/* | 
|
 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. | 
|
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | 
|
 * | 
|
 * This code is free software; you can redistribute it and/or modify it | 
|
 * under the terms of the GNU General Public License version 2 only, as | 
|
 * published by the Free Software Foundation.  Oracle designates this | 
|
 * particular file as subject to the "Classpath" exception as provided | 
|
 * by Oracle in the LICENSE file that accompanied this code. | 
|
 * | 
|
 * This code is distributed in the hope that it will be useful, but WITHOUT | 
|
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|
 * version 2 for more details (a copy is included in the LICENSE file that | 
|
 * accompanied this code). | 
|
 * | 
|
 * You should have received a copy of the GNU General Public License version | 
|
 * 2 along with this work; if not, write to the Free Software Foundation, | 
|
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
|
 * | 
|
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | 
|
 * or visit www.oracle.com if you need additional information or have any | 
|
 * questions. | 
|
*/  | 
|
package com.sun.crypto.provider;  | 
|
import java.util.*;  | 
|
import java.lang.*;  | 
|
import java.math.BigInteger;  | 
|
import java.security.AccessController;  | 
|
import java.security.InvalidAlgorithmParameterException;  | 
|
import java.security.InvalidKeyException;  | 
|
import java.security.Key;  | 
|
import java.security.NoSuchAlgorithmException;  | 
|
import java.security.SecureRandom;  | 
|
import java.security.PrivilegedAction;  | 
|
import java.security.ProviderException;  | 
|
import java.security.spec.AlgorithmParameterSpec;  | 
|
import java.security.spec.InvalidKeySpecException;  | 
|
import javax.crypto.KeyAgreementSpi;  | 
|
import javax.crypto.ShortBufferException;  | 
|
import javax.crypto.SecretKey;  | 
|
import javax.crypto.spec.*;  | 
|
import sun.security.util.KeyUtil;  | 
|
/**  | 
|
* This class implements the Diffie-Hellman key agreement protocol between  | 
|
* any number of parties.  | 
|
*  | 
|
* @author Jan Luehe  | 
|
*  | 
|
*/  | 
|
public final class DHKeyAgreement  | 
|
extends KeyAgreementSpi {  | 
|
private boolean generateSecret = false;  | 
|
private BigInteger init_p = null;  | 
|
private BigInteger init_g = null;  | 
|
private BigInteger x = BigInteger.ZERO; // the private value  | 
|
private BigInteger y = BigInteger.ZERO;  | 
|
    private static class AllowKDF { | 
|
private static final boolean VALUE = getValue();  | 
|
        private static boolean getValue() { | 
|
return AccessController.doPrivileged(  | 
|
(PrivilegedAction<Boolean>)  | 
|
() -> Boolean.getBoolean("jdk.crypto.KeyAgreement.legacyKDF"));  | 
|
}  | 
|
}  | 
|
    /** | 
|
     * Empty constructor | 
|
*/  | 
|
    public DHKeyAgreement() { | 
|
}  | 
|
    /** | 
|
     * Initializes this key agreement with the given key and source of | 
|
     * randomness. The given key is required to contain all the algorithm | 
|
     * parameters required for this key agreement. | 
|
     * | 
|
     * <p> If the key agreement algorithm requires random bytes, it gets them | 
|
     * from the given source of randomness, <code>random</code>. | 
|
     * However, if the underlying | 
|
     * algorithm implementation does not require any random bytes, | 
|
     * <code>random</code> is ignored. | 
|
     * | 
|
     * @param key the party's private information. For example, in the case | 
|
     * of the Diffie-Hellman key agreement, this would be the party's own | 
|
     * Diffie-Hellman private key. | 
|
     * @param random the source of randomness | 
|
     * | 
|
     * @exception InvalidKeyException if the given key is | 
|
     * inappropriate for this key agreement, e.g., is of the wrong type or | 
|
     * has an incompatible algorithm type. | 
|
*/  | 
|
protected void engineInit(Key key, SecureRandom random)  | 
|
throws InvalidKeyException  | 
|
    { | 
|
        try { | 
|
engineInit(key, null, random);  | 
|
} catch (InvalidAlgorithmParameterException e) {  | 
|
// never happens, because we did not pass any parameters  | 
|
}  | 
|
}  | 
|
    /** | 
|
     * Initializes this key agreement with the given key, set of | 
|
     * algorithm parameters, and source of randomness. | 
|
     * | 
|
     * @param key the party's private information. For example, in the case | 
|
     * of the Diffie-Hellman key agreement, this would be the party's own | 
|
     * Diffie-Hellman private key. | 
|
     * @param params the key agreement parameters | 
|
     * @param random the source of randomness | 
|
     * | 
|
     * @exception InvalidKeyException if the given key is | 
|
     * inappropriate for this key agreement, e.g., is of the wrong type or | 
|
     * has an incompatible algorithm type. | 
|
     * @exception InvalidAlgorithmParameterException if the given parameters | 
|
     * are inappropriate for this key agreement. | 
|
*/  | 
|
protected void engineInit(Key key, AlgorithmParameterSpec params,  | 
|
SecureRandom random)  | 
|
throws InvalidKeyException, InvalidAlgorithmParameterException  | 
|
    { | 
|
// ignore "random" parameter, because our implementation does not  | 
|
        // require any source of randomness | 
|
generateSecret = false;  | 
|
init_p = null;  | 
|
init_g = null;  | 
|
if ((params != null) && !(params instanceof DHParameterSpec)) {  | 
|
throw new InvalidAlgorithmParameterException  | 
|
                ("Diffie-Hellman parameters expected"); | 
|
}  | 
|
if (!(key instanceof javax.crypto.interfaces.DHPrivateKey)) {  | 
|
throw new InvalidKeyException("Diffie-Hellman private key "  | 
|
                                          + "expected"); | 
|
}  | 
|
javax.crypto.interfaces.DHPrivateKey dhPrivKey;  | 
|
dhPrivKey = (javax.crypto.interfaces.DHPrivateKey)key;  | 
|
// check if private key parameters are compatible with  | 
|
        // initialized ones | 
|
if (params != null) {  | 
|
init_p = ((DHParameterSpec)params).getP();  | 
|
init_g = ((DHParameterSpec)params).getG();  | 
|
}  | 
|
BigInteger priv_p = dhPrivKey.getParams().getP();  | 
|
BigInteger priv_g = dhPrivKey.getParams().getG();  | 
|
if (init_p != null && priv_p != null && !(init_p.equals(priv_p))) {  | 
|
throw new InvalidKeyException("Incompatible parameters");  | 
|
}  | 
|
if (init_g != null && priv_g != null && !(init_g.equals(priv_g))) {  | 
|
throw new InvalidKeyException("Incompatible parameters");  | 
|
}  | 
|
if ((init_p == null && priv_p == null)  | 
|
|| (init_g == null && priv_g == null)) {  | 
|
throw new InvalidKeyException("Missing parameters");  | 
|
}  | 
|
init_p = priv_p;  | 
|
init_g = priv_g;  | 
|
        // store the x value | 
|
this.x = dhPrivKey.getX();  | 
|
}  | 
|
    /** | 
|
     * Executes the next phase of this key agreement with the given | 
|
     * key that was received from one of the other parties involved in this key | 
|
     * agreement. | 
|
     * | 
|
     * @param key the key for this phase. For example, in the case of | 
|
     * Diffie-Hellman between 2 parties, this would be the other party's | 
|
     * Diffie-Hellman public key. | 
|
     * @param lastPhase flag which indicates whether or not this is the last | 
|
     * phase of this key agreement. | 
|
     * | 
|
     * @return the (intermediate) key resulting from this phase, or null if | 
|
     * this phase does not yield a key | 
|
     * | 
|
     * @exception InvalidKeyException if the given key is inappropriate for | 
|
     * this phase. | 
|
     * @exception IllegalStateException if this key agreement has not been | 
|
     * initialized. | 
|
*/  | 
|
protected Key engineDoPhase(Key key, boolean lastPhase)  | 
|
throws InvalidKeyException, IllegalStateException  | 
|
    { | 
|
if (!(key instanceof javax.crypto.interfaces.DHPublicKey)) {  | 
|
throw new InvalidKeyException("Diffie-Hellman public key "  | 
|
                                          + "expected"); | 
|
}  | 
|
javax.crypto.interfaces.DHPublicKey dhPubKey;  | 
|
dhPubKey = (javax.crypto.interfaces.DHPublicKey)key;  | 
|
if (init_p == null || init_g == null) {  | 
|
throw new IllegalStateException("Not initialized");  | 
|
}  | 
|
// check if public key parameters are compatible with  | 
|
        // initialized ones | 
|
BigInteger pub_p = dhPubKey.getParams().getP();  | 
|
BigInteger pub_g = dhPubKey.getParams().getG();  | 
|
if (pub_p != null && !(init_p.equals(pub_p))) {  | 
|
throw new InvalidKeyException("Incompatible parameters");  | 
|
}  | 
|
if (pub_g != null && !(init_g.equals(pub_g))) {  | 
|
throw new InvalidKeyException("Incompatible parameters");  | 
|
}  | 
|
        // validate the Diffie-Hellman public key | 
|
KeyUtil.validate(dhPubKey);  | 
|
        // store the y value | 
|
this.y = dhPubKey.getY();  | 
|
// we've received a public key (from one of the other parties),  | 
|
// so we are ready to create the secret, which may be an  | 
|
// intermediate secret, in which case we wrap it into a  | 
|
        // Diffie-Hellman public key object and return it. | 
|
generateSecret = true;  | 
|
if (lastPhase == false) {  | 
|
byte[] intermediate = engineGenerateSecret();  | 
|
return new DHPublicKey(new BigInteger(1, intermediate),  | 
|
init_p, init_g);  | 
|
        } else { | 
|
return null;  | 
|
}  | 
|
}  | 
|
    /** | 
|
     * Generates the shared secret and returns it in a new buffer. | 
|
     * | 
|
     * <p>This method resets this <code>KeyAgreementSpi</code> object, | 
|
     * so that it | 
|
     * can be reused for further key agreements. Unless this key agreement is | 
|
     * reinitialized with one of the <code>engineInit</code> methods, the same | 
|
     * private information and algorithm parameters will be used for | 
|
     * subsequent key agreements. | 
|
     * | 
|
     * @return the new buffer with the shared secret | 
|
     * | 
|
     * @exception IllegalStateException if this key agreement has not been | 
|
     * completed yet | 
|
*/  | 
|
protected byte[] engineGenerateSecret()  | 
|
throws IllegalStateException  | 
|
    { | 
|
int expectedLen = (init_p.bitLength() + 7) >>> 3;  | 
|
byte[] result = new byte[expectedLen];  | 
|
        try { | 
|
engineGenerateSecret(result, 0);  | 
|
} catch (ShortBufferException sbe) {  | 
|
// should never happen since length are identical  | 
|
}  | 
|
return result;  | 
|
}  | 
|
    /** | 
|
     * Generates the shared secret, and places it into the buffer | 
|
     * <code>sharedSecret</code>, beginning at <code>offset</code>. | 
|
     * | 
|
     * <p>If the <code>sharedSecret</code> buffer is too small to hold the | 
|
     * result, a <code>ShortBufferException</code> is thrown. | 
|
     * In this case, this call should be repeated with a larger output buffer. | 
|
     * | 
|
     * <p>This method resets this <code>KeyAgreementSpi</code> object, | 
|
     * so that it | 
|
     * can be reused for further key agreements. Unless this key agreement is | 
|
     * reinitialized with one of the <code>engineInit</code> methods, the same | 
|
     * private information and algorithm parameters will be used for | 
|
     * subsequent key agreements. | 
|
     * | 
|
     * @param sharedSecret the buffer for the shared secret | 
|
     * @param offset the offset in <code>sharedSecret</code> where the | 
|
     * shared secret will be stored | 
|
     * | 
|
     * @return the number of bytes placed into <code>sharedSecret</code> | 
|
     * | 
|
     * @exception IllegalStateException if this key agreement has not been | 
|
     * completed yet | 
|
     * @exception ShortBufferException if the given output buffer is too small | 
|
     * to hold the secret | 
|
*/  | 
|
protected int engineGenerateSecret(byte[] sharedSecret, int offset)  | 
|
throws IllegalStateException, ShortBufferException  | 
|
    { | 
|
if (generateSecret == false) {  | 
|
throw new IllegalStateException  | 
|
                ("Key agreement has not been completed yet"); | 
|
}  | 
|
if (sharedSecret == null) {  | 
|
throw new ShortBufferException  | 
|
                ("No buffer provided for shared secret"); | 
|
}  | 
|
BigInteger modulus = init_p;  | 
|
int expectedLen = (modulus.bitLength() + 7) >>> 3;  | 
|
if ((sharedSecret.length - offset) < expectedLen) {  | 
|
throw new ShortBufferException  | 
|
                    ("Buffer too short for shared secret"); | 
|
}  | 
|
// Reset the key agreement after checking for ShortBufferException  | 
|
        // above, so user can recover w/o losing internal state | 
|
generateSecret = false;  | 
|
        /* | 
|
         * NOTE: BigInteger.toByteArray() returns a byte array containing | 
|
         * the two's-complement representation of this BigInteger with | 
|
         * the most significant byte is in the zeroth element. This | 
|
         * contains the minimum number of bytes required to represent | 
|
         * this BigInteger, including at least one sign bit whose value | 
|
         * is always 0. | 
|
         * | 
|
         * Keys are always positive, and the above sign bit isn't | 
|
         * actually used when representing keys.  (i.e. key = new | 
|
         * BigInteger(1, byteArray))  To obtain an array containing | 
|
         * exactly expectedLen bytes of magnitude, we strip any extra | 
|
         * leading 0's, or pad with 0's in case of a "short" secret. | 
|
*/  | 
|
byte[] secret = this.y.modPow(this.x, modulus).toByteArray();  | 
|
if (secret.length == expectedLen) {  | 
|
System.arraycopy(secret, 0, sharedSecret, offset,  | 
|
secret.length);  | 
|
        } else { | 
|
            // Array too short, pad it w/ leading 0s | 
|
if (secret.length < expectedLen) {  | 
|
System.arraycopy(secret, 0, sharedSecret,  | 
|
offset + (expectedLen - secret.length),  | 
|
secret.length);  | 
|
            } else { | 
|
                // Array too long, check and trim off the excess | 
|
if ((secret.length == (expectedLen+1)) && secret[0] == 0) {  | 
|
                    // ignore the leading sign byte | 
|
System.arraycopy(secret, 1, sharedSecret, offset, expectedLen);  | 
|
                } else { | 
|
throw new ProviderException("Generated secret is out-of-range");  | 
|
}  | 
|
}  | 
|
}  | 
|
return expectedLen;  | 
|
}  | 
|
    /** | 
|
     * Creates the shared secret and returns it as a secret key object | 
|
     * of the requested algorithm type. | 
|
     * | 
|
     * <p>This method resets this <code>KeyAgreementSpi</code> object, | 
|
     * so that it | 
|
     * can be reused for further key agreements. Unless this key agreement is | 
|
     * reinitialized with one of the <code>engineInit</code> methods, the same | 
|
     * private information and algorithm parameters will be used for | 
|
     * subsequent key agreements. | 
|
     * | 
|
     * @param algorithm the requested secret key algorithm | 
|
     * | 
|
     * @return the shared secret key | 
|
     * | 
|
     * @exception IllegalStateException if this key agreement has not been | 
|
     * completed yet | 
|
     * @exception NoSuchAlgorithmException if the requested secret key | 
|
     * algorithm is not available | 
|
     * @exception InvalidKeyException if the shared secret key material cannot | 
|
     * be used to generate a secret key of the requested algorithm type (e.g., | 
|
     * the key material is too short) | 
|
*/  | 
|
protected SecretKey engineGenerateSecret(String algorithm)  | 
|
throws IllegalStateException, NoSuchAlgorithmException,  | 
|
InvalidKeyException  | 
|
    { | 
|
if (algorithm == null) {  | 
|
throw new NoSuchAlgorithmException("null algorithm");  | 
|
}  | 
|
if (!algorithm.equalsIgnoreCase("TlsPremasterSecret") &&  | 
|
            !AllowKDF.VALUE) { | 
|
throw new NoSuchAlgorithmException("Unsupported secret key "  | 
|
+ "algorithm: " + algorithm);  | 
|
}  | 
|
byte[] secret = engineGenerateSecret();  | 
|
if (algorithm.equalsIgnoreCase("DES")) {  | 
|
            // DES | 
|
return new DESKey(secret);  | 
|
} else if (algorithm.equalsIgnoreCase("DESede")  | 
|
|| algorithm.equalsIgnoreCase("TripleDES")) {  | 
|
            // Triple DES | 
|
return new DESedeKey(secret);  | 
|
} else if (algorithm.equalsIgnoreCase("Blowfish")) {  | 
|
            // Blowfish | 
|
int keysize = secret.length;  | 
|
if (keysize >= BlowfishConstants.BLOWFISH_MAX_KEYSIZE)  | 
|
keysize = BlowfishConstants.BLOWFISH_MAX_KEYSIZE;  | 
|
SecretKeySpec skey = new SecretKeySpec(secret, 0, keysize,  | 
|
                                                   "Blowfish"); | 
|
return skey;  | 
|
} else if (algorithm.equalsIgnoreCase("AES")) {  | 
|
            // AES | 
|
int keysize = secret.length;  | 
|
SecretKeySpec skey = null;  | 
|
int idx = AESConstants.AES_KEYSIZES.length - 1;  | 
|
while (skey == null && idx >= 0) {  | 
|
// Generate the strongest key using the shared secret  | 
|
// assuming the key sizes in AESConstants class are  | 
|
                // in ascending order | 
|
if (keysize >= AESConstants.AES_KEYSIZES[idx]) {  | 
|
keysize = AESConstants.AES_KEYSIZES[idx];  | 
|
skey = new SecretKeySpec(secret, 0, keysize, "AES");  | 
|
}  | 
|
idx--;  | 
|
}  | 
|
if (skey == null) {  | 
|
throw new InvalidKeyException("Key material is too short");  | 
|
}  | 
|
return skey;  | 
|
} else if (algorithm.equals("TlsPremasterSecret")) {  | 
|
            // remove leading zero bytes per RFC 5246 Section 8.1.2 | 
|
return new SecretKeySpec(  | 
|
KeyUtil.trimZeroes(secret), "TlsPremasterSecret");  | 
|
        } else { | 
|
throw new NoSuchAlgorithmException("Unsupported secret key "  | 
|
+ "algorithm: "+ algorithm);  | 
|
}  | 
|
}  | 
|
}  |