray()} method, this method acts as bridge between |
|
* array-based and collection-based APIs. Further, this method allows |
|
* precise control over the runtime type of the output array, and may, |
|
* under certain circumstances, be used to save allocation costs. |
|
* |
|
* <p>Suppose {@code x} is a list known to contain only strings. |
|
* The following code can be used to dump the list into a newly |
|
* allocated array of {@code String}: |
|
* |
|
* <pre> |
|
* String[] y = x.toArray(new String[0]);</pre> |
|
* |
|
* Note that {@code toArray(new Object[0])} is identical in function to |
|
* {@code toArray()}. |
|
* |
|
* @param a the array into which the elements of the list are to |
|
* be stored, if it is big enough; otherwise, a new array of the |
|
* same runtime type is allocated for this purpose. |
|
* @return an array containing the elements of the list |
|
* @throws ArrayStoreException if the runtime type of the specified array |
|
* is not a supertype of the runtime type of every element in |
|
* this list |
|
* @throws NullPointerException if the specified array is null |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public <T> T[] toArray(T[] a) { |
|
if (a.length < size) |
|
a = (T[])java.lang.reflect.Array.newInstance( |
|
a.getClass().getComponentType(), size); |
|
int i = 0; |
|
Object[] result = a; |
|
for (Node<E> x = first; x != null; x = x.next) |
|
result[i++] = x.item; |
|
if (a.length > size) |
|
a[size] = null; |
|
return a; |
|
} |
|
@java.io.Serial |
|
private static final long serialVersionUID = 876323262645176354L; |
|
/** |
|
* Saves the state of this {@code LinkedList} instance to a stream |
|
* (that is, serializes it). |
|
* |
|
* @serialData The size of the list (the number of elements it |
|
* contains) is emitted (int), followed by all of its |
|
* elements (each an Object) in the proper order. |
|
*/ |
|
@java.io.Serial |
|
private void writeObject(java.io.ObjectOutputStream s) |
|
throws java.io.IOException { |
|
// Write out any hidden serialization magic |
|
s.defaultWriteObject(); |
|
// Write out size |
|
s.writeInt(size); |
|
// Write out all elements in the proper order. |
|
for (Node<E> x = first; x != null; x = x.next) |
|
s.writeObject(x.item); |
|
} |
|
/** |
|
* Reconstitutes this {@code LinkedList} instance from a stream |
|
* (that is, deserializes it). |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
@java.io.Serial |
|
private void readObject(java.io.ObjectInputStream s) |
|
throws java.io.IOException, ClassNotFoundException { |
|
// Read in any hidden serialization magic |
|
s.defaultReadObject(); |
|
// Read in size |
|
int size = s.readInt(); |
|
// Read in all elements in the proper order. |
|
for (int i = 0; i < size; i++) |
|
linkLast((E)s.readObject()); |
|
} |
|
/** |
|
* Creates a <em><a href="Spliterator.html#binding">late-binding</a></em> |
|
* and <em>fail-fast</em> {@link Spliterator} over the elements in this |
|
* list. |
|
* |
|
* <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and |
|
* {@link Spliterator#ORDERED}. Overriding implementations should document |
|
* the reporting of additional characteristic values. |
|
* |
|
* @implNote |
|
* The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED} |
|
* and implements {@code trySplit} to permit limited parallelism.. |
|
* |
|
* @return a {@code Spliterator} over the elements in this list |
|
* @since 1.8 |
|
*/ |
|
@Override |
|
public Spliterator<E> spliterator() { |
|
return new LLSpliterator<>(this, -1, 0); |
|
} |
|
/** A customized variant of Spliterators.IteratorSpliterator */ |
|
static final class LLSpliterator<E> implements Spliterator<E> { |
|
static final int BATCH_UNIT = 1 << 10; // batch array size increment |
|
static final int MAX_BATCH = 1 << 25; // max batch array size; |
|
final LinkedList<E> list; // null OK unless traversed |
|
Node<E> current; // current node; null until initialized |
|
int est; // size estimate; -1 until first needed |
|
int expectedModCount; // initialized when est set |
|
int batch; // batch size for splits |
|
LLSpliterator(LinkedList<E> list, int est, int expectedModCount) { |
|
this.list = list; |
|
this.est = est; |
|
this.expectedModCount = expectedModCount; |
|
} |
|
final int getEst() { |
|
int s; // force initialization |
|
final LinkedList<E> lst; |
|
if ((s = est) < 0) { |
|
if ((lst = list) == null) |
|
s = est = 0; |
|
else { |
|
expectedModCount = lst.modCount; |
|
current = lst.first; |
|
s = est = lst.size; |
|
} |
|
} |
|
return s; |
|
} |
|
public long estimateSize() { return (long) getEst(); } |
|
public Spliterator<E> trySplit() { |
|
Node<E> p; |
|
int s = getEst(); |
|
if (s > 1 && (p = current) != null) { |
|
int n = batch + BATCH_UNIT; |
|
if (n > s) |
|
n = s; |
|
if (n > MAX_BATCH) |
|
n = MAX_BATCH; |
|
Object[] a = new Object[n]; |
|
int j = 0; |
|
do { a[j++] = p.item; } while ((p = p.next) != null && j < n); |
|
current = p; |
|
batch = j; |
|
est = s - j; |
|
return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED); |
|
} |
|
return null; |
|
} |
|
public void forEachRemaining(Consumer<? super E> action) { |
|
Node<E> p; int n; |
|
if (action == null) throw new NullPointerException(); |
|
if ((n = getEst()) > 0 && (p = current) != null) { |
|
current = null; |
|
est = 0; |
|
do { |
|
E e = p.item; |
|
p = p.next; |
|
action.accept(e); |
|
} while (p != null && --n > 0); |
|
} |
|
if (list.modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
} |
|
public boolean tryAdvance(Consumer<? super E> action) { |
|
Node<E> p; |
|
if (action == null) throw new NullPointerException(); |
|
if (getEst() > 0 && (p = current) != null) { |
|
--est; |
|
E e = p.item; |
|
current = p.next; |
|
action.accept(e); |
|
if (list.modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
return true; |
|
} |
|
return false; |
|
} |
|
public int characteristics() { |
|
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; |
|
} |
|
} |
|
} |