/* |
|
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
package java.util; |
|
import java.io.Serializable; |
|
import java.io.ObjectInputStream; |
|
import java.io.ObjectOutputStream; |
|
import java.io.IOException; |
|
import java.lang.reflect.Array; |
|
import java.util.function.BiConsumer; |
|
import java.util.function.BiFunction; |
|
import java.util.function.Consumer; |
|
import java.util.function.Function; |
|
import java.util.function.Predicate; |
|
import java.util.function.UnaryOperator; |
|
import java.util.stream.IntStream; |
|
import java.util.stream.Stream; |
|
import java.util.stream.StreamSupport; |
|
import sun.misc.SharedSecrets; |
|
/** |
|
* This class consists exclusively of static methods that operate on or return |
|
* collections. It contains polymorphic algorithms that operate on |
|
* collections, "wrappers", which return a new collection backed by a |
|
* specified collection, and a few other odds and ends. |
|
* |
|
* <p>The methods of this class all throw a <tt>NullPointerException</tt> |
|
* if the collections or class objects provided to them are null. |
|
* |
|
* <p>The documentation for the polymorphic algorithms contained in this class |
|
* generally includes a brief description of the <i>implementation</i>. Such |
|
* descriptions should be regarded as <i>implementation notes</i>, rather than |
|
* parts of the <i>specification</i>. Implementors should feel free to |
|
* substitute other algorithms, so long as the specification itself is adhered |
|
* to. (For example, the algorithm used by <tt>sort</tt> does not have to be |
|
* a mergesort, but it does have to be <i>stable</i>.) |
|
* |
|
* <p>The "destructive" algorithms contained in this class, that is, the |
|
* algorithms that modify the collection on which they operate, are specified |
|
* to throw <tt>UnsupportedOperationException</tt> if the collection does not |
|
* support the appropriate mutation primitive(s), such as the <tt>set</tt> |
|
* method. These algorithms may, but are not required to, throw this |
|
* exception if an invocation would have no effect on the collection. For |
|
* example, invoking the <tt>sort</tt> method on an unmodifiable list that is |
|
* already sorted may or may not throw <tt>UnsupportedOperationException</tt>. |
|
* |
|
* <p>This class is a member of the |
|
* <a href="{@docRoot}/../technotes/guides/collections/index.html"> |
|
* Java Collections Framework</a>. |
|
* |
|
* @author Josh Bloch |
|
* @author Neal Gafter |
|
* @see Collection |
|
* @see Set |
|
* @see List |
|
* @see Map |
|
* @since 1.2 |
|
*/ |
|
public class Collections { |
|
// Suppresses default constructor, ensuring non-instantiability. |
|
private Collections() { |
|
} |
|
// Algorithms |
|
/* |
|
* Tuning parameters for algorithms - Many of the List algorithms have |
|
* two implementations, one of which is appropriate for RandomAccess |
|
* lists, the other for "sequential." Often, the random access variant |
|
* yields better performance on small sequential access lists. The |
|
* tuning parameters below determine the cutoff point for what constitutes |
|
* a "small" sequential access list for each algorithm. The values below |
|
* were empirically determined to work well for LinkedList. Hopefully |
|
* they should be reasonable for other sequential access List |
|
* implementations. Those doing performance work on this code would |
|
* do well to validate the values of these parameters from time to time. |
|
* (The first word of each tuning parameter name is the algorithm to which |
|
* it applies.) |
|
*/ |
|
private static final int BINARYSEARCH_THRESHOLD = 5000; |
|
private static final int REVERSE_THRESHOLD = 18; |
|
private static final int SHUFFLE_THRESHOLD = 5; |
|
private static final int FILL_THRESHOLD = 25; |
|
private static final int ROTATE_THRESHOLD = 100; |
|
private static final int COPY_THRESHOLD = 10; |
|
private static final int REPLACEALL_THRESHOLD = 11; |
|
private static final int INDEXOFSUBLIST_THRESHOLD = 35; |
|
/** |
|
* Sorts the specified list into ascending order, according to the |
|
* {@linkplain Comparable natural ordering} of its elements. |
|
* All elements in the list must implement the {@link Comparable} |
|
* interface. Furthermore, all elements in the list must be |
|
* <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)} |
|
* must not throw a {@code ClassCastException} for any elements |
|
* {@code e1} and {@code e2} in the list). |
|
* |
|
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
|
* not be reordered as a result of the sort. |
|
* |
|
* <p>The specified list must be modifiable, but need not be resizable. |
|
* |
|
* @implNote |
|
* This implementation defers to the {@link List#sort(Comparator)} |
|
* method using the specified list and a {@code null} comparator. |
|
* |
|
* @param <T> the class of the objects in the list |
|
* @param list the list to be sorted. |
|
* @throws ClassCastException if the list contains elements that are not |
|
* <i>mutually comparable</i> (for example, strings and integers). |
|
* @throws UnsupportedOperationException if the specified list's |
|
* list-iterator does not support the {@code set} operation. |
|
* @throws IllegalArgumentException (optional) if the implementation |
|
* detects that the natural ordering of the list elements is |
|
* found to violate the {@link Comparable} contract |
|
* @see List#sort(Comparator) |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static <T extends Comparable<? super T>> void sort(List<T> list) { |
|
list.sort(null); |
|
} |
|
/** |
|
* Sorts the specified list according to the order induced by the |
|
* specified comparator. All elements in the list must be <i>mutually |
|
* comparable</i> using the specified comparator (that is, |
|
* {@code c.compare(e1, e2)} must not throw a {@code ClassCastException} |
|
* for any elements {@code e1} and {@code e2} in the list). |
|
* |
|
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
|
* not be reordered as a result of the sort. |
|
* |
|
* <p>The specified list must be modifiable, but need not be resizable. |
|
* |
|
* @implNote |
|
* This implementation defers to the {@link List#sort(Comparator)} |
|
* method using the specified list and comparator. |
|
* |
|
* @param <T> the class of the objects in the list |
|
* @param list the list to be sorted. |
|
* @param c the comparator to determine the order of the list. A |
|
* {@code null} value indicates that the elements' <i>natural |
|
* ordering</i> should be used. |
|
* @throws ClassCastException if the list contains elements that are not |
|
* <i>mutually comparable</i> using the specified comparator. |
|
* @throws UnsupportedOperationException if the specified list's |
|
* list-iterator does not support the {@code set} operation. |
|
* @throws IllegalArgumentException (optional) if the comparator is |
|
* found to violate the {@link Comparator} contract |
|
* @see List#sort(Comparator) |
|
*/ |
|
@SuppressWarnings({"unchecked", "rawtypes"}) |
|
public static <T> void sort(List<T> list, Comparator<? super T> c) { |
|
list.sort(c); |
|
} |
|
/** |
|
* Searches the specified list for the specified object using the binary |
|
* search algorithm. The list must be sorted into ascending order |
|
* according to the {@linkplain Comparable natural ordering} of its |
|
* elements (as by the {@link #sort(List)} method) prior to making this |
|
* call. If it is not sorted, the results are undefined. If the list |
|
* contains multiple elements equal to the specified object, there is no |
|
* guarantee which one will be found. |
|
* |
|
* <p>This method runs in log(n) time for a "random access" list (which |
|
* provides near-constant-time positional access). If the specified list |
|
* does not implement the {@link RandomAccess} interface and is large, |
|
* this method will do an iterator-based binary search that performs |
|
* O(n) link traversals and O(log n) element comparisons. |
|
* |
|
* @param <T> the class of the objects in the list |
|
* @param list the list to be searched. |
|
* @param key the key to be searched for. |
|
* @return the index of the search key, if it is contained in the list; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the list: the index of the first |
|
* element greater than the key, or <tt>list.size()</tt> if all |
|
* elements in the list are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
* @throws ClassCastException if the list contains elements that are not |
|
* <i>mutually comparable</i> (for example, strings and |
|
* integers), or the search key is not mutually comparable |
|
* with the elements of the list. |
|
*/ |
|
public static <T> |
|
int binarySearch(List<? extends Comparable<? super T>> list, T key) { |
|
if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD) |
|
return Collections.indexedBinarySearch(list, key); |
|
else |
|
return Collections.iteratorBinarySearch(list, key); |
|
} |
|
private static <T> |
|
int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key) { |
|
int low = 0; |
|
int high = list.size()-1; |
|
while (low <= high) { |
|
int mid = (low + high) >>> 1; |
|
Comparable<? super T> midVal = list.get(mid); |
|
int cmp = midVal.compareTo(key); |
|
if (cmp < 0) |
|
low = mid + 1; |
|
else if (cmp > 0) |
|
high = mid - 1; |
|
else |
|
return mid; // key found |
|
} |
|
return -(low + 1); // key not found |
|
} |
|
private static <T> |
|
int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key) |
|
{ |
|
int low = 0; |
|
int high = list.size()-1; |
|
ListIterator<? extends Comparable<? super T>> i = list.listIterator(); |
|
while (low <= high) { |
|
int mid = (low + high) >>> 1; |
|
Comparable<? super T> midVal = get(i, mid); |
|
int cmp = midVal.compareTo(key); |
|
if (cmp < 0) |
|
low = mid + 1; |
|
else if (cmp > 0) |
|
high = mid - 1; |
|
else |
|
return mid; // key found |
|
} |
|
return -(low + 1); // key not found |
|
} |
|
/** |
|
* Gets the ith element from the given list by repositioning the specified |
|
* list listIterator. |
|
*/ |
|
private static <T> T get(ListIterator<? extends T> i, int index) { |
|
T obj = null; |
|
int pos = i.nextIndex(); |
|
if (pos <= index) { |
|
do { |
|
obj = i.next(); |
|
} while (pos++ < index); |
|
} else { |
|
do { |
|
obj = i.previous(); |
|
} while (--pos > index); |
|
} |
|
return obj; |
|
} |
|
/** |
|
* Searches the specified list for the specified object using the binary |
|
* search algorithm. The list must be sorted into ascending order |
|
* according to the specified comparator (as by the |
|
* {@link #sort(List, Comparator) sort(List, Comparator)} |
|
* method), prior to making this call. If it is |
|
* not sorted, the results are undefined. If the list contains multiple |
|
* elements equal to the specified object, there is no guarantee which one |
|
* will be found. |
|
* |
|
* <p>This method runs in log(n) time for a "random access" list (which |
|
* provides near-constant-time positional access). If the specified list |
|
* does not implement the {@link RandomAccess} interface and is large, |
|
* this method will do an iterator-based binary search that performs |
|
* O(n) link traversals and O(log n) element comparisons. |
|
* |
|
* @param <T> the class of the objects in the list |
|
* @param list the list to be searched. |
|
* @param key the key to be searched for. |
|
* @param c the comparator by which the list is ordered. |
|
* A <tt>null</tt> value indicates that the elements' |
|
* {@linkplain Comparable natural ordering} should be used. |
|
* @return the index of the search key, if it is contained in the list; |
|
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The |
|
* <i>insertion point</i> is defined as the point at which the |
|
* key would be inserted into the list: the index of the first |
|
* element greater than the key, or <tt>list.size()</tt> if all |
|
* elements in the list are less than the specified key. Note |
|
* that this guarantees that the return value will be >= 0 if |
|
* and only if the key is found. |
|
* @throws ClassCastException if the list contains elements that are not |
|
* <i>mutually comparable</i> using the specified comparator, |
|
* or the search key is not mutually comparable with the |
|
* elements of the list using this comparator. |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) { |
|
if (c==null) |
|
return binarySearch((List<? extends Comparable<? super T>>) list, key); |
|
if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD) |
|
return Collections.indexedBinarySearch(list, key, c); |
|
else |
|
return Collections.iteratorBinarySearch(list, key, c); |
|
} |
|
private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) { |
|
int low = 0; |
|
int high = l.size()-1; |
|
while (low <= high) { |
|
int mid = (low + high) >>> 1; |
|
T midVal = l.get(mid); |
|
int cmp = c.compare(midVal, key); |
|
if (cmp < 0) |
|
low = mid + 1; |
|
else if (cmp > 0) |
|
high = mid - 1; |
|
else |
|
return mid; // key found |
|
} |
|
return -(low + 1); // key not found |
|
} |
|
private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) { |
|
int low = 0; |
|
int high = l.size()-1; |
|
ListIterator<? extends T> i = l.listIterator(); |
|
while (low <= high) { |
|
int mid = (low + high) >>> 1; |
|
T midVal = get(i, mid); |
|
int cmp = c.compare(midVal, key); |
|
if (cmp < 0) |
|
low = mid + 1; |
|
else if (cmp > 0) |
|
high = mid - 1; |
|
else |
|
return mid; // key found |
|
} |
|
return -(low + 1); // key not found |
|
} |
|
/** |
|
* Reverses the order of the elements in the specified list.<p> |
|
* |
|
* This method runs in linear time. |
|
* |
|
* @param list the list whose elements are to be reversed. |
|
* @throws UnsupportedOperationException if the specified list or |
|
* its list-iterator does not support the <tt>set</tt> operation. |
|
*/ |
|
@SuppressWarnings({"rawtypes", "unchecked"}) |
|
public static void reverse(List<?> list) { |
|
int size = list.size(); |
|
if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) { |
|
for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--) |
|
swap(list, i, j); |
|
} else { |
|
// instead of using a raw type here, it's possible to capture |
|
// the wildcard but it will require a call to a supplementary |
|
// private method |
|
ListIterator fwd = list.listIterator(); |
|
ListIterator rev = list.listIterator(size); |
|
for (int i=0, mid=list.size()>>1; i<mid; i++) { |
|
Object tmp = fwd.next(); |
|
fwd.set(rev.previous()); |
|
rev.set(tmp); |
|
} |
|
} |
|
} |
|
/** |
|
* Randomly permutes the specified list using a default source of |
|
* randomness. All permutations occur with approximately equal |
|
* likelihood. |
|
* |
|
* <p>The hedge "approximately" is used in the foregoing description because |
|
* default source of randomness is only approximately an unbiased source |
|
* of independently chosen bits. If it were a perfect source of randomly |
|
* chosen bits, then the algorithm would choose permutations with perfect |
|
* uniformity. |
|
* |
|
* <p>This implementation traverses the list backwards, from the last |
|
* element up to the second, repeatedly swapping a randomly selected element |
|
* into the "current position". Elements are randomly selected from the |
|
* portion of the list that runs from the first element to the current |
|
* position, inclusive. |
|
* |
|
* <p>This method runs in linear time. If the specified list does not |
|
* implement the {@link RandomAccess} interface and is large, this |
|
* implementation dumps the specified list into an array before shuffling |
|
* it, and dumps the shuffled array back into the list. This avoids the |
|
* quadratic behavior that would result from shuffling a "sequential |
|
* access" list in place. |
|
* |
|
* @param list the list to be shuffled. |
|
* @throws UnsupportedOperationException if the specified list or |
|
* its list-iterator does not support the <tt>set</tt> operation. |
|
*/ |
|
public static void shuffle(List<?> list) { |
|
Random rnd = r; |
|
if (rnd == null) |
|
r = rnd = new Random(); // harmless race. |
|
shuffle(list, rnd); |
|
} |
|
private static Random r; |
|
/** |
|
* Randomly permute the specified list using the specified source of |
|
* randomness. All permutations occur with equal likelihood |
|
* assuming that the source of randomness is fair.<p> |
|
* |
|
* This implementation traverses the list backwards, from the last element |
|
* up to the second, repeatedly swapping a randomly selected element into |
|
* the "current position". Elements are randomly selected from the |
|
* portion of the list that runs from the first element to the current |
|
* position, inclusive.<p> |
|
* |
|
* This method runs in linear time. If the specified list does not |
|
* implement the {@link RandomAccess} interface and is large, this |
|
* implementation dumps the specified list into an array before shuffling |
|
* it, and dumps the shuffled array back into the list. This avoids the |
|
* quadratic behavior that would result from shuffling a "sequential |
|
* access" list in place. |
|
* |
|
* @param list the list to be shuffled. |
|
* @param rnd the source of randomness to use to shuffle the list. |
|
* @throws UnsupportedOperationException if the specified list or its |
|
* list-iterator does not support the <tt>set</tt> operation. |
|
*/ |
|
@SuppressWarnings({"rawtypes", "unchecked"}) |
|
public static void shuffle(List<?> list, Random rnd) { |
|
int size = list.size(); |
|
if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) { |
|
for (int i=size; i>1; i--) |
|
swap(list, i-1, rnd.nextInt(i)); |
|
} else { |
|
Object[] arr = list.toArray(); |
|
// Shuffle array |
|
for (int i=size; i>1; i--) |
|
swap(arr, i-1, rnd.nextInt(i)); |
|
// Dump array back into list |
|
// instead of using a raw type here, it's possible to capture |
|
// the wildcard but it will require a call to a supplementary |
|
// private method |
|
ListIterator it = list.listIterator(); |
|
for (int i=0; i<arr.length; i++) { |
|
it.next(); |
|
it.set(arr[i]); |
|
} |
|
} |
|
} |
|
/** |
|
* Swaps the elements at the specified positions in the specified list. |
|
* (If the specified positions are equal, invoking this method leaves |
|
* the list unchanged.) |
|
* |
|
* @param list The list in which to swap elements. |
|
* @param i the index of one element to be swapped. |
|
* @param j the index of the other element to be swapped. |
|
* @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt> |
|
* is out of range (i < 0 || i >= list.size() |
|
* || j < 0 || j >= list.size()). |
|
* @since 1.4 |
|
*/ |
|
@SuppressWarnings({"rawtypes", "unchecked"}) |
|
public static void swap(List<?> list, int i, int j) { |
|
// instead of using a raw type here, it's possible to capture |
|
// the wildcard but it will require a call to a supplementary |
|
// private method |
|
final List l = list; |
|
l.set(i, l.set(j, l.get(i))); |
|
} |
|
/** |
|
* Swaps the two specified elements in the specified array. |
|
*/ |
|
private static void swap(Object[] arr, int i, int j) { |
|
Object tmp = arr[i]; |
|
arr[i] = arr[j]; |
|
arr[j] = tmp; |
|
} |
|
/** |
|
* Replaces all of the elements of the specified list with the specified |
|
* element. <p> |
|
* |
|
* This method runs in linear time. |
|
* |
|
* @param <T> the class of the objects in the list |
|
* @param list the list to be filled with the specified element. |
|
* @param obj The element with which to fill the specified list. |
|
* @throws UnsupportedOperationException if the specified list or its |
|
* list-iterator does not support the <tt>set</tt> operation. |
|
*/ |
|
public static <T> void fill(List<? super T> list, T obj) { |
|
int size = list.size(); |
|
if (size < FILL_THRESHOLD || list instanceof RandomAccess) { |
|
for (int i=0; i<size; i++) |
|
list.set(i, obj); |
|
} else { |
|
ListIterator<? super T> itr = list.listIterator(); |
|
for (int i=0; i<size; i++) { |
|
itr.next(); |
|
itr.set(obj); |
|
} |
|
} |
|
} |
|
/** |
|
* Copies all of the elements from one list into another. After the |
|
* operation, the index of each copied element in the destination list |
|
* will be identical to its index in the source list. The destination |
|
* list must be at least as long as the source list. If it is longer, the |
|
* remaining elements in the destination list are unaffected. <p> |
|
* |
|
* This method runs in linear time. |
|
* |
|
* @param <T> the class of the objects in the lists |
|
* @param dest The destination list. |
|
* @param src The source list. |
|
* @throws IndexOutOfBoundsException if the destination list is too small |
|
* to contain the entire source List. |
|
* @throws UnsupportedOperationException if the destination list's |
|
* list-iterator does not support the <tt>set</tt> operation. |
|
*/ |
|
public static <T> void copy(List<? super T> dest, List<? extends T> src) { |
|
int srcSize = src.size(); |
|
if (srcSize > dest.size()) |
|
throw new IndexOutOfBoundsException("Source does not fit in dest"); |
|
if (srcSize < COPY_THRESHOLD || |
|
(src instanceof RandomAccess && dest instanceof RandomAccess)) { |
|
for (int i=0; i<srcSize; i++) |
|
dest.set(i, src.get(i)); |
|
} else { |
|
ListIterator<? super T> di=dest.listIterator(); |
|
ListIterator<? extends T> si=src.listIterator(); |
|
for (int i=0; i<srcSize; i++) { |
|
di.next(); |
|
di.set(si.next()); |
|
} |
|
} |
|
} |
|
/** |
|
* Returns the minimum element of the given collection, according to the |
|
* <i>natural ordering</i> of its elements. All elements in the |
|
* collection must implement the <tt>Comparable</tt> interface. |
|
* Furthermore, all elements in the collection must be <i>mutually |
|
* comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a |
|
* <tt>ClassCastException</tt> for any elements <tt>e1</tt> and |
|
* <tt>e2</tt> in the collection).<p> |
|
* |
|
* This method iterates over the entire collection, hence it requires |
|
* time proportional to the size of the collection. |
|
* |
|
* @param <T> the class of the objects in the collection |
|
* @param coll the collection whose minimum element is to be determined. |
|
* @return the minimum element of the given collection, according |
|
* to the <i>natural ordering</i> of its elements. |
|
* @throws ClassCastException if the collection contains elements that are |
|
* not <i>mutually comparable</i> (for example, strings and |
|
* integers). |
|
* @throws NoSuchElementException if the collection is empty. |
|
* @see Comparable |
|
*/ |
|
public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) { |
|
Iterator<? extends T> i = coll.iterator(); |
|
T candidate = i.next(); |
|
while (i.hasNext()) { |
|
T next = i.next(); |
|
if (next.compareTo(candidate) < 0) |
|
candidate = next; |
|
} |
|
return candidate; |
|
} |
|
/** |
|
* Returns the minimum element of the given collection, according to the |
|
* order induced by the specified comparator. All elements in the |
|
* collection must be <i>mutually comparable</i> by the specified |
|
* comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a |
|
* <tt>ClassCastException</tt> for any elements <tt>e1</tt> and |
|
* <tt>e2</tt> in the collection).<p> |
|
* |
|
* This method iterates over the entire collection, hence it requires |
|
* time proportional to the size of the collection. |
|
* |
|
* @param <T> the class of the objects in the collection |
|
* @param coll the collection whose minimum element is to be determined. |
|
* @param comp the comparator with which to determine the minimum element. |
|
* A <tt>null</tt> value indicates that the elements' <i>natural |
|
* ordering</i> should be used. |
|
* @return the minimum element of the given collection, according |
|
* to the specified comparator. |
|
* @throws ClassCastException if the collection contains elements that are |
|
* not <i>mutually comparable</i> using the specified comparator. |
|
* @throws NoSuchElementException if the collection is empty. |
|
* @see Comparable |
|
*/ |
|
@SuppressWarnings({"unchecked", "rawtypes"}) |
|
public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) { |
|
if (comp==null) |
|
return (T)min((Collection) coll); |
|
Iterator<? extends T> i = coll.iterator(); |
|
T candidate = i.next(); |
|
while (i.hasNext()) { |
|
T next = i.next(); |
|
if (comp.compare(next, candidate) < 0) |
|
candidate = next; |
|
} |
|
return candidate; |
|
} |
|
/** |
|
* Returns the maximum element of the given collection, according to the |
|
* <i>natural ordering</i> of its elements. All elements in the |
|
* collection must implement the <tt>Comparable</tt> interface. |
|
* Furthermore, all elements in the collection must be <i>mutually |
|
* comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a |
|
* <tt>ClassCastException</tt> for any elements <tt>e1</tt> and |
|
* <tt>e2</tt> in the collection).<p> |
|
* |
|
* This method iterates over the entire collection, hence it requires |
|
* time proportional to the size of the collection. |
|
* |
|
* @param <T> the class of the objects in the collection |
|
* @param coll the collection whose maximum element is to be determined. |
|
* @return the maximum element of the given collection, according |
|
* to the <i>natural ordering</i> of its elements. |
|
* @throws ClassCastException if the collection contains elements that are |
|
* not <i>mutually comparable</i> (for example, strings and |
|
* integers). |
|
* @throws NoSuchElementException if the collection is empty. |
|
* @see Comparable |
|
*/ |
|
public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) { |
|
Iterator<? extends T> i = coll.iterator(); |
|
T candidate = i.next(); |
|
while (i.hasNext()) { |
|
T next = i.next(); |
|
if (next.compareTo(candidate) > 0) |
|
candidate = next; |
|
} |
|
return candidate; |
|
} |
|
/** |
|
* Returns the maximum element of the given collection, according to the |
|
* order induced by the specified comparator. All elements in the |
|
* collection must be <i>mutually comparable</i> by the specified |
|
* comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a |
|
* <tt>ClassCastException</tt> for any elements <tt>e1</tt> and |
|
* <tt>e2</tt> in the collection).<p> |
|
* |
|
* This method iterates over the entire collection, hence it requires |
|
* time proportional to the size of the collection. |
|
* |
|
* @param <T> the class of the objects in the collection |
|
* @param coll the collection whose maximum element is to be determined. |
|
* @param comp the comparator with which to determine the maximum element. |
|
* A <tt>null</tt> value indicates that the elements' <i>natural |
|
* ordering</i> should be used. |
|
* @return the maximum element of the given collection, according |
|
* to the specified comparator. |
|
* @throws ClassCastException if the collection contains elements that are |
|
* not <i>mutually comparable</i> using the specified comparator. |
|
* @throws NoSuchElementException if the collection is empty. |
|
* @see Comparable |
|
*/ |
|
@SuppressWarnings({"unchecked", "rawtypes"}) |
|
public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) { |
|
if (comp==null) |
|
return (T)max((Collection) coll); |
|
Iterator<? extends T> i = coll.iterator(); |
|
T candidate = i.next(); |
|
while (i.hasNext()) { |
|
T next = i.next(); |
|
if (comp.compare(next, candidate) > 0) |
|
candidate = next; |
|
} |
|
return candidate; |
|
} |
|
/** |
|
* Rotates the elements in the specified list by the specified distance. |
|
* After calling this method, the element at index <tt>i</tt> will be |
|
* the element previously at index <tt>(i - distance)</tt> mod |
|
* <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt> |
|
* and <tt>list.size()-1</tt>, inclusive. (This method has no effect on |
|
* the size of the list.) |
|
* |
|
* <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>. |
|
* After invoking <tt>Collections.rotate(list, 1)</tt> (or |
|
* <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise |
|
* <tt>[s, t, a, n, k]</tt>. |
|
* |
|
* <p>Note that this method can usefully be applied to sublists to |
|
* move one or more elements within a list while preserving the |
|
* order of the remaining elements. For example, the following idiom |
|
* moves the element at index <tt>j</tt> forward to position |
|
* <tt>k</tt> (which must be greater than or equal to <tt>j</tt>): |
|
* <pre> |
|
* Collections.rotate(list.subList(j, k+1), -1); |
|
* </pre> |
|
* To make this concrete, suppose <tt>list</tt> comprises |
|
* <tt>[a, b, c, d, e]</tt>. To move the element at index <tt>1</tt> |
|
* (<tt>b</tt>) forward two positions, perform the following invocation: |
|
* <pre> |
|
* Collections.rotate(l.subList(1, 4), -1); |
|
* </pre> |
|
* The resulting list is <tt>[a, c, d, b, e]</tt>. |
|
* |
|
* <p>To move more than one element forward, increase the absolute value |
|
* of the rotation distance. To move elements backward, use a positive |
|
* shift distance. |
|
* |
|
* <p>If the specified list is small or implements the {@link |
|
* RandomAccess} interface, this implementation exchanges the first |
|
* element into the location it should go, and then repeatedly exchanges |
|
* the displaced element into the location it should go until a displaced |
|
* element is swapped into the first element. If necessary, the process |
|
* is repeated on the second and successive elements, until the rotation |
|
* is complete. If the specified list is large and doesn't implement the |
|
* <tt>RandomAccess</tt> interface, this implementation breaks the |
|
* list into two sublist views around index <tt>-distance mod size</tt>. |
|
* Then the {@link #reverse(List)} method is invoked on each sublist view, |
|
* and finally it is invoked on the entire list. For a more complete |
|
* description of both algorithms, see Section 2.3 of Jon Bentley's |
|
* <i>Programming Pearls</i> (Addison-Wesley, 1986). |
|
* |
|
* @param list the list to be rotated. |
|
* @param distance the distance to rotate the list. There are no |
|
* constraints on this value; it may be zero, negative, or |
|
* greater than <tt>list.size()</tt>. |
|
* @throws UnsupportedOperationException if the specified list or |
|
* its list-iterator does not support the <tt>set</tt> operation. |
|
* @since 1.4 |
|
*/ |
|
public static void rotate(List<?> list, int distance) { |
|
if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD) |
|
rotate1(list, distance); |
|
else |
|
rotate2(list, distance); |
|
} |
|
private static <T> void rotate1(List<T> list, int distance) { |
|
int size = list.size(); |
|
if (size == 0) |
|
return; |
|
distance = distance % size; |
|
if (distance < 0) |
|
distance += size; |
|
if (distance == 0) |
|
return; |
|
for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) { |
|
T displaced = list.get(cycleStart); |
|
int i = cycleStart; |
|
do { |
|
i += distance; |
|
if (i >= size) |
|
i -= size; |
|
displaced = list.set(i, displaced); |
|
nMoved ++; |
|
} while (i != cycleStart); |
|
} |
|
} |
|
private static void rotate2(List<?> list, int distance) { |
|
int size = list.size(); |
|
if (size == 0) |
|
return; |
|
int mid = -distance % size; |
|
if (mid < 0) |
|
mid += size; |
|
if (mid == 0) |
|
return; |
|
reverse(list.subList(0, mid)); |
|
reverse(list.subList(mid, size)); |
|
reverse(list); |
|
} |
|
/** |
|
* Replaces all occurrences of one specified value in a list with another. |
|
* More formally, replaces with <tt>newVal</tt> each element <tt>e</tt> |
|
* in <tt>list</tt> such that |
|
* <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>. |
|
* (This method has no effect on the size of the list.) |
|
* |
|
* @param <T> the class of the objects in the list |
|
* @param list the list in which replacement is to occur. |
|
* @param oldVal the old value to be replaced. |
|
* @param newVal the new value with which <tt>oldVal</tt> is to be |
|
* replaced. |
|
* @return <tt>true</tt> if <tt>list</tt> contained one or more elements |
|
* <tt>e</tt> such that |
|
* <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>. |
|
* @throws UnsupportedOperationException if the specified list or |
|
* its list-iterator does not support the <tt>set</tt> operation. |
|
* @since 1.4 |
|
*/ |
|
public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) { |
|
boolean result = false; |
|
int size = list.size(); |
|
if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) { |
|
if (oldVal==null) { |
|
for (int i=0; i<size; i++) { |
|
if (list.get(i)==null) { |
|
list.set(i, newVal); |
|
result = true; |
|
} |
|
} |
|
} else { |
|
for (int i=0; i<size; i++) { |
|
if (oldVal.equals(list.get(i))) { |
|
list.set(i, newVal); |
|
result = true; |
|
} |
|
} |
|
} |
|
} else { |
|
ListIterator<T> itr=list.listIterator(); |
|
if (oldVal==null) { |
|
for (int i=0; i<size; i++) { |
|
if (itr.next()==null) { |
|
itr.set(newVal); |
|
result = true; |
|
} |
|
} |
|
} else { |
|
for (int i=0; i<size; i++) { |
|
if (oldVal.equals(itr.next())) { |
|
itr.set(newVal); |
|
result = true; |
|
} |
|
} |
|
} |
|
} |
|
return result; |
|
} |
|
/** |
|
* Returns the starting position of the first occurrence of the specified |
|
* target list within the specified source list, or -1 if there is no |
|
* such occurrence. More formally, returns the lowest index <tt>i</tt> |
|
* such that {@code source.subList(i, i+target.size()).equals(target)}, |
|
* or -1 if there is no such index. (Returns -1 if |
|
* {@code target.size() > source.size()}) |
|
* |
|
* <p>This implementation uses the "brute force" technique of scanning |
|
* over the source list, looking for a match with the target at each |
|
* location in turn. |
|
* |
|
* @param source the list in which to search for the first occurrence |
|
* of <tt>target</tt>. |
|
* @param target the list to search for as a subList of <tt>source</tt>. |
|
* @return the starting position of the first occurrence of the specified |
|
* target list within the specified source list, or -1 if there |
|
* is no such occurrence. |
|
* @since 1.4 |
|
*/ |
|
public static int indexOfSubList(List<?> source, List<?> target) { |
|
int sourceSize = source.size(); |
|
int targetSize = target.size(); |
|
int maxCandidate = sourceSize - targetSize; |
|
if (sourceSize < INDEXOFSUBLIST_THRESHOLD || |
|
(source instanceof RandomAccess&&target instanceof RandomAccess)) { |
|
nextCand: |
|
for (int candidate = 0; candidate <= maxCandidate; candidate++) { |
|
for (int i=0, j=candidate; i<targetSize; i++, j++) |
|
if (!eq(target.get(i), source.get(j))) |
|
continue nextCand; // Element mismatch, try next cand |
|
return candidate; // All elements of candidate matched target |
|
} |
|
} else { // Iterator version of above algorithm |
|
ListIterator<?> si = source.listIterator(); |
|
nextCand: |
|
for (int candidate = 0; candidate <= maxCandidate; candidate++) { |
|
ListIterator<?> ti = target.listIterator(); |
|
for (int i=0; i<targetSize; i++) { |
|
if (!eq(ti.next(), si.next())) { |
|
// Back up source iterator to next candidate |
|
for (int j=0; j<i; j++) |
|
si.previous(); |
|
continue nextCand; |
|
} |
|
} |
|
return candidate; |
|
} |
|
} |
|
return -1; // No candidate matched the target |
|
} |
|
/** |
|
* Returns the starting position of the last occurrence of the specified |
|
* target list within the specified source list, or -1 if there is no such |
|
* occurrence. More formally, returns the highest index <tt>i</tt> |
|
* such that {@code source.subList(i, i+target.size()).equals(target)}, |
|
* or -1 if there is no such index. (Returns -1 if |
|
* {@code target.size() > source.size()}) |
|
* |
|
* <p>This implementation uses the "brute force" technique of iterating |
|
* over the source list, looking for a match with the target at each |
|
* location in turn. |
|
* |
|
* @param source the list in which to search for the last occurrence |
|
* of <tt>target</tt>. |
|
* @param target the list to search for as a subList of <tt>source</tt>. |
|
* @return the starting position of the last occurrence of the specified |
|
* target list within the specified source list, or -1 if there |
|
* is no such occurrence. |
|
* @since 1.4 |
|
*/ |
|
public static int lastIndexOfSubList(List<?> source, List<?> target) { |
|
int sourceSize = source.size(); |
|
int targetSize = target.size(); |
|
int maxCandidate = sourceSize - targetSize; |
|
if (sourceSize < INDEXOFSUBLIST_THRESHOLD || |
|
source instanceof RandomAccess) { // Index access version |
|
nextCand: |
|
for (int candidate = maxCandidate; candidate >= 0; candidate--) { |
|
for (int i=0, j=candidate; i<targetSize; i++, j++) |
|
if (!eq(target.get(i), source.get(j))) |
|
continue nextCand; // Element mismatch, try next cand |
|
return candidate; // All elements of candidate matched target |
|
} |
|
} else { // Iterator version of above algorithm |
|
if (maxCandidate < 0) |
|
return -1; |
|
ListIterator<?> si = source.listIterator(maxCandidate); |
|
nextCand: |
|
for (int candidate = maxCandidate; candidate >= 0; candidate--) { |
|
ListIterator<?> ti = target.listIterator(); |
|
for (int i=0; i<targetSize; i++) { |
|
if (!eq(ti.next(), si.next())) { |
|
if (candidate != 0) { |
|
// Back up source iterator to next candidate |
|
for (int j=0; j<=i+1; j++) |
|
si.previous(); |
|
} |
|
continue nextCand; |
|
} |
|
} |
|
return candidate; |
|
} |
|
} |
|
return -1; // No candidate matched the target |
|
} |
|
// Unmodifiable Wrappers |
|
/** |
|
* Returns an unmodifiable view of the specified collection. This method |
|
* allows modules to provide users with "read-only" access to internal |
|
* collections. Query operations on the returned collection "read through" |
|
* to the specified collection, and attempts to modify the returned |
|
* collection, whether direct or via its iterator, result in an |
|
* <tt>UnsupportedOperationException</tt>.<p> |
|
* |
|
* The returned collection does <i>not</i> pass the hashCode and equals |
|
* operations through to the backing collection, but relies on |
|
* <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods. This |
|
* is necessary to preserve the contracts of these operations in the case |
|
* that the backing collection is a set or a list.<p> |
|
* |
|
* The returned collection will be serializable if the specified collection |
|
* is serializable. |
|
* |
|
* @param <T> the class of the objects in the collection |
|
* @param c the collection for which an unmodifiable view is to be |
|
* returned. |
|
* @return an unmodifiable view of the specified collection. |
|
*/ |
|
public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) { |
|
return new UnmodifiableCollection<>(c); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class UnmodifiableCollection<E> implements Collection<E>, Serializable { |
|
private static final long serialVersionUID = 1820017752578914078L; |
|
final Collection<? extends E> c; |
|
UnmodifiableCollection(Collection<? extends E> c) { |
|
if (c==null) |
|
throw new NullPointerException(); |
|
this.c = c; |
|
} |
|
public int size() {return c.size();} |
|
public boolean isEmpty() {return c.isEmpty();} |
|
public boolean contains(Object o) {return c.contains(o);} |
|
public Object[] toArray() {return c.toArray();} |
|
public <T> T[] toArray(T[] a) {return c.toArray(a);} |
|
public String toString() {return c.toString();} |
|
public Iterator<E> iterator() { |
|
return new Iterator<E>() { |
|
private final Iterator<? extends E> i = c.iterator(); |
|
public boolean hasNext() {return i.hasNext();} |
|
public E next() {return i.next();} |
|
public void remove() { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public void forEachRemaining(Consumer<? super E> action) { |
|
// Use backing collection version |
|
i.forEachRemaining(action); |
|
} |
|
}; |
|
} |
|
public boolean add(E e) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public boolean remove(Object o) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public boolean containsAll(Collection<?> coll) { |
|
return c.containsAll(coll); |
|
} |
|
public boolean addAll(Collection<? extends E> coll) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public boolean removeAll(Collection<?> coll) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public boolean retainAll(Collection<?> coll) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public void clear() { |
|
throw new UnsupportedOperationException(); |
|
} |
|
// Override default methods in Collection |
|
@Override |
|
public void forEach(Consumer<? super E> action) { |
|
c.forEach(action); |
|
} |
|
@Override |
|
public boolean removeIf(Predicate<? super E> filter) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@SuppressWarnings("unchecked") |
|
@Override |
|
public Spliterator<E> spliterator() { |
|
return (Spliterator<E>)c.spliterator(); |
|
} |
|
@SuppressWarnings("unchecked") |
|
@Override |
|
public Stream<E> stream() { |
|
return (Stream<E>)c.stream(); |
|
} |
|
@SuppressWarnings("unchecked") |
|
@Override |
|
public Stream<E> parallelStream() { |
|
return (Stream<E>)c.parallelStream(); |
|
} |
|
} |
|
/** |
|
* Returns an unmodifiable view of the specified set. This method allows |
|
* modules to provide users with "read-only" access to internal sets. |
|
* Query operations on the returned set "read through" to the specified |
|
* set, and attempts to modify the returned set, whether direct or via its |
|
* iterator, result in an <tt>UnsupportedOperationException</tt>.<p> |
|
* |
|
* The returned set will be serializable if the specified set |
|
* is serializable. |
|
* |
|
* @param <T> the class of the objects in the set |
|
* @param s the set for which an unmodifiable view is to be returned. |
|
* @return an unmodifiable view of the specified set. |
|
*/ |
|
public static <T> Set<T> unmodifiableSet(Set<? extends T> s) { |
|
return new UnmodifiableSet<>(s); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class UnmodifiableSet<E> extends UnmodifiableCollection<E> |
|
implements Set<E>, Serializable { |
|
private static final long serialVersionUID = -9215047833775013803L; |
|
UnmodifiableSet(Set<? extends E> s) {super(s);} |
|
public boolean equals(Object o) {return o == this || c.equals(o);} |
|
public int hashCode() {return c.hashCode();} |
|
} |
|
/** |
|
* Returns an unmodifiable view of the specified sorted set. This method |
|
* allows modules to provide users with "read-only" access to internal |
|
* sorted sets. Query operations on the returned sorted set "read |
|
* through" to the specified sorted set. Attempts to modify the returned |
|
* sorted set, whether direct, via its iterator, or via its |
|
* <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in |
|
* an <tt>UnsupportedOperationException</tt>.<p> |
|
* |
|
* The returned sorted set will be serializable if the specified sorted set |
|
* is serializable. |
|
* |
|
* @param <T> the class of the objects in the set |
|
* @param s the sorted set for which an unmodifiable view is to be |
|
* returned. |
|
* @return an unmodifiable view of the specified sorted set. |
|
*/ |
|
public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) { |
|
return new UnmodifiableSortedSet<>(s); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class UnmodifiableSortedSet<E> |
|
extends UnmodifiableSet<E> |
|
implements SortedSet<E>, Serializable { |
|
private static final long serialVersionUID = -4929149591599911165L; |
|
private final SortedSet<E> ss; |
|
UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;} |
|
public Comparator<? super E> comparator() {return ss.comparator();} |
|
public SortedSet<E> subSet(E fromElement, E toElement) { |
|
return new UnmodifiableSortedSet<>(ss.subSet(fromElement,toElement)); |
|
} |
|
public SortedSet<E> headSet(E toElement) { |
|
return new UnmodifiableSortedSet<>(ss.headSet(toElement)); |
|
} |
|
public SortedSet<E> tailSet(E fromElement) { |
|
return new UnmodifiableSortedSet<>(ss.tailSet(fromElement)); |
|
} |
|
public E first() {return ss.first();} |
|
public E last() {return ss.last();} |
|
} |
|
/** |
|
* Returns an unmodifiable view of the specified navigable set. This method |
|
* allows modules to provide users with "read-only" access to internal |
|
* navigable sets. Query operations on the returned navigable set "read |
|
* through" to the specified navigable set. Attempts to modify the returned |
|
* navigable set, whether direct, via its iterator, or via its |
|
* {@code subSet}, {@code headSet}, or {@code tailSet} views, result in |
|
* an {@code UnsupportedOperationException}.<p> |
|
* |
|
* The returned navigable set will be serializable if the specified |
|
* navigable set is serializable. |
|
* |
|
* @param <T> the class of the objects in the set |
|
* @param s the navigable set for which an unmodifiable view is to be |
|
* returned |
|
* @return an unmodifiable view of the specified navigable set |
|
* @since 1.8 |
|
*/ |
|
public static <T> NavigableSet<T> unmodifiableNavigableSet(NavigableSet<T> s) { |
|
return new UnmodifiableNavigableSet<>(s); |
|
} |
|
/** |
|
* Wraps a navigable set and disables all of the mutative operations. |
|
* |
|
* @param <E> type of elements |
|
* @serial include |
|
*/ |
|
static class UnmodifiableNavigableSet<E> |
|
extends UnmodifiableSortedSet<E> |
|
implements NavigableSet<E>, Serializable { |
|
private static final long serialVersionUID = -6027448201786391929L; |
|
/** |
|
* A singleton empty unmodifiable navigable set used for |
|
* {@link #emptyNavigableSet()}. |
|
* |
|
* @param <E> type of elements, if there were any, and bounds |
|
*/ |
|
private static class EmptyNavigableSet<E> extends UnmodifiableNavigableSet<E> |
|
implements Serializable { |
|
private static final long serialVersionUID = -6291252904449939134L; |
|
public EmptyNavigableSet() { |
|
super(new TreeSet<E>()); |
|
} |
|
private Object readResolve() { return EMPTY_NAVIGABLE_SET; } |
|
} |
|
@SuppressWarnings("rawtypes") |
|
private static final NavigableSet<?> EMPTY_NAVIGABLE_SET = |
|
new EmptyNavigableSet<>(); |
|
/** |
|
* The instance we are protecting. |
|
*/ |
|
private final NavigableSet<E> ns; |
|
UnmodifiableNavigableSet(NavigableSet<E> s) {super(s); ns = s;} |
|
public E lower(E e) { return ns.lower(e); } |
|
public E floor(E e) { return ns.floor(e); } |
|
public E ceiling(E e) { return ns.ceiling(e); } |
|
public E higher(E e) { return ns.higher(e); } |
|
public E pollFirst() { throw new UnsupportedOperationException(); } |
|
public E pollLast() { throw new UnsupportedOperationException(); } |
|
public NavigableSet<E> descendingSet() |
|
{ return new UnmodifiableNavigableSet<>(ns.descendingSet()); } |
|
public Iterator<E> descendingIterator() |
|
{ return descendingSet().iterator(); } |
|
public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { |
|
return new UnmodifiableNavigableSet<>( |
|
ns.subSet(fromElement, fromInclusive, toElement, toInclusive)); |
|
} |
|
public NavigableSet<E> headSet(E toElement, boolean inclusive) { |
|
return new UnmodifiableNavigableSet<>( |
|
ns.headSet(toElement, inclusive)); |
|
} |
|
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { |
|
return new UnmodifiableNavigableSet<>( |
|
ns.tailSet(fromElement, inclusive)); |
|
} |
|
} |
|
/** |
|
* Returns an unmodifiable view of the specified list. This method allows |
|
* modules to provide users with "read-only" access to internal |
|
* lists. Query operations on the returned list "read through" to the |
|
* specified list, and attempts to modify the returned list, whether |
|
* direct or via its iterator, result in an |
|
* <tt>UnsupportedOperationException</tt>.<p> |
|
* |
|
* The returned list will be serializable if the specified list |
|
* is serializable. Similarly, the returned list will implement |
|
* {@link RandomAccess} if the specified list does. |
|
* |
|
* @param <T> the class of the objects in the list |
|
* @param list the list for which an unmodifiable view is to be returned. |
|
* @return an unmodifiable view of the specified list. |
|
*/ |
|
public static <T> List<T> unmodifiableList(List<? extends T> list) { |
|
return (list instanceof RandomAccess ? |
|
new UnmodifiableRandomAccessList<>(list) : |
|
new UnmodifiableList<>(list)); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class UnmodifiableList<E> extends UnmodifiableCollection<E> |
|
implements List<E> { |
|
private static final long serialVersionUID = -283967356065247728L; |
|
final List<? extends E> list; |
|
UnmodifiableList(List<? extends E> list) { |
|
super(list); |
|
this.list = list; |
|
} |
|
public boolean equals(Object o) {return o == this || list.equals(o);} |
|
public int hashCode() {return list.hashCode();} |
|
public E get(int index) {return list.get(index);} |
|
public E set(int index, E element) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public void add(int index, E element) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public E remove(int index) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public int indexOf(Object o) {return list.indexOf(o);} |
|
public int lastIndexOf(Object o) {return list.lastIndexOf(o);} |
|
public boolean addAll(int index, Collection<? extends E> c) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public void replaceAll(UnaryOperator<E> operator) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public void sort(Comparator<? super E> c) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public ListIterator<E> listIterator() {return listIterator(0);} |
|
public ListIterator<E> listIterator(final int index) { |
|
return new ListIterator<E>() { |
|
private final ListIterator<? extends E> i |
|
= list.listIterator(index); |
|
public boolean hasNext() {return i.hasNext();} |
|
public E next() {return i.next();} |
|
public boolean hasPrevious() {return i.hasPrevious();} |
|
public E previous() {return i.previous();} |
|
public int nextIndex() {return i.nextIndex();} |
|
public int previousIndex() {return i.previousIndex();} |
|
public void remove() { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public void set(E e) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public void add(E e) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public void forEachRemaining(Consumer<? super E> action) { |
|
i.forEachRemaining(action); |
|
} |
|
}; |
|
} |
|
public List<E> subList(int fromIndex, int toIndex) { |
|
return new UnmodifiableList<>(list.subList(fromIndex, toIndex)); |
|
} |
|
/** |
|
* UnmodifiableRandomAccessList instances are serialized as |
|
* UnmodifiableList instances to allow them to be deserialized |
|
* in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList). |
|
* This method inverts the transformation. As a beneficial |
|
* side-effect, it also grafts the RandomAccess marker onto |
|
* UnmodifiableList instances that were serialized in pre-1.4 JREs. |
|
* |
|
* Note: Unfortunately, UnmodifiableRandomAccessList instances |
|
* serialized in 1.4.1 and deserialized in 1.4 will become |
|
* UnmodifiableList instances, as this method was missing in 1.4. |
|
*/ |
|
private Object readResolve() { |
|
return (list instanceof RandomAccess |
|
? new UnmodifiableRandomAccessList<>(list) |
|
: this); |
|
} |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E> |
|
implements RandomAccess |
|
{ |
|
UnmodifiableRandomAccessList(List<? extends E> list) { |
|
super(list); |
|
} |
|
public List<E> subList(int fromIndex, int toIndex) { |
|
return new UnmodifiableRandomAccessList<>( |
|
list.subList(fromIndex, toIndex)); |
|
} |
|
private static final long serialVersionUID = -2542308836966382001L; |
|
/** |
|
* Allows instances to be deserialized in pre-1.4 JREs (which do |
|
* not have UnmodifiableRandomAccessList). UnmodifiableList has |
|
* a readResolve method that inverts this transformation upon |
|
* deserialization. |
|
*/ |
|
private Object writeReplace() { |
|
return new UnmodifiableList<>(list); |
|
} |
|
} |
|
/** |
|
* Returns an unmodifiable view of the specified map. This method |
|
* allows modules to provide users with "read-only" access to internal |
|
* maps. Query operations on the returned map "read through" |
|
* to the specified map, and attempts to modify the returned |
|
* map, whether direct or via its collection views, result in an |
|
* <tt>UnsupportedOperationException</tt>.<p> |
|
* |
|
* The returned map will be serializable if the specified map |
|
* is serializable. |
|
* |
|
* @param <K> the class of the map keys |
|
* @param <V> the class of the map values |
|
* @param m the map for which an unmodifiable view is to be returned. |
|
* @return an unmodifiable view of the specified map. |
|
*/ |
|
public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) { |
|
return new UnmodifiableMap<>(m); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable { |
|
private static final long serialVersionUID = -1034234728574286014L; |
|
private final Map<? extends K, ? extends V> m; |
|
UnmodifiableMap(Map<? extends K, ? extends V> m) { |
|
if (m==null) |
|
throw new NullPointerException(); |
|
this.m = m; |
|
} |
|
public int size() {return m.size();} |
|
public boolean isEmpty() {return m.isEmpty();} |
|
public boolean containsKey(Object key) {return m.containsKey(key);} |
|
public boolean containsValue(Object val) {return m.containsValue(val);} |
|
public V get(Object key) {return m.get(key);} |
|
public V put(K key, V value) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public V remove(Object key) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public void putAll(Map<? extends K, ? extends V> m) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public void clear() { |
|
throw new UnsupportedOperationException(); |
|
} |
|
private transient Set<K> keySet; |
|
private transient Set<Map.Entry<K,V>> entrySet; |
|
private transient Collection<V> values; |
|
public Set<K> keySet() { |
|
if (keySet==null) |
|
keySet = unmodifiableSet(m.keySet()); |
|
return keySet; |
|
} |
|
public Set<Map.Entry<K,V>> entrySet() { |
|
if (entrySet==null) |
|
entrySet = new UnmodifiableEntrySet<>(m.entrySet()); |
|
return entrySet; |
|
} |
|
public Collection<V> values() { |
|
if (values==null) |
|
values = unmodifiableCollection(m.values()); |
|
return values; |
|
} |
|
public boolean equals(Object o) {return o == this || m.equals(o);} |
|
public int hashCode() {return m.hashCode();} |
|
public String toString() {return m.toString();} |
|
// Override default methods in Map |
|
@Override |
|
@SuppressWarnings("unchecked") |
|
public V getOrDefault(Object k, V defaultValue) { |
|
// Safe cast as we don't change the value |
|
return ((Map<K, V>)m).getOrDefault(k, defaultValue); |
|
} |
|
@Override |
|
public void forEach(BiConsumer<? super K, ? super V> action) { |
|
m.forEach(action); |
|
} |
|
@Override |
|
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V putIfAbsent(K key, V value) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public boolean remove(Object key, Object value) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public boolean replace(K key, V oldValue, V newValue) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V replace(K key, V value) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V computeIfPresent(K key, |
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V compute(K key, |
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V merge(K key, V value, |
|
BiFunction<? super V, ? super V, ? extends V> remappingFunction) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
/** |
|
* We need this class in addition to UnmodifiableSet as |
|
* Map.Entries themselves permit modification of the backing Map |
|
* via their setValue operation. This class is subtle: there are |
|
* many possible attacks that must be thwarted. |
|
* |
|
* @serial include |
|
*/ |
|
static class UnmodifiableEntrySet<K,V> |
|
extends UnmodifiableSet<Map.Entry<K,V>> { |
|
private static final long serialVersionUID = 7854390611657943733L; |
|
@SuppressWarnings({"unchecked", "rawtypes"}) |
|
UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) { |
|
// Need to cast to raw in order to work around a limitation in the type system |
|
super((Set)s); |
|
} |
|
static <K, V> Consumer<Map.Entry<K, V>> entryConsumer(Consumer<? super Entry<K, V>> action) { |
|
return e -> action.accept(new UnmodifiableEntry<>(e)); |
|
} |
|
public void forEach(Consumer<? super Entry<K, V>> action) { |
|
Objects.requireNonNull(action); |
|
c.forEach(entryConsumer(action)); |
|
} |
|
static final class UnmodifiableEntrySetSpliterator<K, V> |
|
implements Spliterator<Entry<K,V>> { |
|
final Spliterator<Map.Entry<K, V>> s; |
|
UnmodifiableEntrySetSpliterator(Spliterator<Entry<K, V>> s) { |
|
this.s = s; |
|
} |
|
@Override |
|
public boolean tryAdvance(Consumer<? super Entry<K, V>> action) { |
|
Objects.requireNonNull(action); |
|
return s.tryAdvance(entryConsumer(action)); |
|
} |
|
@Override |
|
public void forEachRemaining(Consumer<? super Entry<K, V>> action) { |
|
Objects.requireNonNull(action); |
|
s.forEachRemaining(entryConsumer(action)); |
|
} |
|
@Override |
|
public Spliterator<Entry<K, V>> trySplit() { |
|
Spliterator<Entry<K, V>> split = s.trySplit(); |
|
return split == null |
|
? null |
|
: new UnmodifiableEntrySetSpliterator<>(split); |
|
} |
|
@Override |
|
public long estimateSize() { |
|
return s.estimateSize(); |
|
} |
|
@Override |
|
public long getExactSizeIfKnown() { |
|
return s.getExactSizeIfKnown(); |
|
} |
|
@Override |
|
public int characteristics() { |
|
return s.characteristics(); |
|
} |
|
@Override |
|
public boolean hasCharacteristics(int characteristics) { |
|
return s.hasCharacteristics(characteristics); |
|
} |
|
@Override |
|
public Comparator<? super Entry<K, V>> getComparator() { |
|
return s.getComparator(); |
|
} |
|
} |
|
@SuppressWarnings("unchecked") |
|
public Spliterator<Entry<K,V>> spliterator() { |
|
return new UnmodifiableEntrySetSpliterator<>( |
|
(Spliterator<Map.Entry<K, V>>) c.spliterator()); |
|
} |
|
@Override |
|
public Stream<Entry<K,V>> stream() { |
|
return StreamSupport.stream(spliterator(), false); |
|
} |
|
@Override |
|
public Stream<Entry<K,V>> parallelStream() { |
|
return StreamSupport.stream(spliterator(), true); |
|
} |
|
public Iterator<Map.Entry<K,V>> iterator() { |
|
return new Iterator<Map.Entry<K,V>>() { |
|
private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator(); |
|
public boolean hasNext() { |
|
return i.hasNext(); |
|
} |
|
public Map.Entry<K,V> next() { |
|
return new UnmodifiableEntry<>(i.next()); |
|
} |
|
public void remove() { |
|
throw new UnsupportedOperationException(); |
|
} |
|
}; |
|
} |
|
@SuppressWarnings("unchecked") |
|
public Object[] toArray() { |
|
Object[] a = c.toArray(); |
|
for (int i=0; i<a.length; i++) |
|
a[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)a[i]); |
|
return a; |
|
} |
|
@SuppressWarnings("unchecked") |
|
public <T> T[] toArray(T[] a) { |
|
// We don't pass a to c.toArray, to avoid window of |
|
// vulnerability wherein an unscrupulous multithreaded client |
|
// could get his hands on raw (unwrapped) Entries from c. |
|
Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0)); |
|
for (int i=0; i<arr.length; i++) |
|
arr[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)arr[i]); |
|
if (arr.length > a.length) |
|
return (T[])arr; |
|
System.arraycopy(arr, 0, a, 0, arr.length); |
|
if (a.length > arr.length) |
|
a[arr.length] = null; |
|
return a; |
|
} |
|
/** |
|
* This method is overridden to protect the backing set against |
|
* an object with a nefarious equals function that senses |
|
* that the equality-candidate is Map.Entry and calls its |
|
* setValue method. |
|
*/ |
|
public boolean contains(Object o) { |
|
if (!(o instanceof Map.Entry)) |
|
return false; |
|
return c.contains( |
|
new UnmodifiableEntry<>((Map.Entry<?,?>) o)); |
|
} |
|
/** |
|
* The next two methods are overridden to protect against |
|
* an unscrupulous List whose contains(Object o) method senses |
|
* when o is a Map.Entry, and calls o.setValue. |
|
*/ |
|
public boolean containsAll(Collection<?> coll) { |
|
for (Object e : coll) { |
|
if (!contains(e)) // Invokes safe contains() above |
|
return false; |
|
} |
|
return true; |
|
} |
|
public boolean equals(Object o) { |
|
if (o == this) |
|
return true; |
|
if (!(o instanceof Set)) |
|
return false; |
|
Set<?> s = (Set<?>) o; |
|
if (s.size() != c.size()) |
|
return false; |
|
return containsAll(s); // Invokes safe containsAll() above |
|
} |
|
/** |
|
* This "wrapper class" serves two purposes: it prevents |
|
* the client from modifying the backing Map, by short-circuiting |
|
* the setValue method, and it protects the backing Map against |
|
* an ill-behaved Map.Entry that attempts to modify another |
|
* Map Entry when asked to perform an equality check. |
|
*/ |
|
private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> { |
|
private Map.Entry<? extends K, ? extends V> e; |
|
UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) |
|
{this.e = Objects.requireNonNull(e);} |
|
public K getKey() {return e.getKey();} |
|
public V getValue() {return e.getValue();} |
|
public V setValue(V value) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public int hashCode() {return e.hashCode();} |
|
public boolean equals(Object o) { |
|
if (this == o) |
|
return true; |
|
if (!(o instanceof Map.Entry)) |
|
return false; |
|
Map.Entry<?,?> t = (Map.Entry<?,?>)o; |
|
return eq(e.getKey(), t.getKey()) && |
|
eq(e.getValue(), t.getValue()); |
|
} |
|
public String toString() {return e.toString();} |
|
} |
|
} |
|
} |
|
/** |
|
* Returns an unmodifiable view of the specified sorted map. This method |
|
* allows modules to provide users with "read-only" access to internal |
|
* sorted maps. Query operations on the returned sorted map "read through" |
|
* to the specified sorted map. Attempts to modify the returned |
|
* sorted map, whether direct, via its collection views, or via its |
|
* <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in |
|
* an <tt>UnsupportedOperationException</tt>.<p> |
|
* |
|
* The returned sorted map will be serializable if the specified sorted map |
|
* is serializable. |
|
* |
|
* @param <K> the class of the map keys |
|
* @param <V> the class of the map values |
|
* @param m the sorted map for which an unmodifiable view is to be |
|
* returned. |
|
* @return an unmodifiable view of the specified sorted map. |
|
*/ |
|
public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) { |
|
return new UnmodifiableSortedMap<>(m); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class UnmodifiableSortedMap<K,V> |
|
extends UnmodifiableMap<K,V> |
|
implements SortedMap<K,V>, Serializable { |
|
private static final long serialVersionUID = -8806743815996713206L; |
|
private final SortedMap<K, ? extends V> sm; |
|
UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m; } |
|
public Comparator<? super K> comparator() { return sm.comparator(); } |
|
public SortedMap<K,V> subMap(K fromKey, K toKey) |
|
{ return new UnmodifiableSortedMap<>(sm.subMap(fromKey, toKey)); } |
|
public SortedMap<K,V> headMap(K toKey) |
|
{ return new UnmodifiableSortedMap<>(sm.headMap(toKey)); } |
|
public SortedMap<K,V> tailMap(K fromKey) |
|
{ return new UnmodifiableSortedMap<>(sm.tailMap(fromKey)); } |
|
public K firstKey() { return sm.firstKey(); } |
|
public K lastKey() { return sm.lastKey(); } |
|
} |
|
/** |
|
* Returns an unmodifiable view of the specified navigable map. This method |
|
* allows modules to provide users with "read-only" access to internal |
|
* navigable maps. Query operations on the returned navigable map "read |
|
* through" to the specified navigable map. Attempts to modify the returned |
|
* navigable map, whether direct, via its collection views, or via its |
|
* {@code subMap}, {@code headMap}, or {@code tailMap} views, result in |
|
* an {@code UnsupportedOperationException}.<p> |
|
* |
|
* The returned navigable map will be serializable if the specified |
|
* navigable map is serializable. |
|
* |
|
* @param <K> the class of the map keys |
|
* @param <V> the class of the map values |
|
* @param m the navigable map for which an unmodifiable view is to be |
|
* returned |
|
* @return an unmodifiable view of the specified navigable map |
|
* @since 1.8 |
|
*/ |
|
public static <K,V> NavigableMap<K,V> unmodifiableNavigableMap(NavigableMap<K, ? extends V> m) { |
|
return new UnmodifiableNavigableMap<>(m); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class UnmodifiableNavigableMap<K,V> |
|
extends UnmodifiableSortedMap<K,V> |
|
implements NavigableMap<K,V>, Serializable { |
|
private static final long serialVersionUID = -4858195264774772197L; |
|
/** |
|
* A class for the {@link EMPTY_NAVIGABLE_MAP} which needs readResolve |
|
* to preserve singleton property. |
|
* |
|
* @param <K> type of keys, if there were any, and of bounds |
|
* @param <V> type of values, if there were any |
|
*/ |
|
private static class EmptyNavigableMap<K,V> extends UnmodifiableNavigableMap<K,V> |
|
implements Serializable { |
|
private static final long serialVersionUID = -2239321462712562324L; |
|
EmptyNavigableMap() { super(new TreeMap<K,V>()); } |
|
@Override |
|
public NavigableSet<K> navigableKeySet() |
|
{ return emptyNavigableSet(); } |
|
private Object readResolve() { return EMPTY_NAVIGABLE_MAP; } |
|
} |
|
/** |
|
* Singleton for {@link emptyNavigableMap()} which is also immutable. |
|
*/ |
|
private static final EmptyNavigableMap<?,?> EMPTY_NAVIGABLE_MAP = |
|
new EmptyNavigableMap<>(); |
|
/** |
|
* The instance we wrap and protect. |
|
*/ |
|
private final NavigableMap<K, ? extends V> nm; |
|
UnmodifiableNavigableMap(NavigableMap<K, ? extends V> m) |
|
{super(m); nm = m;} |
|
public K lowerKey(K key) { return nm.lowerKey(key); } |
|
public K floorKey(K key) { return nm.floorKey(key); } |
|
public K ceilingKey(K key) { return nm.ceilingKey(key); } |
|
public K higherKey(K key) { return nm.higherKey(key); } |
|
@SuppressWarnings("unchecked") |
|
public Entry<K, V> lowerEntry(K key) { |
|
Entry<K,V> lower = (Entry<K, V>) nm.lowerEntry(key); |
|
return (null != lower) |
|
? new UnmodifiableEntrySet.UnmodifiableEntry<>(lower) |
|
: null; |
|
} |
|
@SuppressWarnings("unchecked") |
|
public Entry<K, V> floorEntry(K key) { |
|
Entry<K,V> floor = (Entry<K, V>) nm.floorEntry(key); |
|
return (null != floor) |
|
? new UnmodifiableEntrySet.UnmodifiableEntry<>(floor) |
|
: null; |
|
} |
|
@SuppressWarnings("unchecked") |
|
public Entry<K, V> ceilingEntry(K key) { |
|
Entry<K,V> ceiling = (Entry<K, V>) nm.ceilingEntry(key); |
|
return (null != ceiling) |
|
? new UnmodifiableEntrySet.UnmodifiableEntry<>(ceiling) |
|
: null; |
|
} |
|
@SuppressWarnings("unchecked") |
|
public Entry<K, V> higherEntry(K key) { |
|
Entry<K,V> higher = (Entry<K, V>) nm.higherEntry(key); |
|
return (null != higher) |
|
? new UnmodifiableEntrySet.UnmodifiableEntry<>(higher) |
|
: null; |
|
} |
|
@SuppressWarnings("unchecked") |
|
public Entry<K, V> firstEntry() { |
|
Entry<K,V> first = (Entry<K, V>) nm.firstEntry(); |
|
return (null != first) |
|
? new UnmodifiableEntrySet.UnmodifiableEntry<>(first) |
|
: null; |
|
} |
|
@SuppressWarnings("unchecked") |
|
public Entry<K, V> lastEntry() { |
|
Entry<K,V> last = (Entry<K, V>) nm.lastEntry(); |
|
return (null != last) |
|
? new UnmodifiableEntrySet.UnmodifiableEntry<>(last) |
|
: null; |
|
} |
|
public Entry<K, V> pollFirstEntry() |
|
{ throw new UnsupportedOperationException(); } |
|
public Entry<K, V> pollLastEntry() |
|
{ throw new UnsupportedOperationException(); } |
|
public NavigableMap<K, V> descendingMap() |
|
{ return unmodifiableNavigableMap(nm.descendingMap()); } |
|
public NavigableSet<K> navigableKeySet() |
|
{ return unmodifiableNavigableSet(nm.navigableKeySet()); } |
|
public NavigableSet<K> descendingKeySet() |
|
{ return unmodifiableNavigableSet(nm.descendingKeySet()); } |
|
public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { |
|
return unmodifiableNavigableMap( |
|
nm.subMap(fromKey, fromInclusive, toKey, toInclusive)); |
|
} |
|
public NavigableMap<K, V> headMap(K toKey, boolean inclusive) |
|
{ return unmodifiableNavigableMap(nm.headMap(toKey, inclusive)); } |
|
public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) |
|
{ return unmodifiableNavigableMap(nm.tailMap(fromKey, inclusive)); } |
|
} |
|
// Synch Wrappers |
|
/** |
|
* Returns a synchronized (thread-safe) collection backed by the specified |
|
* collection. In order to guarantee serial access, it is critical that |
|
* <strong>all</strong> access to the backing collection is accomplished |
|
* through the returned collection.<p> |
|
* |
|
* It is imperative that the user manually synchronize on the returned |
|
* collection when traversing it via {@link Iterator}, {@link Spliterator} |
|
* or {@link Stream}: |
|
* <pre> |
|
* Collection c = Collections.synchronizedCollection(myCollection); |
|
* ... |
|
* synchronized (c) { |
|
* Iterator i = c.iterator(); // Must be in the synchronized block |
|
* while (i.hasNext()) |
|
* foo(i.next()); |
|
* } |
|
* </pre> |
|
* Failure to follow this advice may result in non-deterministic behavior. |
|
* |
|
* <p>The returned collection does <i>not</i> pass the {@code hashCode} |
|
* and {@code equals} operations through to the backing collection, but |
|
* relies on {@code Object}'s equals and hashCode methods. This is |
|
* necessary to preserve the contracts of these operations in the case |
|
* that the backing collection is a set or a list.<p> |
|
* |
|
* The returned collection will be serializable if the specified collection |
|
* is serializable. |
|
* |
|
* @param <T> the class of the objects in the collection |
|
* @param c the collection to be "wrapped" in a synchronized collection. |
|
* @return a synchronized view of the specified collection. |
|
*/ |
|
public static <T> Collection<T> synchronizedCollection(Collection<T> c) { |
|
return new SynchronizedCollection<>(c); |
|
} |
|
static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) { |
|
return new SynchronizedCollection<>(c, mutex); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class SynchronizedCollection<E> implements Collection<E>, Serializable { |
|
private static final long serialVersionUID = 3053995032091335093L; |
|
final Collection<E> c; // Backing Collection |
|
final Object mutex; // Object on which to synchronize |
|
SynchronizedCollection(Collection<E> c) { |
|
this.c = Objects.requireNonNull(c); |
|
mutex = this; |
|
} |
|
SynchronizedCollection(Collection<E> c, Object mutex) { |
|
this.c = Objects.requireNonNull(c); |
|
this.mutex = Objects.requireNonNull(mutex); |
|
} |
|
public int size() { |
|
synchronized (mutex) {return c.size();} |
|
} |
|
public boolean isEmpty() { |
|
synchronized (mutex) {return c.isEmpty();} |
|
} |
|
public boolean contains(Object o) { |
|
synchronized (mutex) {return c.contains(o);} |
|
} |
|
public Object[] toArray() { |
|
synchronized (mutex) {return c.toArray();} |
|
} |
|
public <T> T[] toArray(T[] a) { |
|
synchronized (mutex) {return c.toArray(a);} |
|
} |
|
public Iterator<E> iterator() { |
|
return c.iterator(); // Must be manually synched by user! |
|
} |
|
public boolean add(E e) { |
|
synchronized (mutex) {return c.add(e);} |
|
} |
|
public boolean remove(Object o) { |
|
synchronized (mutex) {return c.remove(o);} |
|
} |
|
public boolean containsAll(Collection<?> coll) { |
|
synchronized (mutex) {return c.containsAll(coll);} |
|
} |
|
public boolean addAll(Collection<? extends E> coll) { |
|
synchronized (mutex) {return c.addAll(coll);} |
|
} |
|
public boolean removeAll(Collection<?> coll) { |
|
synchronized (mutex) {return c.removeAll(coll);} |
|
} |
|
public boolean retainAll(Collection<?> coll) { |
|
synchronized (mutex) {return c.retainAll(coll);} |
|
} |
|
public void clear() { |
|
synchronized (mutex) {c.clear();} |
|
} |
|
public String toString() { |
|
synchronized (mutex) {return c.toString();} |
|
} |
|
// Override default methods in Collection |
|
@Override |
|
public void forEach(Consumer<? super E> consumer) { |
|
synchronized (mutex) {c.forEach(consumer);} |
|
} |
|
@Override |
|
public boolean removeIf(Predicate<? super E> filter) { |
|
synchronized (mutex) {return c.removeIf(filter);} |
|
} |
|
@Override |
|
public Spliterator<E> spliterator() { |
|
return c.spliterator(); // Must be manually synched by user! |
|
} |
|
@Override |
|
public Stream<E> stream() { |
|
return c.stream(); // Must be manually synched by user! |
|
} |
|
@Override |
|
public Stream<E> parallelStream() { |
|
return c.parallelStream(); // Must be manually synched by user! |
|
} |
|
private void writeObject(ObjectOutputStream s) throws IOException { |
|
synchronized (mutex) {s.defaultWriteObject();} |
|
} |
|
} |
|
/** |
|
* Returns a synchronized (thread-safe) set backed by the specified |
|
* set. In order to guarantee serial access, it is critical that |
|
* <strong>all</strong> access to the backing set is accomplished |
|
* through the returned set.<p> |
|
* |
|
* It is imperative that the user manually synchronize on the returned |
|
* set when iterating over it: |
|
* <pre> |
|
* Set s = Collections.synchronizedSet(new HashSet()); |
|
* ... |
|
* synchronized (s) { |
|
* Iterator i = s.iterator(); // Must be in the synchronized block |
|
* while (i.hasNext()) |
|
* foo(i.next()); |
|
* } |
|
* </pre> |
|
* Failure to follow this advice may result in non-deterministic behavior. |
|
* |
|
* <p>The returned set will be serializable if the specified set is |
|
* serializable. |
|
* |
|
* @param <T> the class of the objects in the set |
|
* @param s the set to be "wrapped" in a synchronized set. |
|
* @return a synchronized view of the specified set. |
|
*/ |
|
public static <T> Set<T> synchronizedSet(Set<T> s) { |
|
return new SynchronizedSet<>(s); |
|
} |
|
static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) { |
|
return new SynchronizedSet<>(s, mutex); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class SynchronizedSet<E> |
|
extends SynchronizedCollection<E> |
|
implements Set<E> { |
|
private static final long serialVersionUID = 487447009682186044L; |
|
SynchronizedSet(Set<E> s) { |
|
super(s); |
|
} |
|
SynchronizedSet(Set<E> s, Object mutex) { |
|
super(s, mutex); |
|
} |
|
public boolean equals(Object o) { |
|
if (this == o) |
|
return true; |
|
synchronized (mutex) {return c.equals(o);} |
|
} |
|
public int hashCode() { |
|
synchronized (mutex) {return c.hashCode();} |
|
} |
|
} |
|
/** |
|
* Returns a synchronized (thread-safe) sorted set backed by the specified |
|
* sorted set. In order to guarantee serial access, it is critical that |
|
* <strong>all</strong> access to the backing sorted set is accomplished |
|
* through the returned sorted set (or its views).<p> |
|
* |
|
* It is imperative that the user manually synchronize on the returned |
|
* sorted set when iterating over it or any of its <tt>subSet</tt>, |
|
* <tt>headSet</tt>, or <tt>tailSet</tt> views. |
|
* <pre> |
|
* SortedSet s = Collections.synchronizedSortedSet(new TreeSet()); |
|
* ... |
|
* synchronized (s) { |
|
* Iterator i = s.iterator(); // Must be in the synchronized block |
|
* while (i.hasNext()) |
|
* foo(i.next()); |
|
* } |
|
* </pre> |
|
* or: |
|
* <pre> |
|
* SortedSet s = Collections.synchronizedSortedSet(new TreeSet()); |
|
* SortedSet s2 = s.headSet(foo); |
|
* ... |
|
* synchronized (s) { // Note: s, not s2!!! |
|
* Iterator i = s2.iterator(); // Must be in the synchronized block |
|
* while (i.hasNext()) |
|
* foo(i.next()); |
|
* } |
|
* </pre> |
|
* Failure to follow this advice may result in non-deterministic behavior. |
|
* |
|
* <p>The returned sorted set will be serializable if the specified |
|
* sorted set is serializable. |
|
* |
|
* @param <T> the class of the objects in the set |
|
* @param s the sorted set to be "wrapped" in a synchronized sorted set. |
|
* @return a synchronized view of the specified sorted set. |
|
*/ |
|
public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) { |
|
return new SynchronizedSortedSet<>(s); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class SynchronizedSortedSet<E> |
|
extends SynchronizedSet<E> |
|
implements SortedSet<E> |
|
{ |
|
private static final long serialVersionUID = 8695801310862127406L; |
|
private final SortedSet<E> ss; |
|
SynchronizedSortedSet(SortedSet<E> s) { |
|
super(s); |
|
ss = s; |
|
} |
|
SynchronizedSortedSet(SortedSet<E> s, Object mutex) { |
|
super(s, mutex); |
|
ss = s; |
|
} |
|
public Comparator<? super E> comparator() { |
|
synchronized (mutex) {return ss.comparator();} |
|
} |
|
public SortedSet<E> subSet(E fromElement, E toElement) { |
|
synchronized (mutex) { |
|
return new SynchronizedSortedSet<>( |
|
ss.subSet(fromElement, toElement), mutex); |
|
} |
|
} |
|
public SortedSet<E> headSet(E toElement) { |
|
synchronized (mutex) { |
|
return new SynchronizedSortedSet<>(ss.headSet(toElement), mutex); |
|
} |
|
} |
|
public SortedSet<E> tailSet(E fromElement) { |
|
synchronized (mutex) { |
|
return new SynchronizedSortedSet<>(ss.tailSet(fromElement),mutex); |
|
} |
|
} |
|
public E first() { |
|
synchronized (mutex) {return ss.first();} |
|
} |
|
public E last() { |
|
synchronized (mutex) {return ss.last();} |
|
} |
|
} |
|
/** |
|
* Returns a synchronized (thread-safe) navigable set backed by the |
|
* specified navigable set. In order to guarantee serial access, it is |
|
* critical that <strong>all</strong> access to the backing navigable set is |
|
* accomplished through the returned navigable set (or its views).<p> |
|
* |
|
* It is imperative that the user manually synchronize on the returned |
|
* navigable set when iterating over it or any of its {@code subSet}, |
|
* {@code headSet}, or {@code tailSet} views. |
|
* <pre> |
|
* NavigableSet s = Collections.synchronizedNavigableSet(new TreeSet()); |
|
* ... |
|
* synchronized (s) { |
|
* Iterator i = s.iterator(); // Must be in the synchronized block |
|
* while (i.hasNext()) |
|
* foo(i.next()); |
|
* } |
|
* </pre> |
|
* or: |
|
* <pre> |
|
* NavigableSet s = Collections.synchronizedNavigableSet(new TreeSet()); |
|
* NavigableSet s2 = s.headSet(foo, true); |
|
* ... |
|
* synchronized (s) { // Note: s, not s2!!! |
|
* Iterator i = s2.iterator(); // Must be in the synchronized block |
|
* while (i.hasNext()) |
|
* foo(i.next()); |
|
* } |
|
* </pre> |
|
* Failure to follow this advice may result in non-deterministic behavior. |
|
* |
|
* <p>The returned navigable set will be serializable if the specified |
|
* navigable set is serializable. |
|
* |
|
* @param <T> the class of the objects in the set |
|
* @param s the navigable set to be "wrapped" in a synchronized navigable |
|
* set |
|
* @return a synchronized view of the specified navigable set |
|
* @since 1.8 |
|
*/ |
|
public static <T> NavigableSet<T> synchronizedNavigableSet(NavigableSet<T> s) { |
|
return new SynchronizedNavigableSet<>(s); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class SynchronizedNavigableSet<E> |
|
extends SynchronizedSortedSet<E> |
|
implements NavigableSet<E> |
|
{ |
|
private static final long serialVersionUID = -5505529816273629798L; |
|
private final NavigableSet<E> ns; |
|
SynchronizedNavigableSet(NavigableSet<E> s) { |
|
super(s); |
|
ns = s; |
|
} |
|
SynchronizedNavigableSet(NavigableSet<E> s, Object mutex) { |
|
super(s, mutex); |
|
ns = s; |
|
} |
|
public E lower(E e) { synchronized (mutex) {return ns.lower(e);} } |
|
public E floor(E e) { synchronized (mutex) {return ns.floor(e);} } |
|
public E ceiling(E e) { synchronized (mutex) {return ns.ceiling(e);} } |
|
public E higher(E e) { synchronized (mutex) {return ns.higher(e);} } |
|
public E pollFirst() { synchronized (mutex) {return ns.pollFirst();} } |
|
public E pollLast() { synchronized (mutex) {return ns.pollLast();} } |
|
public NavigableSet<E> descendingSet() { |
|
synchronized (mutex) { |
|
return new SynchronizedNavigableSet<>(ns.descendingSet(), mutex); |
|
} |
|
} |
|
public Iterator<E> descendingIterator() |
|
{ synchronized (mutex) { return descendingSet().iterator(); } } |
|
public NavigableSet<E> subSet(E fromElement, E toElement) { |
|
synchronized (mutex) { |
|
return new SynchronizedNavigableSet<>(ns.subSet(fromElement, true, toElement, false), mutex); |
|
} |
|
} |
|
public NavigableSet<E> headSet(E toElement) { |
|
synchronized (mutex) { |
|
return new SynchronizedNavigableSet<>(ns.headSet(toElement, false), mutex); |
|
} |
|
} |
|
public NavigableSet<E> tailSet(E fromElement) { |
|
synchronized (mutex) { |
|
return new SynchronizedNavigableSet<>(ns.tailSet(fromElement, true), mutex); |
|
} |
|
} |
|
public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { |
|
synchronized (mutex) { |
|
return new SynchronizedNavigableSet<>(ns.subSet(fromElement, fromInclusive, toElement, toInclusive), mutex); |
|
} |
|
} |
|
public NavigableSet<E> headSet(E toElement, boolean inclusive) { |
|
synchronized (mutex) { |
|
return new SynchronizedNavigableSet<>(ns.headSet(toElement, inclusive), mutex); |
|
} |
|
} |
|
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { |
|
synchronized (mutex) { |
|
return new SynchronizedNavigableSet<>(ns.tailSet(fromElement, inclusive), mutex); |
|
} |
|
} |
|
} |
|
/** |
|
* Returns a synchronized (thread-safe) list backed by the specified |
|
* list. In order to guarantee serial access, it is critical that |
|
* <strong>all</strong> access to the backing list is accomplished |
|
* through the returned list.<p> |
|
* |
|
* It is imperative that the user manually synchronize on the returned |
|
* list when iterating over it: |
|
* <pre> |
|
* List list = Collections.synchronizedList(new ArrayList()); |
|
* ... |
|
* synchronized (list) { |
|
* Iterator i = list.iterator(); // Must be in synchronized block |
|
* while (i.hasNext()) |
|
* foo(i.next()); |
|
* } |
|
* </pre> |
|
* Failure to follow this advice may result in non-deterministic behavior. |
|
* |
|
* <p>The returned list will be serializable if the specified list is |
|
* serializable. |
|
* |
|
* @param <T> the class of the objects in the list |
|
* @param list the list to be "wrapped" in a synchronized list. |
|
* @return a synchronized view of the specified list. |
|
*/ |
|
public static <T> List<T> synchronizedList(List<T> list) { |
|
return (list instanceof RandomAccess ? |
|
new SynchronizedRandomAccessList<>(list) : |
|
new SynchronizedList<>(list)); |
|
} |
|
static <T> List<T> synchronizedList(List<T> list, Object mutex) { |
|
return (list instanceof RandomAccess ? |
|
new SynchronizedRandomAccessList<>(list, mutex) : |
|
new SynchronizedList<>(list, mutex)); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class SynchronizedList<E> |
|
extends SynchronizedCollection<E> |
|
implements List<E> { |
|
private static final long serialVersionUID = -7754090372962971524L; |
|
final List<E> list; |
|
SynchronizedList(List<E> list) { |
|
super(list); |
|
this.list = list; |
|
} |
|
SynchronizedList(List<E> list, Object mutex) { |
|
super(list, mutex); |
|
this.list = list; |
|
} |
|
public boolean equals(Object o) { |
|
if (this == o) |
|
return true; |
|
synchronized (mutex) {return list.equals(o);} |
|
} |
|
public int hashCode() { |
|
synchronized (mutex) {return list.hashCode();} |
|
} |
|
public E get(int index) { |
|
synchronized (mutex) {return list.get(index);} |
|
} |
|
public E set(int index, E element) { |
|
synchronized (mutex) {return list.set(index, element);} |
|
} |
|
public void add(int index, E element) { |
|
synchronized (mutex) {list.add(index, element);} |
|
} |
|
public E remove(int index) { |
|
synchronized (mutex) {return list.remove(index);} |
|
} |
|
public int indexOf(Object o) { |
|
synchronized (mutex) {return list.indexOf(o);} |
|
} |
|
public int lastIndexOf(Object o) { |
|
synchronized (mutex) {return list.lastIndexOf(o);} |
|
} |
|
public boolean addAll(int index, Collection<? extends E> c) { |
|
synchronized (mutex) {return list.addAll(index, c);} |
|
} |
|
public ListIterator<E> listIterator() { |
|
return list.listIterator(); // Must be manually synched by user |
|
} |
|
public ListIterator<E> listIterator(int index) { |
|
return list.listIterator(index); // Must be manually synched by user |
|
} |
|
public List<E> subList(int fromIndex, int toIndex) { |
|
synchronized (mutex) { |
|
return new SynchronizedList<>(list.subList(fromIndex, toIndex), |
|
mutex); |
|
} |
|
} |
|
@Override |
|
public void replaceAll(UnaryOperator<E> operator) { |
|
synchronized (mutex) {list.replaceAll(operator);} |
|
} |
|
@Override |
|
public void sort(Comparator<? super E> c) { |
|
synchronized (mutex) {list.sort(c);} |
|
} |
|
/** |
|
* SynchronizedRandomAccessList instances are serialized as |
|
* SynchronizedList instances to allow them to be deserialized |
|
* in pre-1.4 JREs (which do not have SynchronizedRandomAccessList). |
|
* This method inverts the transformation. As a beneficial |
|
* side-effect, it also grafts the RandomAccess marker onto |
|
* SynchronizedList instances that were serialized in pre-1.4 JREs. |
|
* |
|
* Note: Unfortunately, SynchronizedRandomAccessList instances |
|
* serialized in 1.4.1 and deserialized in 1.4 will become |
|
* SynchronizedList instances, as this method was missing in 1.4. |
|
*/ |
|
private Object readResolve() { |
|
return (list instanceof RandomAccess |
|
? new SynchronizedRandomAccessList<>(list) |
|
: this); |
|
} |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class SynchronizedRandomAccessList<E> |
|
extends SynchronizedList<E> |
|
implements RandomAccess { |
|
SynchronizedRandomAccessList(List<E> list) { |
|
super(list); |
|
} |
|
SynchronizedRandomAccessList(List<E> list, Object mutex) { |
|
super(list, mutex); |
|
} |
|
public List<E> subList(int fromIndex, int toIndex) { |
|
synchronized (mutex) { |
|
return new SynchronizedRandomAccessList<>( |
|
list.subList(fromIndex, toIndex), mutex); |
|
} |
|
} |
|
private static final long serialVersionUID = 1530674583602358482L; |
|
/** |
|
* Allows instances to be deserialized in pre-1.4 JREs (which do |
|
* not have SynchronizedRandomAccessList). SynchronizedList has |
|
* a readResolve method that inverts this transformation upon |
|
* deserialization. |
|
*/ |
|
private Object writeReplace() { |
|
return new SynchronizedList<>(list); |
|
} |
|
} |
|
/** |
|
* Returns a synchronized (thread-safe) map backed by the specified |
|
* map. In order to guarantee serial access, it is critical that |
|
* <strong>all</strong> access to the backing map is accomplished |
|
* through the returned map.<p> |
|
* |
|
* It is imperative that the user manually synchronize on the returned |
|
* map when iterating over any of its collection views: |
|
* <pre> |
|
* Map m = Collections.synchronizedMap(new HashMap()); |
|
* ... |
|
* Set s = m.keySet(); // Needn't be in synchronized block |
|
* ... |
|
* synchronized (m) { // Synchronizing on m, not s! |
|
* Iterator i = s.iterator(); // Must be in synchronized block |
|
* while (i.hasNext()) |
|
* foo(i.next()); |
|
* } |
|
* </pre> |
|
* Failure to follow this advice may result in non-deterministic behavior. |
|
* |
|
* <p>The returned map will be serializable if the specified map is |
|
* serializable. |
|
* |
|
* @param <K> the class of the map keys |
|
* @param <V> the class of the map values |
|
* @param m the map to be "wrapped" in a synchronized map. |
|
* @return a synchronized view of the specified map. |
|
*/ |
|
public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) { |
|
return new SynchronizedMap<>(m); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
private static class SynchronizedMap<K,V> |
|
implements Map<K,V>, Serializable { |
|
private static final long serialVersionUID = 1978198479659022715L; |
|
private final Map<K,V> m; // Backing Map |
|
final Object mutex; // Object on which to synchronize |
|
SynchronizedMap(Map<K,V> m) { |
|
this.m = Objects.requireNonNull(m); |
|
mutex = this; |
|
} |
|
SynchronizedMap(Map<K,V> m, Object mutex) { |
|
this.m = m; |
|
this.mutex = mutex; |
|
} |
|
public int size() { |
|
synchronized (mutex) {return m.size();} |
|
} |
|
public boolean isEmpty() { |
|
synchronized (mutex) {return m.isEmpty();} |
|
} |
|
public boolean containsKey(Object key) { |
|
synchronized (mutex) {return m.containsKey(key);} |
|
} |
|
public boolean containsValue(Object value) { |
|
synchronized (mutex) {return m.containsValue(value);} |
|
} |
|
public V get(Object key) { |
|
synchronized (mutex) {return m.get(key);} |
|
} |
|
public V put(K key, V value) { |
|
synchronized (mutex) {return m.put(key, value);} |
|
} |
|
public V remove(Object key) { |
|
synchronized (mutex) {return m.remove(key);} |
|
} |
|
public void putAll(Map<? extends K, ? extends V> map) { |
|
synchronized (mutex) {m.putAll(map);} |
|
} |
|
public void clear() { |
|
synchronized (mutex) {m.clear();} |
|
} |
|
private transient Set<K> keySet; |
|
private transient Set<Map.Entry<K,V>> entrySet; |
|
private transient Collection<V> values; |
|
public Set<K> keySet() { |
|
synchronized (mutex) { |
|
if (keySet==null) |
|
keySet = new SynchronizedSet<>(m.keySet(), mutex); |
|
return keySet; |
|
} |
|
} |
|
public Set<Map.Entry<K,V>> entrySet() { |
|
synchronized (mutex) { |
|
if (entrySet==null) |
|
entrySet = new SynchronizedSet<>(m.entrySet(), mutex); |
|
return entrySet; |
|
} |
|
} |
|
public Collection<V> values() { |
|
synchronized (mutex) { |
|
if (values==null) |
|
values = new SynchronizedCollection<>(m.values(), mutex); |
|
return values; |
|
} |
|
} |
|
public boolean equals(Object o) { |
|
if (this == o) |
|
return true; |
|
synchronized (mutex) {return m.equals(o);} |
|
} |
|
public int hashCode() { |
|
synchronized (mutex) {return m.hashCode();} |
|
} |
|
public String toString() { |
|
synchronized (mutex) {return m.toString();} |
|
} |
|
// Override default methods in Map |
|
@Override |
|
public V getOrDefault(Object k, V defaultValue) { |
|
synchronized (mutex) {return m.getOrDefault(k, defaultValue);} |
|
} |
|
@Override |
|
public void forEach(BiConsumer<? super K, ? super V> action) { |
|
synchronized (mutex) {m.forEach(action);} |
|
} |
|
@Override |
|
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { |
|
synchronized (mutex) {m.replaceAll(function);} |
|
} |
|
@Override |
|
public V putIfAbsent(K key, V value) { |
|
synchronized (mutex) {return m.putIfAbsent(key, value);} |
|
} |
|
@Override |
|
public boolean remove(Object key, Object value) { |
|
synchronized (mutex) {return m.remove(key, value);} |
|
} |
|
@Override |
|
public boolean replace(K key, V oldValue, V newValue) { |
|
synchronized (mutex) {return m.replace(key, oldValue, newValue);} |
|
} |
|
@Override |
|
public V replace(K key, V value) { |
|
synchronized (mutex) {return m.replace(key, value);} |
|
} |
|
@Override |
|
public V computeIfAbsent(K key, |
|
Function<? super K, ? extends V> mappingFunction) { |
|
synchronized (mutex) {return m.computeIfAbsent(key, mappingFunction);} |
|
} |
|
@Override |
|
public V computeIfPresent(K key, |
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
|
synchronized (mutex) {return m.computeIfPresent(key, remappingFunction);} |
|
} |
|
@Override |
|
public V compute(K key, |
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
|
synchronized (mutex) {return m.compute(key, remappingFunction);} |
|
} |
|
@Override |
|
public V merge(K key, V value, |
|
BiFunction<? super V, ? super V, ? extends V> remappingFunction) { |
|
synchronized (mutex) {return m.merge(key, value, remappingFunction);} |
|
} |
|
private void writeObject(ObjectOutputStream s) throws IOException { |
|
synchronized (mutex) {s.defaultWriteObject();} |
|
} |
|
} |
|
/** |
|
* Returns a synchronized (thread-safe) sorted map backed by the specified |
|
* sorted map. In order to guarantee serial access, it is critical that |
|
* <strong>all</strong> access to the backing sorted map is accomplished |
|
* through the returned sorted map (or its views).<p> |
|
* |
|
* It is imperative that the user manually synchronize on the returned |
|
* sorted map when iterating over any of its collection views, or the |
|
* collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or |
|
* <tt>tailMap</tt> views. |
|
* <pre> |
|
* SortedMap m = Collections.synchronizedSortedMap(new TreeMap()); |
|
* ... |
|
* Set s = m.keySet(); // Needn't be in synchronized block |
|
* ... |
|
* synchronized (m) { // Synchronizing on m, not s! |
|
* Iterator i = s.iterator(); // Must be in synchronized block |
|
* while (i.hasNext()) |
|
* foo(i.next()); |
|
* } |
|
* </pre> |
|
* or: |
|
* <pre> |
|
* SortedMap m = Collections.synchronizedSortedMap(new TreeMap()); |
|
* SortedMap m2 = m.subMap(foo, bar); |
|
* ... |
|
* Set s2 = m2.keySet(); // Needn't be in synchronized block |
|
* ... |
|
* synchronized (m) { // Synchronizing on m, not m2 or s2! |
|
* Iterator i = s.iterator(); // Must be in synchronized block |
|
* while (i.hasNext()) |
|
* foo(i.next()); |
|
* } |
|
* </pre> |
|
* Failure to follow this advice may result in non-deterministic behavior. |
|
* |
|
* <p>The returned sorted map will be serializable if the specified |
|
* sorted map is serializable. |
|
* |
|
* @param <K> the class of the map keys |
|
* @param <V> the class of the map values |
|
* @param m the sorted map to be "wrapped" in a synchronized sorted map. |
|
* @return a synchronized view of the specified sorted map. |
|
*/ |
|
public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) { |
|
return new SynchronizedSortedMap<>(m); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class SynchronizedSortedMap<K,V> |
|
extends SynchronizedMap<K,V> |
|
implements SortedMap<K,V> |
|
{ |
|
private static final long serialVersionUID = -8798146769416483793L; |
|
private final SortedMap<K,V> sm; |
|
SynchronizedSortedMap(SortedMap<K,V> m) { |
|
super(m); |
|
sm = m; |
|
} |
|
SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) { |
|
super(m, mutex); |
|
sm = m; |
|
} |
|
public Comparator<? super K> comparator() { |
|
synchronized (mutex) {return sm.comparator();} |
|
} |
|
public SortedMap<K,V> subMap(K fromKey, K toKey) { |
|
synchronized (mutex) { |
|
return new SynchronizedSortedMap<>( |
|
sm.subMap(fromKey, toKey), mutex); |
|
} |
|
} |
|
public SortedMap<K,V> headMap(K toKey) { |
|
synchronized (mutex) { |
|
return new SynchronizedSortedMap<>(sm.headMap(toKey), mutex); |
|
} |
|
} |
|
public SortedMap<K,V> tailMap(K fromKey) { |
|
synchronized (mutex) { |
|
return new SynchronizedSortedMap<>(sm.tailMap(fromKey),mutex); |
|
} |
|
} |
|
public K firstKey() { |
|
synchronized (mutex) {return sm.firstKey();} |
|
} |
|
public K lastKey() { |
|
synchronized (mutex) {return sm.lastKey();} |
|
} |
|
} |
|
/** |
|
* Returns a synchronized (thread-safe) navigable map backed by the |
|
* specified navigable map. In order to guarantee serial access, it is |
|
* critical that <strong>all</strong> access to the backing navigable map is |
|
* accomplished through the returned navigable map (or its views).<p> |
|
* |
|
* It is imperative that the user manually synchronize on the returned |
|
* navigable map when iterating over any of its collection views, or the |
|
* collections views of any of its {@code subMap}, {@code headMap} or |
|
* {@code tailMap} views. |
|
* <pre> |
|
* NavigableMap m = Collections.synchronizedNavigableMap(new TreeMap()); |
|
* ... |
|
* Set s = m.keySet(); // Needn't be in synchronized block |
|
* ... |
|
* synchronized (m) { // Synchronizing on m, not s! |
|
* Iterator i = s.iterator(); // Must be in synchronized block |
|
* while (i.hasNext()) |
|
* foo(i.next()); |
|
* } |
|
* </pre> |
|
* or: |
|
* <pre> |
|
* NavigableMap m = Collections.synchronizedNavigableMap(new TreeMap()); |
|
* NavigableMap m2 = m.subMap(foo, true, bar, false); |
|
* ... |
|
* Set s2 = m2.keySet(); // Needn't be in synchronized block |
|
* ... |
|
* synchronized (m) { // Synchronizing on m, not m2 or s2! |
|
* Iterator i = s.iterator(); // Must be in synchronized block |
|
* while (i.hasNext()) |
|
* foo(i.next()); |
|
* } |
|
* </pre> |
|
* Failure to follow this advice may result in non-deterministic behavior. |
|
* |
|
* <p>The returned navigable map will be serializable if the specified |
|
* navigable map is serializable. |
|
* |
|
* @param <K> the class of the map keys |
|
* @param <V> the class of the map values |
|
* @param m the navigable map to be "wrapped" in a synchronized navigable |
|
* map |
|
* @return a synchronized view of the specified navigable map. |
|
* @since 1.8 |
|
*/ |
|
public static <K,V> NavigableMap<K,V> synchronizedNavigableMap(NavigableMap<K,V> m) { |
|
return new SynchronizedNavigableMap<>(m); |
|
} |
|
/** |
|
* A synchronized NavigableMap. |
|
* |
|
* @serial include |
|
*/ |
|
static class SynchronizedNavigableMap<K,V> |
|
extends SynchronizedSortedMap<K,V> |
|
implements NavigableMap<K,V> |
|
{ |
|
private static final long serialVersionUID = 699392247599746807L; |
|
private final NavigableMap<K,V> nm; |
|
SynchronizedNavigableMap(NavigableMap<K,V> m) { |
|
super(m); |
|
nm = m; |
|
} |
|
SynchronizedNavigableMap(NavigableMap<K,V> m, Object mutex) { |
|
super(m, mutex); |
|
nm = m; |
|
} |
|
public Entry<K, V> lowerEntry(K key) |
|
{ synchronized (mutex) { return nm.lowerEntry(key); } } |
|
public K lowerKey(K key) |
|
{ synchronized (mutex) { return nm.lowerKey(key); } } |
|
public Entry<K, V> floorEntry(K key) |
|
{ synchronized (mutex) { return nm.floorEntry(key); } } |
|
public K floorKey(K key) |
|
{ synchronized (mutex) { return nm.floorKey(key); } } |
|
public Entry<K, V> ceilingEntry(K key) |
|
{ synchronized (mutex) { return nm.ceilingEntry(key); } } |
|
public K ceilingKey(K key) |
|
{ synchronized (mutex) { return nm.ceilingKey(key); } } |
|
public Entry<K, V> higherEntry(K key) |
|
{ synchronized (mutex) { return nm.higherEntry(key); } } |
|
public K higherKey(K key) |
|
{ synchronized (mutex) { return nm.higherKey(key); } } |
|
public Entry<K, V> firstEntry() |
|
{ synchronized (mutex) { return nm.firstEntry(); } } |
|
public Entry<K, V> lastEntry() |
|
{ synchronized (mutex) { return nm.lastEntry(); } } |
|
public Entry<K, V> pollFirstEntry() |
|
{ synchronized (mutex) { return nm.pollFirstEntry(); } } |
|
public Entry<K, V> pollLastEntry() |
|
{ synchronized (mutex) { return nm.pollLastEntry(); } } |
|
public NavigableMap<K, V> descendingMap() { |
|
synchronized (mutex) { |
|
return |
|
new SynchronizedNavigableMap<>(nm.descendingMap(), mutex); |
|
} |
|
} |
|
public NavigableSet<K> keySet() { |
|
return navigableKeySet(); |
|
} |
|
public NavigableSet<K> navigableKeySet() { |
|
synchronized (mutex) { |
|
return new SynchronizedNavigableSet<>(nm.navigableKeySet(), mutex); |
|
} |
|
} |
|
public NavigableSet<K> descendingKeySet() { |
|
synchronized (mutex) { |
|
return new SynchronizedNavigableSet<>(nm.descendingKeySet(), mutex); |
|
} |
|
} |
|
public SortedMap<K,V> subMap(K fromKey, K toKey) { |
|
synchronized (mutex) { |
|
return new SynchronizedNavigableMap<>( |
|
nm.subMap(fromKey, true, toKey, false), mutex); |
|
} |
|
} |
|
public SortedMap<K,V> headMap(K toKey) { |
|
synchronized (mutex) { |
|
return new SynchronizedNavigableMap<>(nm.headMap(toKey, false), mutex); |
|
} |
|
} |
|
public SortedMap<K,V> tailMap(K fromKey) { |
|
synchronized (mutex) { |
|
return new SynchronizedNavigableMap<>(nm.tailMap(fromKey, true),mutex); |
|
} |
|
} |
|
public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { |
|
synchronized (mutex) { |
|
return new SynchronizedNavigableMap<>( |
|
nm.subMap(fromKey, fromInclusive, toKey, toInclusive), mutex); |
|
} |
|
} |
|
public NavigableMap<K, V> headMap(K toKey, boolean inclusive) { |
|
synchronized (mutex) { |
|
return new SynchronizedNavigableMap<>( |
|
nm.headMap(toKey, inclusive), mutex); |
|
} |
|
} |
|
public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) { |
|
synchronized (mutex) { |
|
return new SynchronizedNavigableMap<>( |
|
nm.tailMap(fromKey, inclusive), mutex); |
|
} |
|
} |
|
} |
|
// Dynamically typesafe collection wrappers |
|
/** |
|
* Returns a dynamically typesafe view of the specified collection. |
|
* Any attempt to insert an element of the wrong type will result in an |
|
* immediate {@link ClassCastException}. Assuming a collection |
|
* contains no incorrectly typed elements prior to the time a |
|
* dynamically typesafe view is generated, and that all subsequent |
|
* access to the collection takes place through the view, it is |
|
* <i>guaranteed</i> that the collection cannot contain an incorrectly |
|
* typed element. |
|
* |
|
* <p>The generics mechanism in the language provides compile-time |
|
* (static) type checking, but it is possible to defeat this mechanism |
|
* with unchecked casts. Usually this is not a problem, as the compiler |
|
* issues warnings on all such unchecked operations. There are, however, |
|
* times when static type checking alone is not sufficient. For example, |
|
* suppose a collection is passed to a third-party library and it is |
|
* imperative that the library code not corrupt the collection by |
|
* inserting an element of the wrong type. |
|
* |
|
* <p>Another use of dynamically typesafe views is debugging. Suppose a |
|
* program fails with a {@code ClassCastException}, indicating that an |
|
* incorrectly typed element was put into a parameterized collection. |
|
* Unfortunately, the exception can occur at any time after the erroneous |
|
* element is inserted, so it typically provides little or no information |
|
* as to the real source of the problem. If the problem is reproducible, |
|
* one can quickly determine its source by temporarily modifying the |
|
* program to wrap the collection with a dynamically typesafe view. |
|
* For example, this declaration: |
|
* <pre> {@code |
|
* Collection<String> c = new HashSet<>(); |
|
* }</pre> |
|
* may be replaced temporarily by this one: |
|
* <pre> {@code |
|
* Collection<String> c = Collections.checkedCollection( |
|
* new HashSet<>(), String.class); |
|
* }</pre> |
|
* Running the program again will cause it to fail at the point where |
|
* an incorrectly typed element is inserted into the collection, clearly |
|
* identifying the source of the problem. Once the problem is fixed, the |
|
* modified declaration may be reverted back to the original. |
|
* |
|
* <p>The returned collection does <i>not</i> pass the hashCode and equals |
|
* operations through to the backing collection, but relies on |
|
* {@code Object}'s {@code equals} and {@code hashCode} methods. This |
|
* is necessary to preserve the contracts of these operations in the case |
|
* that the backing collection is a set or a list. |
|
* |
|
* <p>The returned collection will be serializable if the specified |
|
* collection is serializable. |
|
* |
|
* <p>Since {@code null} is considered to be a value of any reference |
|
* type, the returned collection permits insertion of null elements |
|
* whenever the backing collection does. |
|
* |
|
* @param <E> the class of the objects in the collection |
|
* @param c the collection for which a dynamically typesafe view is to be |
|
* returned |
|
* @param type the type of element that {@code c} is permitted to hold |
|
* @return a dynamically typesafe view of the specified collection |
|
* @since 1.5 |
|
*/ |
|
public static <E> Collection<E> checkedCollection(Collection<E> c, |
|
Class<E> type) { |
|
return new CheckedCollection<>(c, type); |
|
} |
|
@SuppressWarnings("unchecked") |
|
static <T> T[] zeroLengthArray(Class<T> type) { |
|
return (T[]) Array.newInstance(type, 0); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class CheckedCollection<E> implements Collection<E>, Serializable { |
|
private static final long serialVersionUID = 1578914078182001775L; |
|
final Collection<E> c; |
|
final Class<E> type; |
|
@SuppressWarnings("unchecked") |
|
E typeCheck(Object o) { |
|
if (o != null && !type.isInstance(o)) |
|
throw new ClassCastException(badElementMsg(o)); |
|
return (E) o; |
|
} |
|
private String badElementMsg(Object o) { |
|
return "Attempt to insert " + o.getClass() + |
|
" element into collection with element type " + type; |
|
} |
|
CheckedCollection(Collection<E> c, Class<E> type) { |
|
this.c = Objects.requireNonNull(c, "c"); |
|
this.type = Objects.requireNonNull(type, "type"); |
|
} |
|
public int size() { return c.size(); } |
|
public boolean isEmpty() { return c.isEmpty(); } |
|
public boolean contains(Object o) { return c.contains(o); } |
|
public Object[] toArray() { return c.toArray(); } |
|
public <T> T[] toArray(T[] a) { return c.toArray(a); } |
|
public String toString() { return c.toString(); } |
|
public boolean remove(Object o) { return c.remove(o); } |
|
public void clear() { c.clear(); } |
|
public boolean containsAll(Collection<?> coll) { |
|
return c.containsAll(coll); |
|
} |
|
public boolean removeAll(Collection<?> coll) { |
|
return c.removeAll(coll); |
|
} |
|
public boolean retainAll(Collection<?> coll) { |
|
return c.retainAll(coll); |
|
} |
|
public Iterator<E> iterator() { |
|
// JDK-6363904 - unwrapped iterator could be typecast to |
|
// ListIterator with unsafe set() |
|
final Iterator<E> it = c.iterator(); |
|
return new Iterator<E>() { |
|
public boolean hasNext() { return it.hasNext(); } |
|
public E next() { return it.next(); } |
|
public void remove() { it.remove(); }}; |
|
} |
|
public boolean add(E e) { return c.add(typeCheck(e)); } |
|
private E[] zeroLengthElementArray; // Lazily initialized |
|
private E[] zeroLengthElementArray() { |
|
return zeroLengthElementArray != null ? zeroLengthElementArray : |
|
(zeroLengthElementArray = zeroLengthArray(type)); |
|
} |
|
@SuppressWarnings("unchecked") |
|
Collection<E> checkedCopyOf(Collection<? extends E> coll) { |
|
Object[] a; |
|
try { |
|
E[] z = zeroLengthElementArray(); |
|
a = coll.toArray(z); |
|
// Defend against coll violating the toArray contract |
|
if (a.getClass() != z.getClass()) |
|
a = Arrays.copyOf(a, a.length, z.getClass()); |
|
} catch (ArrayStoreException ignore) { |
|
// To get better and consistent diagnostics, |
|
// we call typeCheck explicitly on each element. |
|
// We call clone() to defend against coll retaining a |
|
// reference to the returned array and storing a bad |
|
// element into it after it has been type checked. |
|
a = coll.toArray().clone(); |
|
for (Object o : a) |
|
typeCheck(o); |
|
} |
|
// A slight abuse of the type system, but safe here. |
|
return (Collection<E>) Arrays.asList(a); |
|
} |
|
public boolean addAll(Collection<? extends E> coll) { |
|
// Doing things this way insulates us from concurrent changes |
|
// in the contents of coll and provides all-or-nothing |
|
// semantics (which we wouldn't get if we type-checked each |
|
// element as we added it) |
|
return c.addAll(checkedCopyOf(coll)); |
|
} |
|
// Override default methods in Collection |
|
@Override |
|
public void forEach(Consumer<? super E> action) {c.forEach(action);} |
|
@Override |
|
public boolean removeIf(Predicate<? super E> filter) { |
|
return c.removeIf(filter); |
|
} |
|
@Override |
|
public Spliterator<E> spliterator() {return c.spliterator();} |
|
@Override |
|
public Stream<E> stream() {return c.stream();} |
|
@Override |
|
public Stream<E> parallelStream() {return c.parallelStream();} |
|
} |
|
/** |
|
* Returns a dynamically typesafe view of the specified queue. |
|
* Any attempt to insert an element of the wrong type will result in |
|
* an immediate {@link ClassCastException}. Assuming a queue contains |
|
* no incorrectly typed elements prior to the time a dynamically typesafe |
|
* view is generated, and that all subsequent access to the queue |
|
* takes place through the view, it is <i>guaranteed</i> that the |
|
* queue cannot contain an incorrectly typed element. |
|
* |
|
* <p>A discussion of the use of dynamically typesafe views may be |
|
* found in the documentation for the {@link #checkedCollection |
|
* checkedCollection} method. |
|
* |
|
* <p>The returned queue will be serializable if the specified queue |
|
* is serializable. |
|
* |
|
* <p>Since {@code null} is considered to be a value of any reference |
|
* type, the returned queue permits insertion of {@code null} elements |
|
* whenever the backing queue does. |
|
* |
|
* @param <E> the class of the objects in the queue |
|
* @param queue the queue for which a dynamically typesafe view is to be |
|
* returned |
|
* @param type the type of element that {@code queue} is permitted to hold |
|
* @return a dynamically typesafe view of the specified queue |
|
* @since 1.8 |
|
*/ |
|
public static <E> Queue<E> checkedQueue(Queue<E> queue, Class<E> type) { |
|
return new CheckedQueue<>(queue, type); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class CheckedQueue<E> |
|
extends CheckedCollection<E> |
|
implements Queue<E>, Serializable |
|
{ |
|
private static final long serialVersionUID = 1433151992604707767L; |
|
final Queue<E> queue; |
|
CheckedQueue(Queue<E> queue, Class<E> elementType) { |
|
super(queue, elementType); |
|
this.queue = queue; |
|
} |
|
public E element() {return queue.element();} |
|
public boolean equals(Object o) {return o == this || c.equals(o);} |
|
public int hashCode() {return c.hashCode();} |
|
public E peek() {return queue.peek();} |
|
public E poll() {return queue.poll();} |
|
public E remove() {return queue.remove();} |
|
public boolean offer(E e) {return queue.offer(typeCheck(e));} |
|
} |
|
/** |
|
* Returns a dynamically typesafe view of the specified set. |
|
* Any attempt to insert an element of the wrong type will result in |
|
* an immediate {@link ClassCastException}. Assuming a set contains |
|
* no incorrectly typed elements prior to the time a dynamically typesafe |
|
* view is generated, and that all subsequent access to the set |
|
* takes place through the view, it is <i>guaranteed</i> that the |
|
* set cannot contain an incorrectly typed element. |
|
* |
|
* <p>A discussion of the use of dynamically typesafe views may be |
|
* found in the documentation for the {@link #checkedCollection |
|
* checkedCollection} method. |
|
* |
|
* <p>The returned set will be serializable if the specified set is |
|
* serializable. |
|
* |
|
* <p>Since {@code null} is considered to be a value of any reference |
|
* type, the returned set permits insertion of null elements whenever |
|
* the backing set does. |
|
* |
|
* @param <E> the class of the objects in the set |
|
* @param s the set for which a dynamically typesafe view is to be |
|
* returned |
|
* @param type the type of element that {@code s} is permitted to hold |
|
* @return a dynamically typesafe view of the specified set |
|
* @since 1.5 |
|
*/ |
|
public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) { |
|
return new CheckedSet<>(s, type); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class CheckedSet<E> extends CheckedCollection<E> |
|
implements Set<E>, Serializable |
|
{ |
|
private static final long serialVersionUID = 4694047833775013803L; |
|
CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); } |
|
public boolean equals(Object o) { return o == this || c.equals(o); } |
|
public int hashCode() { return c.hashCode(); } |
|
} |
|
/** |
|
* Returns a dynamically typesafe view of the specified sorted set. |
|
* Any attempt to insert an element of the wrong type will result in an |
|
* immediate {@link ClassCastException}. Assuming a sorted set |
|
* contains no incorrectly typed elements prior to the time a |
|
* dynamically typesafe view is generated, and that all subsequent |
|
* access to the sorted set takes place through the view, it is |
|
* <i>guaranteed</i> that the sorted set cannot contain an incorrectly |
|
* typed element. |
|
* |
|
* <p>A discussion of the use of dynamically typesafe views may be |
|
* found in the documentation for the {@link #checkedCollection |
|
* checkedCollection} method. |
|
* |
|
* <p>The returned sorted set will be serializable if the specified sorted |
|
* set is serializable. |
|
* |
|
* <p>Since {@code null} is considered to be a value of any reference |
|
* type, the returned sorted set permits insertion of null elements |
|
* whenever the backing sorted set does. |
|
* |
|
* @param <E> the class of the objects in the set |
|
* @param s the sorted set for which a dynamically typesafe view is to be |
|
* returned |
|
* @param type the type of element that {@code s} is permitted to hold |
|
* @return a dynamically typesafe view of the specified sorted set |
|
* @since 1.5 |
|
*/ |
|
public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s, |
|
Class<E> type) { |
|
return new CheckedSortedSet<>(s, type); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class CheckedSortedSet<E> extends CheckedSet<E> |
|
implements SortedSet<E>, Serializable |
|
{ |
|
private static final long serialVersionUID = 1599911165492914959L; |
|
private final SortedSet<E> ss; |
|
CheckedSortedSet(SortedSet<E> s, Class<E> type) { |
|
super(s, type); |
|
ss = s; |
|
} |
|
public Comparator<? super E> comparator() { return ss.comparator(); } |
|
public E first() { return ss.first(); } |
|
public E last() { return ss.last(); } |
|
public SortedSet<E> subSet(E fromElement, E toElement) { |
|
return checkedSortedSet(ss.subSet(fromElement,toElement), type); |
|
} |
|
public SortedSet<E> headSet(E toElement) { |
|
return checkedSortedSet(ss.headSet(toElement), type); |
|
} |
|
public SortedSet<E> tailSet(E fromElement) { |
|
return checkedSortedSet(ss.tailSet(fromElement), type); |
|
} |
|
} |
|
/** |
|
* Returns a dynamically typesafe view of the specified navigable set. |
|
* Any attempt to insert an element of the wrong type will result in an |
|
* immediate {@link ClassCastException}. Assuming a navigable set |
|
* contains no incorrectly typed elements prior to the time a |
|
* dynamically typesafe view is generated, and that all subsequent |
|
* access to the navigable set takes place through the view, it is |
|
* <em>guaranteed</em> that the navigable set cannot contain an incorrectly |
|
* typed element. |
|
* |
|
* <p>A discussion of the use of dynamically typesafe views may be |
|
* found in the documentation for the {@link #checkedCollection |
|
* checkedCollection} method. |
|
* |
|
* <p>The returned navigable set will be serializable if the specified |
|
* navigable set is serializable. |
|
* |
|
* <p>Since {@code null} is considered to be a value of any reference |
|
* type, the returned navigable set permits insertion of null elements |
|
* whenever the backing sorted set does. |
|
* |
|
* @param <E> the class of the objects in the set |
|
* @param s the navigable set for which a dynamically typesafe view is to be |
|
* returned |
|
* @param type the type of element that {@code s} is permitted to hold |
|
* @return a dynamically typesafe view of the specified navigable set |
|
* @since 1.8 |
|
*/ |
|
public static <E> NavigableSet<E> checkedNavigableSet(NavigableSet<E> s, |
|
Class<E> type) { |
|
return new CheckedNavigableSet<>(s, type); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class CheckedNavigableSet<E> extends CheckedSortedSet<E> |
|
implements NavigableSet<E>, Serializable |
|
{ |
|
private static final long serialVersionUID = -5429120189805438922L; |
|
private final NavigableSet<E> ns; |
|
CheckedNavigableSet(NavigableSet<E> s, Class<E> type) { |
|
super(s, type); |
|
ns = s; |
|
} |
|
public E lower(E e) { return ns.lower(e); } |
|
public E floor(E e) { return ns.floor(e); } |
|
public E ceiling(E e) { return ns.ceiling(e); } |
|
public E higher(E e) { return ns.higher(e); } |
|
public E pollFirst() { return ns.pollFirst(); } |
|
public E pollLast() {return ns.pollLast(); } |
|
public NavigableSet<E> descendingSet() |
|
{ return checkedNavigableSet(ns.descendingSet(), type); } |
|
public Iterator<E> descendingIterator() |
|
{return checkedNavigableSet(ns.descendingSet(), type).iterator(); } |
|
public NavigableSet<E> subSet(E fromElement, E toElement) { |
|
return checkedNavigableSet(ns.subSet(fromElement, true, toElement, false), type); |
|
} |
|
public NavigableSet<E> headSet(E toElement) { |
|
return checkedNavigableSet(ns.headSet(toElement, false), type); |
|
} |
|
public NavigableSet<E> tailSet(E fromElement) { |
|
return checkedNavigableSet(ns.tailSet(fromElement, true), type); |
|
} |
|
public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { |
|
return checkedNavigableSet(ns.subSet(fromElement, fromInclusive, toElement, toInclusive), type); |
|
} |
|
public NavigableSet<E> headSet(E toElement, boolean inclusive) { |
|
return checkedNavigableSet(ns.headSet(toElement, inclusive), type); |
|
} |
|
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { |
|
return checkedNavigableSet(ns.tailSet(fromElement, inclusive), type); |
|
} |
|
} |
|
/** |
|
* Returns a dynamically typesafe view of the specified list. |
|
* Any attempt to insert an element of the wrong type will result in |
|
* an immediate {@link ClassCastException}. Assuming a list contains |
|
* no incorrectly typed elements prior to the time a dynamically typesafe |
|
* view is generated, and that all subsequent access to the list |
|
* takes place through the view, it is <i>guaranteed</i> that the |
|
* list cannot contain an incorrectly typed element. |
|
* |
|
* <p>A discussion of the use of dynamically typesafe views may be |
|
* found in the documentation for the {@link #checkedCollection |
|
* checkedCollection} method. |
|
* |
|
* <p>The returned list will be serializable if the specified list |
|
* is serializable. |
|
* |
|
* <p>Since {@code null} is considered to be a value of any reference |
|
* type, the returned list permits insertion of null elements whenever |
|
* the backing list does. |
|
* |
|
* @param <E> the class of the objects in the list |
|
* @param list the list for which a dynamically typesafe view is to be |
|
* returned |
|
* @param type the type of element that {@code list} is permitted to hold |
|
* @return a dynamically typesafe view of the specified list |
|
* @since 1.5 |
|
*/ |
|
public static <E> List<E> checkedList(List<E> list, Class<E> type) { |
|
return (list instanceof RandomAccess ? |
|
new CheckedRandomAccessList<>(list, type) : |
|
new CheckedList<>(list, type)); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class CheckedList<E> |
|
extends CheckedCollection<E> |
|
implements List<E> |
|
{ |
|
private static final long serialVersionUID = 65247728283967356L; |
|
final List<E> list; |
|
CheckedList(List<E> list, Class<E> type) { |
|
super(list, type); |
|
this.list = list; |
|
} |
|
public boolean equals(Object o) { return o == this || list.equals(o); } |
|
public int hashCode() { return list.hashCode(); } |
|
public E get(int index) { return list.get(index); } |
|
public E remove(int index) { return list.remove(index); } |
|
public int indexOf(Object o) { return list.indexOf(o); } |
|
public int lastIndexOf(Object o) { return list.lastIndexOf(o); } |
|
public E set(int index, E element) { |
|
return list.set(index, typeCheck(element)); |
|
} |
|
public void add(int index, E element) { |
|
list.add(index, typeCheck(element)); |
|
} |
|
public boolean addAll(int index, Collection<? extends E> c) { |
|
return list.addAll(index, checkedCopyOf(c)); |
|
} |
|
public ListIterator<E> listIterator() { return listIterator(0); } |
|
public ListIterator<E> listIterator(final int index) { |
|
final ListIterator<E> i = list.listIterator(index); |
|
return new ListIterator<E>() { |
|
public boolean hasNext() { return i.hasNext(); } |
|
public E next() { return i.next(); } |
|
public boolean hasPrevious() { return i.hasPrevious(); } |
|
public E previous() { return i.previous(); } |
|
public int nextIndex() { return i.nextIndex(); } |
|
public int previousIndex() { return i.previousIndex(); } |
|
public void remove() { i.remove(); } |
|
public void set(E e) { |
|
i.set(typeCheck(e)); |
|
} |
|
public void add(E e) { |
|
i.add(typeCheck(e)); |
|
} |
|
@Override |
|
public void forEachRemaining(Consumer<? super E> action) { |
|
i.forEachRemaining(action); |
|
} |
|
}; |
|
} |
|
public List<E> subList(int fromIndex, int toIndex) { |
|
return new CheckedList<>(list.subList(fromIndex, toIndex), type); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* |
|
* @throws ClassCastException if the class of an element returned by the |
|
* operator prevents it from being added to this collection. The |
|
* exception may be thrown after some elements of the list have |
|
* already been replaced. |
|
*/ |
|
@Override |
|
public void replaceAll(UnaryOperator<E> operator) { |
|
Objects.requireNonNull(operator); |
|
list.replaceAll(e -> typeCheck(operator.apply(e))); |
|
} |
|
@Override |
|
public void sort(Comparator<? super E> c) { |
|
list.sort(c); |
|
} |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class CheckedRandomAccessList<E> extends CheckedList<E> |
|
implements RandomAccess |
|
{ |
|
private static final long serialVersionUID = 1638200125423088369L; |
|
CheckedRandomAccessList(List<E> list, Class<E> type) { |
|
super(list, type); |
|
} |
|
public List<E> subList(int fromIndex, int toIndex) { |
|
return new CheckedRandomAccessList<>( |
|
list.subList(fromIndex, toIndex), type); |
|
} |
|
} |
|
/** |
|
* Returns a dynamically typesafe view of the specified map. |
|
* Any attempt to insert a mapping whose key or value have the wrong |
|
* type will result in an immediate {@link ClassCastException}. |
|
* Similarly, any attempt to modify the value currently associated with |
|
* a key will result in an immediate {@link ClassCastException}, |
|
* whether the modification is attempted directly through the map |
|
* itself, or through a {@link Map.Entry} instance obtained from the |
|
* map's {@link Map#entrySet() entry set} view. |
|
* |
|
* <p>Assuming a map contains no incorrectly typed keys or values |
|
* prior to the time a dynamically typesafe view is generated, and |
|
* that all subsequent access to the map takes place through the view |
|
* (or one of its collection views), it is <i>guaranteed</i> that the |
|
* map cannot contain an incorrectly typed key or value. |
|
* |
|
* <p>A discussion of the use of dynamically typesafe views may be |
|
* found in the documentation for the {@link #checkedCollection |
|
* checkedCollection} method. |
|
* |
|
* <p>The returned map will be serializable if the specified map is |
|
* serializable. |
|
* |
|
* <p>Since {@code null} is considered to be a value of any reference |
|
* type, the returned map permits insertion of null keys or values |
|
* whenever the backing map does. |
|
* |
|
* @param <K> the class of the map keys |
|
* @param <V> the class of the map values |
|
* @param m the map for which a dynamically typesafe view is to be |
|
* returned |
|
* @param keyType the type of key that {@code m} is permitted to hold |
|
* @param valueType the type of value that {@code m} is permitted to hold |
|
* @return a dynamically typesafe view of the specified map |
|
* @since 1.5 |
|
*/ |
|
public static <K, V> Map<K, V> checkedMap(Map<K, V> m, |
|
Class<K> keyType, |
|
Class<V> valueType) { |
|
return new CheckedMap<>(m, keyType, valueType); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
private static class CheckedMap<K,V> |
|
implements Map<K,V>, Serializable |
|
{ |
|
private static final long serialVersionUID = 5742860141034234728L; |
|
private final Map<K, V> m; |
|
final Class<K> keyType; |
|
final Class<V> valueType; |
|
private void typeCheck(Object key, Object value) { |
|
if (key != null && !keyType.isInstance(key)) |
|
throw new ClassCastException(badKeyMsg(key)); |
|
if (value != null && !valueType.isInstance(value)) |
|
throw new ClassCastException(badValueMsg(value)); |
|
} |
|
private BiFunction<? super K, ? super V, ? extends V> typeCheck( |
|
BiFunction<? super K, ? super V, ? extends V> func) { |
|
Objects.requireNonNull(func); |
|
return (k, v) -> { |
|
V newValue = func.apply(k, v); |
|
typeCheck(k, newValue); |
|
return newValue; |
|
}; |
|
} |
|
private String badKeyMsg(Object key) { |
|
return "Attempt to insert " + key.getClass() + |
|
" key into map with key type " + keyType; |
|
} |
|
private String badValueMsg(Object value) { |
|
return "Attempt to insert " + value.getClass() + |
|
" value into map with value type " + valueType; |
|
} |
|
CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) { |
|
this.m = Objects.requireNonNull(m); |
|
this.keyType = Objects.requireNonNull(keyType); |
|
this.valueType = Objects.requireNonNull(valueType); |
|
} |
|
public int size() { return m.size(); } |
|
public boolean isEmpty() { return m.isEmpty(); } |
|
public boolean containsKey(Object key) { return m.containsKey(key); } |
|
public boolean containsValue(Object v) { return m.containsValue(v); } |
|
public V get(Object key) { return m.get(key); } |
|
public V remove(Object key) { return m.remove(key); } |
|
public void clear() { m.clear(); } |
|
public Set<K> keySet() { return m.keySet(); } |
|
public Collection<V> values() { return m.values(); } |
|
public boolean equals(Object o) { return o == this || m.equals(o); } |
|
public int hashCode() { return m.hashCode(); } |
|
public String toString() { return m.toString(); } |
|
public V put(K key, V value) { |
|
typeCheck(key, value); |
|
return m.put(key, value); |
|
} |
|
@SuppressWarnings("unchecked") |
|
public void putAll(Map<? extends K, ? extends V> t) { |
|
// Satisfy the following goals: |
|
// - good diagnostics in case of type mismatch |
|
// - all-or-nothing semantics |
|
// - protection from malicious t |
|
// - correct behavior if t is a concurrent map |
|
Object[] entries = t.entrySet().toArray(); |
|
List<Map.Entry<K,V>> checked = new ArrayList<>(entries.length); |
|
for (Object o : entries) { |
|
Map.Entry<?,?> e = (Map.Entry<?,?>) o; |
|
Object k = e.getKey(); |
|
Object v = e.getValue(); |
|
typeCheck(k, v); |
|
checked.add( |
|
new AbstractMap.SimpleImmutableEntry<>((K)k, (V)v)); |
|
} |
|
for (Map.Entry<K,V> e : checked) |
|
m.put(e.getKey(), e.getValue()); |
|
} |
|
private transient Set<Map.Entry<K,V>> entrySet; |
|
public Set<Map.Entry<K,V>> entrySet() { |
|
if (entrySet==null) |
|
entrySet = new CheckedEntrySet<>(m.entrySet(), valueType); |
|
return entrySet; |
|
} |
|
// Override default methods in Map |
|
@Override |
|
public void forEach(BiConsumer<? super K, ? super V> action) { |
|
m.forEach(action); |
|
} |
|
@Override |
|
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { |
|
m.replaceAll(typeCheck(function)); |
|
} |
|
@Override |
|
public V putIfAbsent(K key, V value) { |
|
typeCheck(key, value); |
|
return m.putIfAbsent(key, value); |
|
} |
|
@Override |
|
public boolean remove(Object key, Object value) { |
|
return m.remove(key, value); |
|
} |
|
@Override |
|
public boolean replace(K key, V oldValue, V newValue) { |
|
typeCheck(key, newValue); |
|
return m.replace(key, oldValue, newValue); |
|
} |
|
@Override |
|
public V replace(K key, V value) { |
|
typeCheck(key, value); |
|
return m.replace(key, value); |
|
} |
|
@Override |
|
public V computeIfAbsent(K key, |
|
Function<? super K, ? extends V> mappingFunction) { |
|
Objects.requireNonNull(mappingFunction); |
|
return m.computeIfAbsent(key, k -> { |
|
V value = mappingFunction.apply(k); |
|
typeCheck(k, value); |
|
return value; |
|
}); |
|
} |
|
@Override |
|
public V computeIfPresent(K key, |
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
|
return m.computeIfPresent(key, typeCheck(remappingFunction)); |
|
} |
|
@Override |
|
public V compute(K key, |
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
|
return m.compute(key, typeCheck(remappingFunction)); |
|
} |
|
@Override |
|
public V merge(K key, V value, |
|
BiFunction<? super V, ? super V, ? extends V> remappingFunction) { |
|
Objects.requireNonNull(remappingFunction); |
|
return m.merge(key, value, (v1, v2) -> { |
|
V newValue = remappingFunction.apply(v1, v2); |
|
typeCheck(null, newValue); |
|
return newValue; |
|
}); |
|
} |
|
/** |
|
* We need this class in addition to CheckedSet as Map.Entry permits |
|
* modification of the backing Map via the setValue operation. This |
|
* class is subtle: there are many possible attacks that must be |
|
* thwarted. |
|
* |
|
* @serial exclude |
|
*/ |
|
static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> { |
|
private final Set<Map.Entry<K,V>> s; |
|
private final Class<V> valueType; |
|
CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) { |
|
this.s = s; |
|
this.valueType = valueType; |
|
} |
|
public int size() { return s.size(); } |
|
public boolean isEmpty() { return s.isEmpty(); } |
|
public String toString() { return s.toString(); } |
|
public int hashCode() { return s.hashCode(); } |
|
public void clear() { s.clear(); } |
|
public boolean add(Map.Entry<K, V> e) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public Iterator<Map.Entry<K,V>> iterator() { |
|
final Iterator<Map.Entry<K, V>> i = s.iterator(); |
|
final Class<V> valueType = this.valueType; |
|
return new Iterator<Map.Entry<K,V>>() { |
|
public boolean hasNext() { return i.hasNext(); } |
|
public void remove() { i.remove(); } |
|
public Map.Entry<K,V> next() { |
|
return checkedEntry(i.next(), valueType); |
|
} |
|
}; |
|
} |
|
@SuppressWarnings("unchecked") |
|
public Object[] toArray() { |
|
Object[] source = s.toArray(); |
|
/* |
|
* Ensure that we don't get an ArrayStoreException even if |
|
* s.toArray returns an array of something other than Object |
|
*/ |
|
Object[] dest = (CheckedEntry.class.isInstance( |
|
source.getClass().getComponentType()) ? source : |
|
new Object[source.length]); |
|
for (int i = 0; i < source.length; i++) |
|
dest[i] = checkedEntry((Map.Entry<K,V>)source[i], |
|
valueType); |
|
return dest; |
|
} |
|
@SuppressWarnings("unchecked") |
|
public <T> T[] toArray(T[] a) { |
|
// We don't pass a to s.toArray, to avoid window of |
|
// vulnerability wherein an unscrupulous multithreaded client |
|
// could get his hands on raw (unwrapped) Entries from s. |
|
T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0)); |
|
for (int i=0; i<arr.length; i++) |
|
arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i], |
|
valueType); |
|
if (arr.length > a.length) |
|
return arr; |
|
System.arraycopy(arr, 0, a, 0, arr.length); |
|
if (a.length > arr.length) |
|
a[arr.length] = null; |
|
return a; |
|
} |
|
/** |
|
* This method is overridden to protect the backing set against |
|
* an object with a nefarious equals function that senses |
|
* that the equality-candidate is Map.Entry and calls its |
|
* setValue method. |
|
*/ |
|
public boolean contains(Object o) { |
|
if (!(o instanceof Map.Entry)) |
|
return false; |
|
Map.Entry<?,?> e = (Map.Entry<?,?>) o; |
|
return s.contains( |
|
(e instanceof CheckedEntry) ? e : checkedEntry(e, valueType)); |
|
} |
|
/** |
|
* The bulk collection methods are overridden to protect |
|
* against an unscrupulous collection whose contains(Object o) |
|
* method senses when o is a Map.Entry, and calls o.setValue. |
|
*/ |
|
public boolean containsAll(Collection<?> c) { |
|
for (Object o : c) |
|
if (!contains(o)) // Invokes safe contains() above |
|
return false; |
|
return true; |
|
} |
|
public boolean remove(Object o) { |
|
if (!(o instanceof Map.Entry)) |
|
return false; |
|
return s.remove(new AbstractMap.SimpleImmutableEntry |
|
<>((Map.Entry<?,?>)o)); |
|
} |
|
public boolean removeAll(Collection<?> c) { |
|
return batchRemove(c, false); |
|
} |
|
public boolean retainAll(Collection<?> c) { |
|
return batchRemove(c, true); |
|
} |
|
private boolean batchRemove(Collection<?> c, boolean complement) { |
|
Objects.requireNonNull(c); |
|
boolean modified = false; |
|
Iterator<Map.Entry<K,V>> it = iterator(); |
|
while (it.hasNext()) { |
|
if (c.contains(it.next()) != complement) { |
|
it.remove(); |
|
modified = true; |
|
} |
|
} |
|
return modified; |
|
} |
|
public boolean equals(Object o) { |
|
if (o == this) |
|
return true; |
|
if (!(o instanceof Set)) |
|
return false; |
|
Set<?> that = (Set<?>) o; |
|
return that.size() == s.size() |
|
&& containsAll(that); // Invokes safe containsAll() above |
|
} |
|
static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e, |
|
Class<T> valueType) { |
|
return new CheckedEntry<>(e, valueType); |
|
} |
|
/** |
|
* This "wrapper class" serves two purposes: it prevents |
|
* the client from modifying the backing Map, by short-circuiting |
|
* the setValue method, and it protects the backing Map against |
|
* an ill-behaved Map.Entry that attempts to modify another |
|
* Map.Entry when asked to perform an equality check. |
|
*/ |
|
private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> { |
|
private final Map.Entry<K, V> e; |
|
private final Class<T> valueType; |
|
CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) { |
|
this.e = Objects.requireNonNull(e); |
|
this.valueType = Objects.requireNonNull(valueType); |
|
} |
|
public K getKey() { return e.getKey(); } |
|
public V getValue() { return e.getValue(); } |
|
public int hashCode() { return e.hashCode(); } |
|
public String toString() { return e.toString(); } |
|
public V setValue(V value) { |
|
if (value != null && !valueType.isInstance(value)) |
|
throw new ClassCastException(badValueMsg(value)); |
|
return e.setValue(value); |
|
} |
|
private String badValueMsg(Object value) { |
|
return "Attempt to insert " + value.getClass() + |
|
" value into map with value type " + valueType; |
|
} |
|
public boolean equals(Object o) { |
|
if (o == this) |
|
return true; |
|
if (!(o instanceof Map.Entry)) |
|
return false; |
|
return e.equals(new AbstractMap.SimpleImmutableEntry |
|
<>((Map.Entry<?,?>)o)); |
|
} |
|
} |
|
} |
|
} |
|
/** |
|
* Returns a dynamically typesafe view of the specified sorted map. |
|
* Any attempt to insert a mapping whose key or value have the wrong |
|
* type will result in an immediate {@link ClassCastException}. |
|
* Similarly, any attempt to modify the value currently associated with |
|
* a key will result in an immediate {@link ClassCastException}, |
|
* whether the modification is attempted directly through the map |
|
* itself, or through a {@link Map.Entry} instance obtained from the |
|
* map's {@link Map#entrySet() entry set} view. |
|
* |
|
* <p>Assuming a map contains no incorrectly typed keys or values |
|
* prior to the time a dynamically typesafe view is generated, and |
|
* that all subsequent access to the map takes place through the view |
|
* (or one of its collection views), it is <i>guaranteed</i> that the |
|
* map cannot contain an incorrectly typed key or value. |
|
* |
|
* <p>A discussion of the use of dynamically typesafe views may be |
|
* found in the documentation for the {@link #checkedCollection |
|
* checkedCollection} method. |
|
* |
|
* <p>The returned map will be serializable if the specified map is |
|
* serializable. |
|
* |
|
* <p>Since {@code null} is considered to be a value of any reference |
|
* type, the returned map permits insertion of null keys or values |
|
* whenever the backing map does. |
|
* |
|
* @param <K> the class of the map keys |
|
* @param <V> the class of the map values |
|
* @param m the map for which a dynamically typesafe view is to be |
|
* returned |
|
* @param keyType the type of key that {@code m} is permitted to hold |
|
* @param valueType the type of value that {@code m} is permitted to hold |
|
* @return a dynamically typesafe view of the specified map |
|
* @since 1.5 |
|
*/ |
|
public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m, |
|
Class<K> keyType, |
|
Class<V> valueType) { |
|
return new CheckedSortedMap<>(m, keyType, valueType); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class CheckedSortedMap<K,V> extends CheckedMap<K,V> |
|
implements SortedMap<K,V>, Serializable |
|
{ |
|
private static final long serialVersionUID = 1599671320688067438L; |
|
private final SortedMap<K, V> sm; |
|
CheckedSortedMap(SortedMap<K, V> m, |
|
Class<K> keyType, Class<V> valueType) { |
|
super(m, keyType, valueType); |
|
sm = m; |
|
} |
|
public Comparator<? super K> comparator() { return sm.comparator(); } |
|
public K firstKey() { return sm.firstKey(); } |
|
public K lastKey() { return sm.lastKey(); } |
|
public SortedMap<K,V> subMap(K fromKey, K toKey) { |
|
return checkedSortedMap(sm.subMap(fromKey, toKey), |
|
keyType, valueType); |
|
} |
|
public SortedMap<K,V> headMap(K toKey) { |
|
return checkedSortedMap(sm.headMap(toKey), keyType, valueType); |
|
} |
|
public SortedMap<K,V> tailMap(K fromKey) { |
|
return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType); |
|
} |
|
} |
|
/** |
|
* Returns a dynamically typesafe view of the specified navigable map. |
|
* Any attempt to insert a mapping whose key or value have the wrong |
|
* type will result in an immediate {@link ClassCastException}. |
|
* Similarly, any attempt to modify the value currently associated with |
|
* a key will result in an immediate {@link ClassCastException}, |
|
* whether the modification is attempted directly through the map |
|
* itself, or through a {@link Map.Entry} instance obtained from the |
|
* map's {@link Map#entrySet() entry set} view. |
|
* |
|
* <p>Assuming a map contains no incorrectly typed keys or values |
|
* prior to the time a dynamically typesafe view is generated, and |
|
* that all subsequent access to the map takes place through the view |
|
* (or one of its collection views), it is <em>guaranteed</em> that the |
|
* map cannot contain an incorrectly typed key or value. |
|
* |
|
* <p>A discussion of the use of dynamically typesafe views may be |
|
* found in the documentation for the {@link #checkedCollection |
|
* checkedCollection} method. |
|
* |
|
* <p>The returned map will be serializable if the specified map is |
|
* serializable. |
|
* |
|
* <p>Since {@code null} is considered to be a value of any reference |
|
* type, the returned map permits insertion of null keys or values |
|
* whenever the backing map does. |
|
* |
|
* @param <K> type of map keys |
|
* @param <V> type of map values |
|
* @param m the map for which a dynamically typesafe view is to be |
|
* returned |
|
* @param keyType the type of key that {@code m} is permitted to hold |
|
* @param valueType the type of value that {@code m} is permitted to hold |
|
* @return a dynamically typesafe view of the specified map |
|
* @since 1.8 |
|
*/ |
|
public static <K,V> NavigableMap<K,V> checkedNavigableMap(NavigableMap<K, V> m, |
|
Class<K> keyType, |
|
Class<V> valueType) { |
|
return new CheckedNavigableMap<>(m, keyType, valueType); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class CheckedNavigableMap<K,V> extends CheckedSortedMap<K,V> |
|
implements NavigableMap<K,V>, Serializable |
|
{ |
|
private static final long serialVersionUID = -4852462692372534096L; |
|
private final NavigableMap<K, V> nm; |
|
CheckedNavigableMap(NavigableMap<K, V> m, |
|
Class<K> keyType, Class<V> valueType) { |
|
super(m, keyType, valueType); |
|
nm = m; |
|
} |
|
public Comparator<? super K> comparator() { return nm.comparator(); } |
|
public K firstKey() { return nm.firstKey(); } |
|
public K lastKey() { return nm.lastKey(); } |
|
public Entry<K, V> lowerEntry(K key) { |
|
Entry<K,V> lower = nm.lowerEntry(key); |
|
return (null != lower) |
|
? new CheckedMap.CheckedEntrySet.CheckedEntry<>(lower, valueType) |
|
: null; |
|
} |
|
public K lowerKey(K key) { return nm.lowerKey(key); } |
|
public Entry<K, V> floorEntry(K key) { |
|
Entry<K,V> floor = nm.floorEntry(key); |
|
return (null != floor) |
|
? new CheckedMap.CheckedEntrySet.CheckedEntry<>(floor, valueType) |
|
: null; |
|
} |
|
public K floorKey(K key) { return nm.floorKey(key); } |
|
public Entry<K, V> ceilingEntry(K key) { |
|
Entry<K,V> ceiling = nm.ceilingEntry(key); |
|
return (null != ceiling) |
|
? new CheckedMap.CheckedEntrySet.CheckedEntry<>(ceiling, valueType) |
|
: null; |
|
} |
|
public K ceilingKey(K key) { return nm.ceilingKey(key); } |
|
public Entry<K, V> higherEntry(K key) { |
|
Entry<K,V> higher = nm.higherEntry(key); |
|
return (null != higher) |
|
? new CheckedMap.CheckedEntrySet.CheckedEntry<>(higher, valueType) |
|
: null; |
|
} |
|
public K higherKey(K key) { return nm.higherKey(key); } |
|
public Entry<K, V> firstEntry() { |
|
Entry<K,V> first = nm.firstEntry(); |
|
return (null != first) |
|
? new CheckedMap.CheckedEntrySet.CheckedEntry<>(first, valueType) |
|
: null; |
|
} |
|
public Entry<K, V> lastEntry() { |
|
Entry<K,V> last = nm.lastEntry(); |
|
return (null != last) |
|
? new CheckedMap.CheckedEntrySet.CheckedEntry<>(last, valueType) |
|
: null; |
|
} |
|
public Entry<K, V> pollFirstEntry() { |
|
Entry<K,V> entry = nm.pollFirstEntry(); |
|
return (null == entry) |
|
? null |
|
: new CheckedMap.CheckedEntrySet.CheckedEntry<>(entry, valueType); |
|
} |
|
public Entry<K, V> pollLastEntry() { |
|
Entry<K,V> entry = nm.pollLastEntry(); |
|
return (null == entry) |
|
? null |
|
: new CheckedMap.CheckedEntrySet.CheckedEntry<>(entry, valueType); |
|
} |
|
public NavigableMap<K, V> descendingMap() { |
|
return checkedNavigableMap(nm.descendingMap(), keyType, valueType); |
|
} |
|
public NavigableSet<K> keySet() { |
|
return navigableKeySet(); |
|
} |
|
public NavigableSet<K> navigableKeySet() { |
|
return checkedNavigableSet(nm.navigableKeySet(), keyType); |
|
} |
|
public NavigableSet<K> descendingKeySet() { |
|
return checkedNavigableSet(nm.descendingKeySet(), keyType); |
|
} |
|
@Override |
|
public NavigableMap<K,V> subMap(K fromKey, K toKey) { |
|
return checkedNavigableMap(nm.subMap(fromKey, true, toKey, false), |
|
keyType, valueType); |
|
} |
|
@Override |
|
public NavigableMap<K,V> headMap(K toKey) { |
|
return checkedNavigableMap(nm.headMap(toKey, false), keyType, valueType); |
|
} |
|
@Override |
|
public NavigableMap<K,V> tailMap(K fromKey) { |
|
return checkedNavigableMap(nm.tailMap(fromKey, true), keyType, valueType); |
|
} |
|
public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { |
|
return checkedNavigableMap(nm.subMap(fromKey, fromInclusive, toKey, toInclusive), keyType, valueType); |
|
} |
|
public NavigableMap<K, V> headMap(K toKey, boolean inclusive) { |
|
return checkedNavigableMap(nm.headMap(toKey, inclusive), keyType, valueType); |
|
} |
|
public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) { |
|
return checkedNavigableMap(nm.tailMap(fromKey, inclusive), keyType, valueType); |
|
} |
|
} |
|
// Empty collections |
|
/** |
|
* Returns an iterator that has no elements. More precisely, |
|
* |
|
* <ul> |
|
* <li>{@link Iterator#hasNext hasNext} always returns {@code |
|
* false}.</li> |
|
* <li>{@link Iterator#next next} always throws {@link |
|
* NoSuchElementException}.</li> |
|
* <li>{@link Iterator#remove remove} always throws {@link |
|
* IllegalStateException}.</li> |
|
* </ul> |
|
* |
|
* <p>Implementations of this method are permitted, but not |
|
* required, to return the same object from multiple invocations. |
|
* |
|
* @param <T> type of elements, if there were any, in the iterator |
|
* @return an empty iterator |
|
* @since 1.7 |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static <T> Iterator<T> emptyIterator() { |
|
return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR; |
|
} |
|
private static class EmptyIterator<E> implements Iterator<E> { |
|
static final EmptyIterator<Object> EMPTY_ITERATOR |
|
= new EmptyIterator<>(); |
|
public boolean hasNext() { return false; } |
|
public E next() { throw new NoSuchElementException(); } |
|
public void remove() { throw new IllegalStateException(); } |
|
@Override |
|
public void forEachRemaining(Consumer<? super E> action) { |
|
Objects.requireNonNull(action); |
|
} |
|
} |
|
/** |
|
* Returns a list iterator that has no elements. More precisely, |
|
* |
|
* <ul> |
|
* <li>{@link Iterator#hasNext hasNext} and {@link |
|
* ListIterator#hasPrevious hasPrevious} always return {@code |
|
* false}.</li> |
|
* <li>{@link Iterator#next next} and {@link ListIterator#previous |
|
* previous} always throw {@link NoSuchElementException}.</li> |
|
* <li>{@link Iterator#remove remove} and {@link ListIterator#set |
|
* set} always throw {@link IllegalStateException}.</li> |
|
* <li>{@link ListIterator#add add} always throws {@link |
|
* UnsupportedOperationException}.</li> |
|
* <li>{@link ListIterator#nextIndex nextIndex} always returns |
|
* {@code 0}.</li> |
|
* <li>{@link ListIterator#previousIndex previousIndex} always |
|
* returns {@code -1}.</li> |
|
* </ul> |
|
* |
|
* <p>Implementations of this method are permitted, but not |
|
* required, to return the same object from multiple invocations. |
|
* |
|
* @param <T> type of elements, if there were any, in the iterator |
|
* @return an empty list iterator |
|
* @since 1.7 |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static <T> ListIterator<T> emptyListIterator() { |
|
return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR; |
|
} |
|
private static class EmptyListIterator<E> |
|
extends EmptyIterator<E> |
|
implements ListIterator<E> |
|
{ |
|
static final EmptyListIterator<Object> EMPTY_ITERATOR |
|
= new EmptyListIterator<>(); |
|
public boolean hasPrevious() { return false; } |
|
public E previous() { throw new NoSuchElementException(); } |
|
public int nextIndex() { return 0; } |
|
public int previousIndex() { return -1; } |
|
public void set(E e) { throw new IllegalStateException(); } |
|
public void add(E e) { throw new UnsupportedOperationException(); } |
|
} |
|
/** |
|
* Returns an enumeration that has no elements. More precisely, |
|
* |
|
* <ul> |
|
* <li>{@link Enumeration#hasMoreElements hasMoreElements} always |
|
* returns {@code false}.</li> |
|
* <li> {@link Enumeration#nextElement nextElement} always throws |
|
* {@link NoSuchElementException}.</li> |
|
* </ul> |
|
* |
|
* <p>Implementations of this method are permitted, but not |
|
* required, to return the same object from multiple invocations. |
|
* |
|
* @param <T> the class of the objects in the enumeration |
|
* @return an empty enumeration |
|
* @since 1.7 |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static <T> Enumeration<T> emptyEnumeration() { |
|
return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION; |
|
} |
|
private static class EmptyEnumeration<E> implements Enumeration<E> { |
|
static final EmptyEnumeration<Object> EMPTY_ENUMERATION |
|
= new EmptyEnumeration<>(); |
|
public boolean hasMoreElements() { return false; } |
|
public E nextElement() { throw new NoSuchElementException(); } |
|
} |
|
/** |
|
* The empty set (immutable). This set is serializable. |
|
* |
|
* @see #emptySet() |
|
*/ |
|
@SuppressWarnings("rawtypes") |
|
public static final Set EMPTY_SET = new EmptySet<>(); |
|
/** |
|
* Returns an empty set (immutable). This set is serializable. |
|
* Unlike the like-named field, this method is parameterized. |
|
* |
|
* <p>This example illustrates the type-safe way to obtain an empty set: |
|
* <pre> |
|
* Set<String> s = Collections.emptySet(); |
|
* </pre> |
|
* @implNote Implementations of this method need not create a separate |
|
* {@code Set} object for each call. Using this method is likely to have |
|
* comparable cost to using the like-named field. (Unlike this method, the |
|
* field does not provide type safety.) |
|
* |
|
* @param <T> the class of the objects in the set |
|
* @return the empty set |
|
* |
|
* @see #EMPTY_SET |
|
* @since 1.5 |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static final <T> Set<T> emptySet() { |
|
return (Set<T>) EMPTY_SET; |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
private static class EmptySet<E> |
|
extends AbstractSet<E> |
|
implements Serializable |
|
{ |
|
private static final long serialVersionUID = 1582296315990362920L; |
|
public Iterator<E> iterator() { return emptyIterator(); } |
|
public int size() {return 0;} |
|
public boolean isEmpty() {return true;} |
|
public boolean contains(Object obj) {return false;} |
|
public boolean containsAll(Collection<?> c) { return c.isEmpty(); } |
|
public Object[] toArray() { return new Object[0]; } |
|
public <T> T[] toArray(T[] a) { |
|
if (a.length > 0) |
|
a[0] = null; |
|
return a; |
|
} |
|
// Override default methods in Collection |
|
@Override |
|
public void forEach(Consumer<? super E> action) { |
|
Objects.requireNonNull(action); |
|
} |
|
@Override |
|
public boolean removeIf(Predicate<? super E> filter) { |
|
Objects.requireNonNull(filter); |
|
return false; |
|
} |
|
@Override |
|
public Spliterator<E> spliterator() { return Spliterators.emptySpliterator(); } |
|
// Preserves singleton property |
|
private Object readResolve() { |
|
return EMPTY_SET; |
|
} |
|
} |
|
/** |
|
* Returns an empty sorted set (immutable). This set is serializable. |
|
* |
|
* <p>This example illustrates the type-safe way to obtain an empty |
|
* sorted set: |
|
* <pre> {@code |
|
* SortedSet<String> s = Collections.emptySortedSet(); |
|
* }</pre> |
|
* |
|
* @implNote Implementations of this method need not create a separate |
|
* {@code SortedSet} object for each call. |
|
* |
|
* @param <E> type of elements, if there were any, in the set |
|
* @return the empty sorted set |
|
* @since 1.8 |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static <E> SortedSet<E> emptySortedSet() { |
|
return (SortedSet<E>) UnmodifiableNavigableSet.EMPTY_NAVIGABLE_SET; |
|
} |
|
/** |
|
* Returns an empty navigable set (immutable). This set is serializable. |
|
* |
|
* <p>This example illustrates the type-safe way to obtain an empty |
|
* navigable set: |
|
* <pre> {@code |
|
* NavigableSet<String> s = Collections.emptyNavigableSet(); |
|
* }</pre> |
|
* |
|
* @implNote Implementations of this method need not |
|
* create a separate {@code NavigableSet} object for each call. |
|
* |
|
* @param <E> type of elements, if there were any, in the set |
|
* @return the empty navigable set |
|
* @since 1.8 |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static <E> NavigableSet<E> emptyNavigableSet() { |
|
return (NavigableSet<E>) UnmodifiableNavigableSet.EMPTY_NAVIGABLE_SET; |
|
} |
|
/** |
|
* The empty list (immutable). This list is serializable. |
|
* |
|
* @see #emptyList() |
|
*/ |
|
@SuppressWarnings("rawtypes") |
|
public static final List EMPTY_LIST = new EmptyList<>(); |
|
/** |
|
* Returns an empty list (immutable). This list is serializable. |
|
* |
|
* <p>This example illustrates the type-safe way to obtain an empty list: |
|
* <pre> |
|
* List<String> s = Collections.emptyList(); |
|
* </pre> |
|
* |
|
* @implNote |
|
* Implementations of this method need not create a separate <tt>List</tt> |
|
* object for each call. Using this method is likely to have comparable |
|
* cost to using the like-named field. (Unlike this method, the field does |
|
* not provide type safety.) |
|
* |
|
* @param <T> type of elements, if there were any, in the list |
|
* @return an empty immutable list |
|
* |
|
* @see #EMPTY_LIST |
|
* @since 1.5 |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static final <T> List<T> emptyList() { |
|
return (List<T>) EMPTY_LIST; |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
private static class EmptyList<E> |
|
extends AbstractList<E> |
|
implements RandomAccess, Serializable { |
|
private static final long serialVersionUID = 8842843931221139166L; |
|
public Iterator<E> iterator() { |
|
return emptyIterator(); |
|
} |
|
public ListIterator<E> listIterator() { |
|
return emptyListIterator(); |
|
} |
|
public int size() {return 0;} |
|
public boolean isEmpty() {return true;} |
|
public boolean contains(Object obj) {return false;} |
|
public boolean containsAll(Collection<?> c) { return c.isEmpty(); } |
|
public Object[] toArray() { return new Object[0]; } |
|
public <T> T[] toArray(T[] a) { |
|
if (a.length > 0) |
|
a[0] = null; |
|
return a; |
|
} |
|
public E get(int index) { |
|
throw new IndexOutOfBoundsException("Index: "+index); |
|
} |
|
public boolean equals(Object o) { |
|
return (o instanceof List) && ((List<?>)o).isEmpty(); |
|
} |
|
public int hashCode() { return 1; } |
|
@Override |
|
public boolean removeIf(Predicate<? super E> filter) { |
|
Objects.requireNonNull(filter); |
|
return false; |
|
} |
|
@Override |
|
public void replaceAll(UnaryOperator<E> operator) { |
|
Objects.requireNonNull(operator); |
|
} |
|
@Override |
|
public void sort(Comparator<? super E> c) { |
|
} |
|
// Override default methods in Collection |
|
@Override |
|
public void forEach(Consumer<? super E> action) { |
|
Objects.requireNonNull(action); |
|
} |
|
@Override |
|
public Spliterator<E> spliterator() { return Spliterators.emptySpliterator(); } |
|
// Preserves singleton property |
|
private Object readResolve() { |
|
return EMPTY_LIST; |
|
} |
|
} |
|
/** |
|
* The empty map (immutable). This map is serializable. |
|
* |
|
* @see #emptyMap() |
|
* @since 1.3 |
|
*/ |
|
@SuppressWarnings("rawtypes") |
|
public static final Map EMPTY_MAP = new EmptyMap<>(); |
|
/** |
|
* Returns an empty map (immutable). This map is serializable. |
|
* |
|
* <p>This example illustrates the type-safe way to obtain an empty map: |
|
* <pre> |
|
* Map<String, Date> s = Collections.emptyMap(); |
|
* </pre> |
|
* @implNote Implementations of this method need not create a separate |
|
* {@code Map} object for each call. Using this method is likely to have |
|
* comparable cost to using the like-named field. (Unlike this method, the |
|
* field does not provide type safety.) |
|
* |
|
* @param <K> the class of the map keys |
|
* @param <V> the class of the map values |
|
* @return an empty map |
|
* @see #EMPTY_MAP |
|
* @since 1.5 |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static final <K,V> Map<K,V> emptyMap() { |
|
return (Map<K,V>) EMPTY_MAP; |
|
} |
|
/** |
|
* Returns an empty sorted map (immutable). This map is serializable. |
|
* |
|
* <p>This example illustrates the type-safe way to obtain an empty map: |
|
* <pre> {@code |
|
* SortedMap<String, Date> s = Collections.emptySortedMap(); |
|
* }</pre> |
|
* |
|
* @implNote Implementations of this method need not create a separate |
|
* {@code SortedMap} object for each call. |
|
* |
|
* @param <K> the class of the map keys |
|
* @param <V> the class of the map values |
|
* @return an empty sorted map |
|
* @since 1.8 |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static final <K,V> SortedMap<K,V> emptySortedMap() { |
|
return (SortedMap<K,V>) UnmodifiableNavigableMap.EMPTY_NAVIGABLE_MAP; |
|
} |
|
/** |
|
* Returns an empty navigable map (immutable). This map is serializable. |
|
* |
|
* <p>This example illustrates the type-safe way to obtain an empty map: |
|
* <pre> {@code |
|
* NavigableMap<String, Date> s = Collections.emptyNavigableMap(); |
|
* }</pre> |
|
* |
|
* @implNote Implementations of this method need not create a separate |
|
* {@code NavigableMap} object for each call. |
|
* |
|
* @param <K> the class of the map keys |
|
* @param <V> the class of the map values |
|
* @return an empty navigable map |
|
* @since 1.8 |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static final <K,V> NavigableMap<K,V> emptyNavigableMap() { |
|
return (NavigableMap<K,V>) UnmodifiableNavigableMap.EMPTY_NAVIGABLE_MAP; |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
private static class EmptyMap<K,V> |
|
extends AbstractMap<K,V> |
|
implements Serializable |
|
{ |
|
private static final long serialVersionUID = 6428348081105594320L; |
|
public int size() {return 0;} |
|
public boolean isEmpty() {return true;} |
|
public boolean containsKey(Object key) {return false;} |
|
public boolean containsValue(Object value) {return false;} |
|
public V get(Object key) {return null;} |
|
public Set<K> keySet() {return emptySet();} |
|
public Collection<V> values() {return emptySet();} |
|
public Set<Map.Entry<K,V>> entrySet() {return emptySet();} |
|
public boolean equals(Object o) { |
|
return (o instanceof Map) && ((Map<?,?>)o).isEmpty(); |
|
} |
|
public int hashCode() {return 0;} |
|
// Override default methods in Map |
|
@Override |
|
@SuppressWarnings("unchecked") |
|
public V getOrDefault(Object k, V defaultValue) { |
|
return defaultValue; |
|
} |
|
@Override |
|
public void forEach(BiConsumer<? super K, ? super V> action) { |
|
Objects.requireNonNull(action); |
|
} |
|
@Override |
|
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { |
|
Objects.requireNonNull(function); |
|
} |
|
@Override |
|
public V putIfAbsent(K key, V value) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public boolean remove(Object key, Object value) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public boolean replace(K key, V oldValue, V newValue) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V replace(K key, V value) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V computeIfAbsent(K key, |
|
Function<? super K, ? extends V> mappingFunction) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V computeIfPresent(K key, |
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V compute(K key, |
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V merge(K key, V value, |
|
BiFunction<? super V, ? super V, ? extends V> remappingFunction) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
// Preserves singleton property |
|
private Object readResolve() { |
|
return EMPTY_MAP; |
|
} |
|
} |
|
// Singleton collections |
|
/** |
|
* Returns an immutable set containing only the specified object. |
|
* The returned set is serializable. |
|
* |
|
* @param <T> the class of the objects in the set |
|
* @param o the sole object to be stored in the returned set. |
|
* @return an immutable set containing only the specified object. |
|
*/ |
|
public static <T> Set<T> singleton(T o) { |
|
return new SingletonSet<>(o); |
|
} |
|
static <E> Iterator<E> singletonIterator(final E e) { |
|
return new Iterator<E>() { |
|
private boolean hasNext = true; |
|
public boolean hasNext() { |
|
return hasNext; |
|
} |
|
public E next() { |
|
if (hasNext) { |
|
hasNext = false; |
|
return e; |
|
} |
|
throw new NoSuchElementException(); |
|
} |
|
public void remove() { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public void forEachRemaining(Consumer<? super E> action) { |
|
Objects.requireNonNull(action); |
|
if (hasNext) { |
|
action.accept(e); |
|
hasNext = false; |
|
} |
|
} |
|
}; |
|
} |
|
/** |
|
* Creates a {@code Spliterator} with only the specified element |
|
* |
|
* @param <T> Type of elements |
|
* @return A singleton {@code Spliterator} |
|
*/ |
|
static <T> Spliterator<T> singletonSpliterator(final T element) { |
|
return new Spliterator<T>() { |
|
long est = 1; |
|
@Override |
|
public Spliterator<T> trySplit() { |
|
return null; |
|
} |
|
@Override |
|
public boolean tryAdvance(Consumer<? super T> consumer) { |
|
Objects.requireNonNull(consumer); |
|
if (est > 0) { |
|
est--; |
|
consumer.accept(element); |
|
return true; |
|
} |
|
return false; |
|
} |
|
@Override |
|
public void forEachRemaining(Consumer<? super T> consumer) { |
|
tryAdvance(consumer); |
|
} |
|
@Override |
|
public long estimateSize() { |
|
return est; |
|
} |
|
@Override |
|
public int characteristics() { |
|
int value = (element != null) ? Spliterator.NONNULL : 0; |
|
return value | Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.IMMUTABLE | |
|
Spliterator.DISTINCT | Spliterator.ORDERED; |
|
} |
|
}; |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
private static class SingletonSet<E> |
|
extends AbstractSet<E> |
|
implements Serializable |
|
{ |
|
private static final long serialVersionUID = 3193687207550431679L; |
|
private final E element; |
|
SingletonSet(E e) {element = e;} |
|
public Iterator<E> iterator() { |
|
return singletonIterator(element); |
|
} |
|
public int size() {return 1;} |
|
public boolean contains(Object o) {return eq(o, element);} |
|
// Override default methods for Collection |
|
@Override |
|
public void forEach(Consumer<? super E> action) { |
|
action.accept(element); |
|
} |
|
@Override |
|
public Spliterator<E> spliterator() { |
|
return singletonSpliterator(element); |
|
} |
|
@Override |
|
public boolean removeIf(Predicate<? super E> filter) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
} |
|
/** |
|
* Returns an immutable list containing only the specified object. |
|
* The returned list is serializable. |
|
* |
|
* @param <T> the class of the objects in the list |
|
* @param o the sole object to be stored in the returned list. |
|
* @return an immutable list containing only the specified object. |
|
* @since 1.3 |
|
*/ |
|
public static <T> List<T> singletonList(T o) { |
|
return new SingletonList<>(o); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
private static class SingletonList<E> |
|
extends AbstractList<E> |
|
implements RandomAccess, Serializable { |
|
private static final long serialVersionUID = 3093736618740652951L; |
|
private final E element; |
|
SingletonList(E obj) {element = obj;} |
|
public Iterator<E> iterator() { |
|
return singletonIterator(element); |
|
} |
|
public int size() {return 1;} |
|
public boolean contains(Object obj) {return eq(obj, element);} |
|
public E get(int index) { |
|
if (index != 0) |
|
throw new IndexOutOfBoundsException("Index: "+index+", Size: 1"); |
|
return element; |
|
} |
|
// Override default methods for Collection |
|
@Override |
|
public void forEach(Consumer<? super E> action) { |
|
action.accept(element); |
|
} |
|
@Override |
|
public boolean removeIf(Predicate<? super E> filter) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public void replaceAll(UnaryOperator<E> operator) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public void sort(Comparator<? super E> c) { |
|
} |
|
@Override |
|
public Spliterator<E> spliterator() { |
|
return singletonSpliterator(element); |
|
} |
|
} |
|
/** |
|
* Returns an immutable map, mapping only the specified key to the |
|
* specified value. The returned map is serializable. |
|
* |
|
* @param <K> the class of the map keys |
|
* @param <V> the class of the map values |
|
* @param key the sole key to be stored in the returned map. |
|
* @param value the value to which the returned map maps <tt>key</tt>. |
|
* @return an immutable map containing only the specified key-value |
|
* mapping. |
|
* @since 1.3 |
|
*/ |
|
public static <K,V> Map<K,V> singletonMap(K key, V value) { |
|
return new SingletonMap<>(key, value); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
private static class SingletonMap<K,V> |
|
extends AbstractMap<K,V> |
|
implements Serializable { |
|
private static final long serialVersionUID = -6979724477215052911L; |
|
private final K k; |
|
private final V v; |
|
SingletonMap(K key, V value) { |
|
k = key; |
|
v = value; |
|
} |
|
public int size() {return 1;} |
|
public boolean isEmpty() {return false;} |
|
public boolean containsKey(Object key) {return eq(key, k);} |
|
public boolean containsValue(Object value) {return eq(value, v);} |
|
public V get(Object key) {return (eq(key, k) ? v : null);} |
|
private transient Set<K> keySet; |
|
private transient Set<Map.Entry<K,V>> entrySet; |
|
private transient Collection<V> values; |
|
public Set<K> keySet() { |
|
if (keySet==null) |
|
keySet = singleton(k); |
|
return keySet; |
|
} |
|
public Set<Map.Entry<K,V>> entrySet() { |
|
if (entrySet==null) |
|
entrySet = Collections.<Map.Entry<K,V>>singleton( |
|
new SimpleImmutableEntry<>(k, v)); |
|
return entrySet; |
|
} |
|
public Collection<V> values() { |
|
if (values==null) |
|
values = singleton(v); |
|
return values; |
|
} |
|
// Override default methods in Map |
|
@Override |
|
public V getOrDefault(Object key, V defaultValue) { |
|
return eq(key, k) ? v : defaultValue; |
|
} |
|
@Override |
|
public void forEach(BiConsumer<? super K, ? super V> action) { |
|
action.accept(k, v); |
|
} |
|
@Override |
|
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V putIfAbsent(K key, V value) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public boolean remove(Object key, Object value) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public boolean replace(K key, V oldValue, V newValue) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V replace(K key, V value) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V computeIfAbsent(K key, |
|
Function<? super K, ? extends V> mappingFunction) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V computeIfPresent(K key, |
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V compute(K key, |
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
@Override |
|
public V merge(K key, V value, |
|
BiFunction<? super V, ? super V, ? extends V> remappingFunction) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
} |
|
// Miscellaneous |
|
/** |
|
* Returns an immutable list consisting of <tt>n</tt> copies of the |
|
* specified object. The newly allocated data object is tiny (it contains |
|
* a single reference to the data object). This method is useful in |
|
* combination with the <tt>List.addAll</tt> method to grow lists. |
|
* The returned list is serializable. |
|
* |
|
* @param <T> the class of the object to copy and of the objects |
|
* in the returned list. |
|
* @param n the number of elements in the returned list. |
|
* @param o the element to appear repeatedly in the returned list. |
|
* @return an immutable list consisting of <tt>n</tt> copies of the |
|
* specified object. |
|
* @throws IllegalArgumentException if {@code n < 0} |
|
* @see List#addAll(Collection) |
|
* @see List#addAll(int, Collection) |
|
*/ |
|
public static <T> List<T> nCopies(int n, T o) { |
|
if (n < 0) |
|
throw new IllegalArgumentException("List length = " + n); |
|
return new CopiesList<>(n, o); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
private static class CopiesList<E> |
|
extends AbstractList<E> |
|
implements RandomAccess, Serializable |
|
{ |
|
private static final long serialVersionUID = 2739099268398711800L; |
|
final int n; |
|
final E element; |
|
CopiesList(int n, E e) { |
|
assert n >= 0; |
|
this.n = n; |
|
element = e; |
|
} |
|
public int size() { |
|
return n; |
|
} |
|
public boolean contains(Object obj) { |
|
return n != 0 && eq(obj, element); |
|
} |
|
public int indexOf(Object o) { |
|
return contains(o) ? 0 : -1; |
|
} |
|
public int lastIndexOf(Object o) { |
|
return contains(o) ? n - 1 : -1; |
|
} |
|
public E get(int index) { |
|
if (index < 0 || index >= n) |
|
throw new IndexOutOfBoundsException("Index: "+index+ |
|
", Size: "+n); |
|
return element; |
|
} |
|
public Object[] toArray() { |
|
final Object[] a = new Object[n]; |
|
if (element != null) |
|
Arrays.fill(a, 0, n, element); |
|
return a; |
|
} |
|
@SuppressWarnings("unchecked") |
|
public <T> T[] toArray(T[] a) { |
|
final int n = this.n; |
|
if (a.length < n) { |
|
a = (T[])java.lang.reflect.Array |
|
.newInstance(a.getClass().getComponentType(), n); |
|
if (element != null) |
|
Arrays.fill(a, 0, n, element); |
|
} else { |
|
Arrays.fill(a, 0, n, element); |
|
if (a.length > n) |
|
a[n] = null; |
|
} |
|
return a; |
|
} |
|
public List<E> subList(int fromIndex, int toIndex) { |
|
if (fromIndex < 0) |
|
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex); |
|
if (toIndex > n) |
|
throw new IndexOutOfBoundsException("toIndex = " + toIndex); |
|
if (fromIndex > toIndex) |
|
throw new IllegalArgumentException("fromIndex(" + fromIndex + |
|
") > toIndex(" + toIndex + ")"); |
|
return new CopiesList<>(toIndex - fromIndex, element); |
|
} |
|
@Override |
|
public int hashCode() { |
|
if (n == 0) return 1; |
|
// hashCode of n repeating elements is 31^n + elementHash * Sum(31^k, k = 0..n-1) |
|
// this implementation completes in O(log(n)) steps taking advantage of |
|
// 31^(2*n) = (31^n)^2 and Sum(31^k, k = 0..(2*n-1)) = Sum(31^k, k = 0..n-1) * (31^n + 1) |
|
int pow = 31; |
|
int sum = 1; |
|
for (int i = Integer.numberOfLeadingZeros(n) + 1; i < Integer.SIZE; i++) { |
|
sum *= pow + 1; |
|
pow *= pow; |
|
if ((n << i) < 0) { |
|
pow *= 31; |
|
sum = sum * 31 + 1; |
|
} |
|
} |
|
return pow + sum * (element == null ? 0 : element.hashCode()); |
|
} |
|
@Override |
|
public boolean equals(Object o) { |
|
if (o == this) |
|
return true; |
|
if (o instanceof CopiesList) { |
|
CopiesList<?> other = (CopiesList<?>) o; |
|
return n == other.n && (n == 0 || eq(element, other.element)); |
|
} |
|
if (!(o instanceof List)) |
|
return false; |
|
int remaining = n; |
|
E e = element; |
|
Iterator<?> itr = ((List<?>) o).iterator(); |
|
if (e == null) { |
|
while (itr.hasNext() && remaining-- > 0) { |
|
if (itr.next() != null) |
|
return false; |
|
} |
|
} else { |
|
while (itr.hasNext() && remaining-- > 0) { |
|
if (!e.equals(itr.next())) |
|
return false; |
|
} |
|
} |
|
return remaining == 0 && !itr.hasNext(); |
|
} |
|
// Override default methods in Collection |
|
@Override |
|
public Stream<E> stream() { |
|
return IntStream.range(0, n).mapToObj(i -> element); |
|
} |
|
@Override |
|
public Stream<E> parallelStream() { |
|
return IntStream.range(0, n).parallel().mapToObj(i -> element); |
|
} |
|
@Override |
|
public Spliterator<E> spliterator() { |
|
return stream().spliterator(); |
|
} |
|
private void readObject(ObjectInputStream ois) throws IOException, ClassNotFoundException { |
|
ois.defaultReadObject(); |
|
SharedSecrets.getJavaOISAccess().checkArray(ois, Object[].class, n); |
|
} |
|
} |
|
/** |
|
* Returns a comparator that imposes the reverse of the <em>natural |
|
* ordering</em> on a collection of objects that implement the |
|
* {@code Comparable} interface. (The natural ordering is the ordering |
|
* imposed by the objects' own {@code compareTo} method.) This enables a |
|
* simple idiom for sorting (or maintaining) collections (or arrays) of |
|
* objects that implement the {@code Comparable} interface in |
|
* reverse-natural-order. For example, suppose {@code a} is an array of |
|
* strings. Then: <pre> |
|
* Arrays.sort(a, Collections.reverseOrder()); |
|
* </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p> |
|
* |
|
* The returned comparator is serializable. |
|
* |
|
* @param <T> the class of the objects compared by the comparator |
|
* @return A comparator that imposes the reverse of the <i>natural |
|
* ordering</i> on a collection of objects that implement |
|
* the <tt>Comparable</tt> interface. |
|
* @see Comparable |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public static <T> Comparator<T> reverseOrder() { |
|
return (Comparator<T>) ReverseComparator.REVERSE_ORDER; |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
private static class ReverseComparator |
|
implements Comparator<Comparable<Object>>, Serializable { |
|
private static final long serialVersionUID = 7207038068494060240L; |
|
static final ReverseComparator REVERSE_ORDER |
|
= new ReverseComparator(); |
|
public int compare(Comparable<Object> c1, Comparable<Object> c2) { |
|
return c2.compareTo(c1); |
|
} |
|
private Object readResolve() { return Collections.reverseOrder(); } |
|
@Override |
|
public Comparator<Comparable<Object>> reversed() { |
|
return Comparator.naturalOrder(); |
|
} |
|
} |
|
/** |
|
* Returns a comparator that imposes the reverse ordering of the specified |
|
* comparator. If the specified comparator is {@code null}, this method is |
|
* equivalent to {@link #reverseOrder()} (in other words, it returns a |
|
* comparator that imposes the reverse of the <em>natural ordering</em> on |
|
* a collection of objects that implement the Comparable interface). |
|
* |
|
* <p>The returned comparator is serializable (assuming the specified |
|
* comparator is also serializable or {@code null}). |
|
* |
|
* @param <T> the class of the objects compared by the comparator |
|
* @param cmp a comparator who's ordering is to be reversed by the returned |
|
* comparator or {@code null} |
|
* @return A comparator that imposes the reverse ordering of the |
|
* specified comparator. |
|
* @since 1.5 |
|
*/ |
|
public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) { |
|
if (cmp == null) |
|
return reverseOrder(); |
|
if (cmp instanceof ReverseComparator2) |
|
return ((ReverseComparator2<T>)cmp).cmp; |
|
return new ReverseComparator2<>(cmp); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
private static class ReverseComparator2<T> implements Comparator<T>, |
|
Serializable |
|
{ |
|
private static final long serialVersionUID = 4374092139857L; |
|
/** |
|
* The comparator specified in the static factory. This will never |
|
* be null, as the static factory returns a ReverseComparator |
|
* instance if its argument is null. |
|
* |
|
* @serial |
|
*/ |
|
final Comparator<T> cmp; |
|
ReverseComparator2(Comparator<T> cmp) { |
|
assert cmp != null; |
|
this.cmp = cmp; |
|
} |
|
public int compare(T t1, T t2) { |
|
return cmp.compare(t2, t1); |
|
} |
|
public boolean equals(Object o) { |
|
return (o == this) || |
|
(o instanceof ReverseComparator2 && |
|
cmp.equals(((ReverseComparator2)o).cmp)); |
|
} |
|
public int hashCode() { |
|
return cmp.hashCode() ^ Integer.MIN_VALUE; |
|
} |
|
@Override |
|
public Comparator<T> reversed() { |
|
return cmp; |
|
} |
|
} |
|
/** |
|
* Returns an enumeration over the specified collection. This provides |
|
* interoperability with legacy APIs that require an enumeration |
|
* as input. |
|
* |
|
* @param <T> the class of the objects in the collection |
|
* @param c the collection for which an enumeration is to be returned. |
|
* @return an enumeration over the specified collection. |
|
* @see Enumeration |
|
*/ |
|
public static <T> Enumeration<T> enumeration(final Collection<T> c) { |
|
return new Enumeration<T>() { |
|
private final Iterator<T> i = c.iterator(); |
|
public boolean hasMoreElements() { |
|
return i.hasNext(); |
|
} |
|
public T nextElement() { |
|
return i.next(); |
|
} |
|
}; |
|
} |
|
/** |
|
* Returns an array list containing the elements returned by the |
|
* specified enumeration in the order they are returned by the |
|
* enumeration. This method provides interoperability between |
|
* legacy APIs that return enumerations and new APIs that require |
|
* collections. |
|
* |
|
* @param <T> the class of the objects returned by the enumeration |
|
* @param e enumeration providing elements for the returned |
|
* array list |
|
* @return an array list containing the elements returned |
|
* by the specified enumeration. |
|
* @since 1.4 |
|
* @see Enumeration |
|
* @see ArrayList |
|
*/ |
|
public static <T> ArrayList<T> list(Enumeration<T> e) { |
|
ArrayList<T> l = new ArrayList<>(); |
|
while (e.hasMoreElements()) |
|
l.add(e.nextElement()); |
|
return l; |
|
} |
|
/** |
|
* Returns true if the specified arguments are equal, or both null. |
|
* |
|
* NB: Do not replace with Object.equals until JDK-8015417 is resolved. |
|
*/ |
|
static boolean eq(Object o1, Object o2) { |
|
return o1==null ? o2==null : o1.equals(o2); |
|
} |
|
/** |
|
* Returns the number of elements in the specified collection equal to the |
|
* specified object. More formally, returns the number of elements |
|
* <tt>e</tt> in the collection such that |
|
* <tt>(o == null ? e == null : o.equals(e))</tt>. |
|
* |
|
* @param c the collection in which to determine the frequency |
|
* of <tt>o</tt> |
|
* @param o the object whose frequency is to be determined |
|
* @return the number of elements in {@code c} equal to {@code o} |
|
* @throws NullPointerException if <tt>c</tt> is null |
|
* @since 1.5 |
|
*/ |
|
public static int frequency(Collection<?> c, Object o) { |
|
int result = 0; |
|
if (o == null) { |
|
for (Object e : c) |
|
if (e == null) |
|
result++; |
|
} else { |
|
for (Object e : c) |
|
if (o.equals(e)) |
|
result++; |
|
} |
|
return result; |
|
} |
|
/** |
|
* Returns {@code true} if the two specified collections have no |
|
* elements in common. |
|
* |
|
* <p>Care must be exercised if this method is used on collections that |
|
* do not comply with the general contract for {@code Collection}. |
|
* Implementations may elect to iterate over either collection and test |
|
* for containment in the other collection (or to perform any equivalent |
|
* computation). If either collection uses a nonstandard equality test |
|
* (as does a {@link SortedSet} whose ordering is not <em>compatible with |
|
* equals</em>, or the key set of an {@link IdentityHashMap}), both |
|
* collections must use the same nonstandard equality test, or the |
|
* result of this method is undefined. |
|
* |
|
* <p>Care must also be exercised when using collections that have |
|
* restrictions on the elements that they may contain. Collection |
|
* implementations are allowed to throw exceptions for any operation |
|
* involving elements they deem ineligible. For absolute safety the |
|
* specified collections should contain only elements which are |
|
* eligible elements for both collections. |
|
* |
|
* <p>Note that it is permissible to pass the same collection in both |
|
* parameters, in which case the method will return {@code true} if and |
|
* only if the collection is empty. |
|
* |
|
* @param c1 a collection |
|
* @param c2 a collection |
|
* @return {@code true} if the two specified collections have no |
|
* elements in common. |
|
* @throws NullPointerException if either collection is {@code null}. |
|
* @throws NullPointerException if one collection contains a {@code null} |
|
* element and {@code null} is not an eligible element for the other collection. |
|
* (<a href="Collection.html#optional-restrictions">optional</a>) |
|
* @throws ClassCastException if one collection contains an element that is |
|
* of a type which is ineligible for the other collection. |
|
* (<a href="Collection.html#optional-restrictions">optional</a>) |
|
* @since 1.5 |
|
*/ |
|
public static boolean disjoint(Collection<?> c1, Collection<?> c2) { |
|
// The collection to be used for contains(). Preference is given to |
|
// the collection who's contains() has lower O() complexity. |
|
Collection<?> contains = c2; |
|
// The collection to be iterated. If the collections' contains() impl |
|
// are of different O() complexity, the collection with slower |
|
// contains() will be used for iteration. For collections who's |
|
// contains() are of the same complexity then best performance is |
|
// achieved by iterating the smaller collection. |
|
Collection<?> iterate = c1; |
|
// Performance optimization cases. The heuristics: |
|
// 1. Generally iterate over c1. |
|
// 2. If c1 is a Set then iterate over c2. |
|
// 3. If either collection is empty then result is always true. |
|
// 4. Iterate over the smaller Collection. |
|
if (c1 instanceof Set) { |
|
// Use c1 for contains as a Set's contains() is expected to perform |
|
// better than O(N/2) |
|
iterate = c2; |
|
contains = c1; |
|
} else if (!(c2 instanceof Set)) { |
|
// Both are mere Collections. Iterate over smaller collection. |
|
// Example: If c1 contains 3 elements and c2 contains 50 elements and |
|
// assuming contains() requires ceiling(N/2) comparisons then |
|
// checking for all c1 elements in c2 would require 75 comparisons |
|
// (3 * ceiling(50/2)) vs. checking all c2 elements in c1 requiring |
|
// 100 comparisons (50 * ceiling(3/2)). |
|
int c1size = c1.size(); |
|
int c2size = c2.size(); |
|
if (c1size == 0 || c2size == 0) { |
|
// At least one collection is empty. Nothing will match. |
|
return true; |
|
} |
|
if (c1size > c2size) { |
|
iterate = c2; |
|
contains = c1; |
|
} |
|
} |
|
for (Object e : iterate) { |
|
if (contains.contains(e)) { |
|
// Found a common element. Collections are not disjoint. |
|
return false; |
|
} |
|
} |
|
// No common elements were found. |
|
return true; |
|
} |
|
/** |
|
* Adds all of the specified elements to the specified collection. |
|
* Elements to be added may be specified individually or as an array. |
|
* The behavior of this convenience method is identical to that of |
|
* <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely |
|
* to run significantly faster under most implementations. |
|
* |
|
* <p>When elements are specified individually, this method provides a |
|
* convenient way to add a few elements to an existing collection: |
|
* <pre> |
|
* Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon"); |
|
* </pre> |
|
* |
|
* @param <T> the class of the elements to add and of the collection |
|
* @param c the collection into which <tt>elements</tt> are to be inserted |
|
* @param elements the elements to insert into <tt>c</tt> |
|
* @return <tt>true</tt> if the collection changed as a result of the call |
|
* @throws UnsupportedOperationException if <tt>c</tt> does not support |
|
* the <tt>add</tt> operation |
|
* @throws NullPointerException if <tt>elements</tt> contains one or more |
|
* null values and <tt>c</tt> does not permit null elements, or |
|
* if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt> |
|
* @throws IllegalArgumentException if some property of a value in |
|
* <tt>elements</tt> prevents it from being added to <tt>c</tt> |
|
* @see Collection#addAll(Collection) |
|
* @since 1.5 |
|
*/ |
|
@SafeVarargs |
|
public static <T> boolean addAll(Collection<? super T> c, T... elements) { |
|
boolean result = false; |
|
for (T element : elements) |
|
result |= c.add(element); |
|
return result; |
|
} |
|
/** |
|
* Returns a set backed by the specified map. The resulting set displays |
|
* the same ordering, concurrency, and performance characteristics as the |
|
* backing map. In essence, this factory method provides a {@link Set} |
|
* implementation corresponding to any {@link Map} implementation. There |
|
* is no need to use this method on a {@link Map} implementation that |
|
* already has a corresponding {@link Set} implementation (such as {@link |
|
* HashMap} or {@link TreeMap}). |
|
* |
|
* <p>Each method invocation on the set returned by this method results in |
|
* exactly one method invocation on the backing map or its <tt>keySet</tt> |
|
* view, with one exception. The <tt>addAll</tt> method is implemented |
|
* as a sequence of <tt>put</tt> invocations on the backing map. |
|
* |
|
* <p>The specified map must be empty at the time this method is invoked, |
|
* and should not be accessed directly after this method returns. These |
|
* conditions are ensured if the map is created empty, passed directly |
|
* to this method, and no reference to the map is retained, as illustrated |
|
* in the following code fragment: |
|
* <pre> |
|
* Set<Object> weakHashSet = Collections.newSetFromMap( |
|
* new WeakHashMap<Object, Boolean>()); |
|
* </pre> |
|
* |
|
* @param <E> the class of the map keys and of the objects in the |
|
* returned set |
|
* @param map the backing map |
|
* @return the set backed by the map |
|
* @throws IllegalArgumentException if <tt>map</tt> is not empty |
|
* @since 1.6 |
|
*/ |
|
public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) { |
|
return new SetFromMap<>(map); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
private static class SetFromMap<E> extends AbstractSet<E> |
|
implements Set<E>, Serializable |
|
{ |
|
private final Map<E, Boolean> m; // The backing map |
|
private transient Set<E> s; // Its keySet |
|
SetFromMap(Map<E, Boolean> map) { |
|
if (!map.isEmpty()) |
|
throw new IllegalArgumentException("Map is non-empty"); |
|
m = map; |
|
s = map.keySet(); |
|
} |
|
public void clear() { m.clear(); } |
|
public int size() { return m.size(); } |
|
public boolean isEmpty() { return m.isEmpty(); } |
|
public boolean contains(Object o) { return m.containsKey(o); } |
|
public boolean remove(Object o) { return m.remove(o) != null; } |
|
public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; } |
|
public Iterator<E> iterator() { return s.iterator(); } |
|
public Object[] toArray() { return s.toArray(); } |
|
public <T> T[] toArray(T[] a) { return s.toArray(a); } |
|
public String toString() { return s.toString(); } |
|
public int hashCode() { return s.hashCode(); } |
|
public boolean equals(Object o) { return o == this || s.equals(o); } |
|
public boolean containsAll(Collection<?> c) {return s.containsAll(c);} |
|
public boolean removeAll(Collection<?> c) {return s.removeAll(c);} |
|
public boolean retainAll(Collection<?> c) {return s.retainAll(c);} |
|
// addAll is the only inherited implementation |
|
// Override default methods in Collection |
|
@Override |
|
public void forEach(Consumer<? super E> action) { |
|
s.forEach(action); |
|
} |
|
@Override |
|
public boolean removeIf(Predicate<? super E> filter) { |
|
return s.removeIf(filter); |
|
} |
|
@Override |
|
public Spliterator<E> spliterator() {return s.spliterator();} |
|
@Override |
|
public Stream<E> stream() {return s.stream();} |
|
@Override |
|
public Stream<E> parallelStream() {return s.parallelStream();} |
|
private static final long serialVersionUID = 2454657854757543876L; |
|
private void readObject(java.io.ObjectInputStream stream) |
|
throws IOException, ClassNotFoundException |
|
{ |
|
stream.defaultReadObject(); |
|
s = m.keySet(); |
|
} |
|
} |
|
/** |
|
* Returns a view of a {@link Deque} as a Last-in-first-out (Lifo) |
|
* {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>, |
|
* <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This |
|
* view can be useful when you would like to use a method |
|
* requiring a <tt>Queue</tt> but you need Lifo ordering. |
|
* |
|
* <p>Each method invocation on the queue returned by this method |
|
* results in exactly one method invocation on the backing deque, with |
|
* one exception. The {@link Queue#addAll addAll} method is |
|
* implemented as a sequence of {@link Deque#addFirst addFirst} |
|
* invocations on the backing deque. |
|
* |
|
* @param <T> the class of the objects in the deque |
|
* @param deque the deque |
|
* @return the queue |
|
* @since 1.6 |
|
*/ |
|
public static <T> Queue<T> asLifoQueue(Deque<T> deque) { |
|
return new AsLIFOQueue<>(deque); |
|
} |
|
/** |
|
* @serial include |
|
*/ |
|
static class AsLIFOQueue<E> extends AbstractQueue<E> |
|
implements Queue<E>, Serializable { |
|
private static final long serialVersionUID = 1802017725587941708L; |
|
private final Deque<E> q; |
|
AsLIFOQueue(Deque<E> q) { this.q = q; } |
|
public boolean add(E e) { q.addFirst(e); return true; } |
|
public boolean offer(E e) { return q.offerFirst(e); } |
|
public E poll() { return q.pollFirst(); } |
|
public E remove() { return q.removeFirst(); } |
|
public E peek() { return q.peekFirst(); } |
|
public E element() { return q.getFirst(); } |
|
public void clear() { q.clear(); } |
|
public int size() { return q.size(); } |
|
public boolean isEmpty() { return q.isEmpty(); } |
|
public boolean contains(Object o) { return q.contains(o); } |
|
public boolean remove(Object o) { return q.remove(o); } |
|
public Iterator<E> iterator() { return q.iterator(); } |
|
public Object[] toArray() { return q.toArray(); } |
|
public <T> T[] toArray(T[] a) { return q.toArray(a); } |
|
public String toString() { return q.toString(); } |
|
public boolean containsAll(Collection<?> c) {return q.containsAll(c);} |
|
public boolean removeAll(Collection<?> c) {return q.removeAll(c);} |
|
public boolean retainAll(Collection<?> c) {return q.retainAll(c);} |
|
// We use inherited addAll; forwarding addAll would be wrong |
|
// Override default methods in Collection |
|
@Override |
|
public void forEach(Consumer<? super E> action) {q.forEach(action);} |
|
@Override |
|
public boolean removeIf(Predicate<? super E> filter) { |
|
return q.removeIf(filter); |
|
} |
|
@Override |
|
public Spliterator<E> spliterator() {return q.spliterator();} |
|
@Override |
|
public Stream<E> stream() {return q.stream();} |
|
@Override |
|
public Stream<E> parallelStream() {return q.parallelStream();} |
|
} |
|
} |