|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
|
|
/* |
|
* This file is available under and governed by the GNU General Public |
|
* License version 2 only, as published by the Free Software Foundation. |
|
* However, the following notice accompanied the original version of this |
|
* file: |
|
* |
|
* Written by Doug Lea with assistance from members of JCP JSR-166 |
|
* Expert Group and released to the public domain, as explained at |
|
* http://creativecommons.org/publicdomain/zero/1.0/ |
|
*/ |
|
|
|
package java.util.concurrent; |
|
|
|
import java.io.ObjectStreamField; |
|
import java.io.Serializable; |
|
import java.lang.reflect.ParameterizedType; |
|
import java.lang.reflect.Type; |
|
import java.util.AbstractMap; |
|
import java.util.Arrays; |
|
import java.util.Collection; |
|
import java.util.Comparator; |
|
import java.util.Enumeration; |
|
import java.util.HashMap; |
|
import java.util.Hashtable; |
|
import java.util.Iterator; |
|
import java.util.Map; |
|
import java.util.NoSuchElementException; |
|
import java.util.Set; |
|
import java.util.Spliterator; |
|
import java.util.concurrent.ConcurrentMap; |
|
import java.util.concurrent.ForkJoinPool; |
|
import java.util.concurrent.atomic.AtomicReference; |
|
import java.util.concurrent.locks.LockSupport; |
|
import java.util.concurrent.locks.ReentrantLock; |
|
import java.util.function.BiConsumer; |
|
import java.util.function.BiFunction; |
|
import java.util.function.BinaryOperator; |
|
import java.util.function.Consumer; |
|
import java.util.function.DoubleBinaryOperator; |
|
import java.util.function.Function; |
|
import java.util.function.IntBinaryOperator; |
|
import java.util.function.LongBinaryOperator; |
|
import java.util.function.ToDoubleBiFunction; |
|
import java.util.function.ToDoubleFunction; |
|
import java.util.function.ToIntBiFunction; |
|
import java.util.function.ToIntFunction; |
|
import java.util.function.ToLongBiFunction; |
|
import java.util.function.ToLongFunction; |
|
import java.util.stream.Stream; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public class ConcurrentHashMap<K,V> extends AbstractMap<K,V> |
|
implements ConcurrentMap<K,V>, Serializable { |
|
private static final long serialVersionUID = 7249069246763182397L; |
|
|
|
/* |
|
* Overview: |
|
* |
|
* The primary design goal of this hash table is to maintain |
|
* concurrent readability (typically method get(), but also |
|
* iterators and related methods) while minimizing update |
|
* contention. Secondary goals are to keep space consumption about |
|
* the same or better than java.util.HashMap, and to support high |
|
* initial insertion rates on an empty table by many threads. |
|
* |
|
* This map usually acts as a binned (bucketed) hash table. Each |
|
* key-value mapping is held in a Node. Most nodes are instances |
|
* of the basic Node class with hash, key, value, and next |
|
* fields. However, various subclasses exist: TreeNodes are |
|
* arranged in balanced trees, not lists. TreeBins hold the roots |
|
* of sets of TreeNodes. ForwardingNodes are placed at the heads |
|
* of bins during resizing. ReservationNodes are used as |
|
* placeholders while establishing values in computeIfAbsent and |
|
* related methods. The types TreeBin, ForwardingNode, and |
|
* ReservationNode do not hold normal user keys, values, or |
|
* hashes, and are readily distinguishable during search etc |
|
* because they have negative hash fields and null key and value |
|
* fields. (These special nodes are either uncommon or transient, |
|
* so the impact of carrying around some unused fields is |
|
* insignificant.) |
|
* |
|
* The table is lazily initialized to a power-of-two size upon the |
|
* first insertion. Each bin in the table normally contains a |
|
* list of Nodes (most often, the list has only zero or one Node). |
|
* Table accesses require volatile/atomic reads, writes, and |
|
* CASes. Because there is no other way to arrange this without |
|
* adding further indirections, we use intrinsics |
|
* (sun.misc.Unsafe) operations. |
|
* |
|
* We use the top (sign) bit of Node hash fields for control |
|
* purposes -- it is available anyway because of addressing |
|
* constraints. Nodes with negative hash fields are specially |
|
* handled or ignored in map methods. |
|
* |
|
* Insertion (via put or its variants) of the first node in an |
|
* empty bin is performed by just CASing it to the bin. This is |
|
* by far the most common case for put operations under most |
|
* key/hash distributions. Other update operations (insert, |
|
* delete, and replace) require locks. We do not want to waste |
|
* the space required to associate a distinct lock object with |
|
* each bin, so instead use the first node of a bin list itself as |
|
* a lock. Locking support for these locks relies on builtin |
|
* "synchronized" monitors. |
|
* |
|
* Using the first node of a list as a lock does not by itself |
|
* suffice though: When a node is locked, any update must first |
|
* validate that it is still the first node after locking it, and |
|
* retry if not. Because new nodes are always appended to lists, |
|
* once a node is first in a bin, it remains first until deleted |
|
* or the bin becomes invalidated (upon resizing). |
|
* |
|
* The main disadvantage of per-bin locks is that other update |
|
* operations on other nodes in a bin list protected by the same |
|
* lock can stall, for example when user equals() or mapping |
|
* functions take a long time. However, statistically, under |
|
* random hash codes, this is not a common problem. Ideally, the |
|
* frequency of nodes in bins follows a Poisson distribution |
|
* (http://en.wikipedia.org/wiki/Poisson_distribution) with a |
|
* parameter of about 0.5 on average, given the resizing threshold |
|
* of 0.75, although with a large variance because of resizing |
|
* granularity. Ignoring variance, the expected occurrences of |
|
* list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The |
|
* first values are: |
|
* |
|
* 0: 0.60653066 |
|
* 1: 0.30326533 |
|
* 2: 0.07581633 |
|
* 3: 0.01263606 |
|
* 4: 0.00157952 |
|
* 5: 0.00015795 |
|
* 6: 0.00001316 |
|
* 7: 0.00000094 |
|
* 8: 0.00000006 |
|
* more: less than 1 in ten million |
|
* |
|
* Lock contention probability for two threads accessing distinct |
|
* elements is roughly 1 / (8 * #elements) under random hashes. |
|
* |
|
* Actual hash code distributions encountered in practice |
|
* sometimes deviate significantly from uniform randomness. This |
|
* includes the case when N > (1<<30), so some keys MUST collide. |
|
* Similarly for dumb or hostile usages in which multiple keys are |
|
* designed to have identical hash codes or ones that differs only |
|
* in masked-out high bits. So we use a secondary strategy that |
|
* applies when the number of nodes in a bin exceeds a |
|
* threshold. These TreeBins use a balanced tree to hold nodes (a |
|
* specialized form of red-black trees), bounding search time to |
|
* O(log N). Each search step in a TreeBin is at least twice as |
|
* slow as in a regular list, but given that N cannot exceed |
|
* (1<<64) (before running out of addresses) this bounds search |
|
* steps, lock hold times, etc, to reasonable constants (roughly |
|
* 100 nodes inspected per operation worst case) so long as keys |
|
* are Comparable (which is very common -- String, Long, etc). |
|
* TreeBin nodes (TreeNodes) also maintain the same "next" |
|
* traversal pointers as regular nodes, so can be traversed in |
|
* iterators in the same way. |
|
* |
|
* The table is resized when occupancy exceeds a percentage |
|
* threshold (nominally, 0.75, but see below). Any thread |
|
* noticing an overfull bin may assist in resizing after the |
|
* initiating thread allocates and sets up the replacement array. |
|
* However, rather than stalling, these other threads may proceed |
|
* with insertions etc. The use of TreeBins shields us from the |
|
* worst case effects of overfilling while resizes are in |
|
* progress. Resizing proceeds by transferring bins, one by one, |
|
* from the table to the next table. However, threads claim small |
|
* blocks of indices to transfer (via field transferIndex) before |
|
* doing so, reducing contention. A generation stamp in field |
|
* sizeCtl ensures that resizings do not overlap. Because we are |
|
* using power-of-two expansion, the elements from each bin must |
|
* either stay at same index, or move with a power of two |
|
* offset. We eliminate unnecessary node creation by catching |
|
* cases where old nodes can be reused because their next fields |
|
* won't change. On average, only about one-sixth of them need |
|
* cloning when a table doubles. The nodes they replace will be |
|
* garbage collectable as soon as they are no longer referenced by |
|
* any reader thread that may be in the midst of concurrently |
|
* traversing table. Upon transfer, the old table bin contains |
|
* only a special forwarding node (with hash field "MOVED") that |
|
* contains the next table as its key. On encountering a |
|
* forwarding node, access and update operations restart, using |
|
* the new table. |
|
* |
|
* Each bin transfer requires its bin lock, which can stall |
|
* waiting for locks while resizing. However, because other |
|
* threads can join in and help resize rather than contend for |
|
* locks, average aggregate waits become shorter as resizing |
|
* progresses. The transfer operation must also ensure that all |
|
* accessible bins in both the old and new table are usable by any |
|
* traversal. This is arranged in part by proceeding from the |
|
* last bin (table.length - 1) up towards the first. Upon seeing |
|
* a forwarding node, traversals (see class Traverser) arrange to |
|
* move to the new table without revisiting nodes. To ensure that |
|
* no intervening nodes are skipped even when moved out of order, |
|
* a stack (see class TableStack) is created on first encounter of |
|
* a forwarding node during a traversal, to maintain its place if |
|
* later processing the current table. The need for these |
|
* save/restore mechanics is relatively rare, but when one |
|
* forwarding node is encountered, typically many more will be. |
|
* So Traversers use a simple caching scheme to avoid creating so |
|
* many new TableStack nodes. (Thanks to Peter Levart for |
|
* suggesting use of a stack here.) |
|
* |
|
* The traversal scheme also applies to partial traversals of |
|
* ranges of bins (via an alternate Traverser constructor) |
|
* to support partitioned aggregate operations. Also, read-only |
|
* operations give up if ever forwarded to a null table, which |
|
* provides support for shutdown-style clearing, which is also not |
|
* currently implemented. |
|
* |
|
* Lazy table initialization minimizes footprint until first use, |
|
* and also avoids resizings when the first operation is from a |
|
* putAll, constructor with map argument, or deserialization. |
|
* These cases attempt to override the initial capacity settings, |
|
* but harmlessly fail to take effect in cases of races. |
|
* |
|
* The element count is maintained using a specialization of |
|
* LongAdder. We need to incorporate a specialization rather than |
|
* just use a LongAdder in order to access implicit |
|
* contention-sensing that leads to creation of multiple |
|
* CounterCells. The counter mechanics avoid contention on |
|
* updates but can encounter cache thrashing if read too |
|
* frequently during concurrent access. To avoid reading so often, |
|
* resizing under contention is attempted only upon adding to a |
|
* bin already holding two or more nodes. Under uniform hash |
|
* distributions, the probability of this occurring at threshold |
|
* is around 13%, meaning that only about 1 in 8 puts check |
|
* threshold (and after resizing, many fewer do so). |
|
* |
|
* TreeBins use a special form of comparison for search and |
|
* related operations (which is the main reason we cannot use |
|
* existing collections such as TreeMaps). TreeBins contain |
|
* Comparable elements, but may contain others, as well as |
|
* elements that are Comparable but not necessarily Comparable for |
|
* the same T, so we cannot invoke compareTo among them. To handle |
|
* this, the tree is ordered primarily by hash value, then by |
|
* Comparable.compareTo order if applicable. On lookup at a node, |
|
* if elements are not comparable or compare as 0 then both left |
|
* and right children may need to be searched in the case of tied |
|
* hash values. (This corresponds to the full list search that |
|
* would be necessary if all elements were non-Comparable and had |
|
* tied hashes.) On insertion, to keep a total ordering (or as |
|
* close as is required here) across rebalancings, we compare |
|
* classes and identityHashCodes as tie-breakers. The red-black |
|
* balancing code is updated from pre-jdk-collections |
|
* (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java) |
|
* based in turn on Cormen, Leiserson, and Rivest "Introduction to |
|
* Algorithms" (CLR). |
|
* |
|
* TreeBins also require an additional locking mechanism. While |
|
* list traversal is always possible by readers even during |
|
* updates, tree traversal is not, mainly because of tree-rotations |
|
* that may change the root node and/or its linkages. TreeBins |
|
* include a simple read-write lock mechanism parasitic on the |
|
* main bin-synchronization strategy: Structural adjustments |
|
* associated with an insertion or removal are already bin-locked |
|
* (and so cannot conflict with other writers) but must wait for |
|
* ongoing readers to finish. Since there can be only one such |
|
* waiter, we use a simple scheme using a single "waiter" field to |
|
* block writers. However, readers need never block. If the root |
|
* lock is held, they proceed along the slow traversal path (via |
|
* next-pointers) until the lock becomes available or the list is |
|
* exhausted, whichever comes first. These cases are not fast, but |
|
* maximize aggregate expected throughput. |
|
* |
|
* Maintaining API and serialization compatibility with previous |
|
* versions of this class introduces several oddities. Mainly: We |
|
* leave untouched but unused constructor arguments refering to |
|
* concurrencyLevel. We accept a loadFactor constructor argument, |
|
* but apply it only to initial table capacity (which is the only |
|
* time that we can guarantee to honor it.) We also declare an |
|
* unused "Segment" class that is instantiated in minimal form |
|
* only when serializing. |
|
* |
|
* Also, solely for compatibility with previous versions of this |
|
* class, it extends AbstractMap, even though all of its methods |
|
* are overridden, so it is just useless baggage. |
|
* |
|
* This file is organized to make things a little easier to follow |
|
* while reading than they might otherwise: First the main static |
|
* declarations and utilities, then fields, then main public |
|
* methods (with a few factorings of multiple public methods into |
|
* internal ones), then sizing methods, trees, traversers, and |
|
* bulk operations. |
|
*/ |
|
|
|
/* ---------------- Constants -------------- */ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
private static final int MAXIMUM_CAPACITY = 1 << 30; |
|
|
|
|
|
|
|
|
|
*/ |
|
private static final int DEFAULT_CAPACITY = 16; |
|
|
|
|
|
|
|
|
|
*/ |
|
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; |
|
|
|
|
|
|
|
|
|
*/ |
|
private static final int DEFAULT_CONCURRENCY_LEVEL = 16; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
private static final float LOAD_FACTOR = 0.75f; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
static final int TREEIFY_THRESHOLD = 8; |
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
static final int UNTREEIFY_THRESHOLD = 6; |
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
static final int MIN_TREEIFY_CAPACITY = 64; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
private static final int MIN_TRANSFER_STRIDE = 16; |
|
|
|
|
|
|
|
|
|
*/ |
|
private static int RESIZE_STAMP_BITS = 16; |
|
|
|
|
|
|
|
|
|
*/ |
|
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1; |
|
|
|
|
|
|
|
*/ |
|
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS; |
|
|
|
/* |
|
* Encodings for Node hash fields. See above for explanation. |
|
*/ |
|
static final int MOVED = -1; |
|
static final int TREEBIN = -2; |
|
static final int RESERVED = -3; |
|
static final int HASH_BITS = 0x7fffffff; |
|
|
|
|
|
static final int NCPU = Runtime.getRuntime().availableProcessors(); |
|
|
|
|
|
private static final ObjectStreamField[] serialPersistentFields = { |
|
new ObjectStreamField("segments", Segment[].class), |
|
new ObjectStreamField("segmentMask", Integer.TYPE), |
|
new ObjectStreamField("segmentShift", Integer.TYPE) |
|
}; |
|
|
|
/* ---------------- Nodes -------------- */ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
static class Node<K,V> implements Map.Entry<K,V> { |
|
final int hash; |
|
final K key; |
|
volatile V val; |
|
volatile Node<K,V> next; |
|
|
|
Node(int hash, K key, V val, Node<K,V> next) { |
|
this.hash = hash; |
|
this.key = key; |
|
this.val = val; |
|
this.next = next; |
|
} |
|
|
|
public final K getKey() { return key; } |
|
public final V getValue() { return val; } |
|
public final int hashCode() { return key.hashCode() ^ val.hashCode(); } |
|
public final String toString(){ return key + "=" + val; } |
|
public final V setValue(V value) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
|
|
public final boolean equals(Object o) { |
|
Object k, v, u; Map.Entry<?,?> e; |
|
return ((o instanceof Map.Entry) && |
|
(k = (e = (Map.Entry<?,?>)o).getKey()) != null && |
|
(v = e.getValue()) != null && |
|
(k == key || k.equals(key)) && |
|
(v == (u = val) || v.equals(u))); |
|
} |
|
|
|
|
|
|
|
*/ |
|
Node<K,V> find(int h, Object k) { |
|
Node<K,V> e = this; |
|
if (k != null) { |
|
do { |
|
K ek; |
|
if (e.hash == h && |
|
((ek = e.key) == k || (ek != null && k.equals(ek)))) |
|
return e; |
|
} while ((e = e.next) != null); |
|
} |
|
return null; |
|
} |
|
} |
|
|
|
/* ---------------- Static utilities -------------- */ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
static final int spread(int h) { |
|
return (h ^ (h >>> 16)) & HASH_BITS; |
|
} |
|
|
|
|
|
|
|
|
|
*/ |
|
private static final int tableSizeFor(int c) { |
|
int n = c - 1; |
|
n |= n >>> 1; |
|
n |= n >>> 2; |
|
n |= n >>> 4; |
|
n |= n >>> 8; |
|
n |= n >>> 16; |
|
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; |
|
} |
|
|
|
|
|
|
|
|
|
*/ |
|
static Class<?> comparableClassFor(Object x) { |
|
if (x instanceof Comparable) { |
|
Class<?> c; Type[] ts, as; Type t; ParameterizedType p; |
|
if ((c = x.getClass()) == String.class) |
|
return c; |
|
if ((ts = c.getGenericInterfaces()) != null) { |
|
for (int i = 0; i < ts.length; ++i) { |
|
if (((t = ts[i]) instanceof ParameterizedType) && |
|
((p = (ParameterizedType)t).getRawType() == |
|
Comparable.class) && |
|
(as = p.getActualTypeArguments()) != null && |
|
as.length == 1 && as[0] == c) |
|
return c; |
|
} |
|
} |
|
} |
|
return null; |
|
} |
|
|
|
|
|
|
|
|
|
*/ |
|
@SuppressWarnings({"rawtypes","unchecked"}) |
|
static int compareComparables(Class<?> kc, Object k, Object x) { |
|
return (x == null || x.getClass() != kc ? 0 : |
|
((Comparable)k).compareTo(x)); |
|
} |
|
|
|
/* ---------------- Table element access -------------- */ |
|
|
|
/* |
|
* Volatile access methods are used for table elements as well as |
|
* elements of in-progress next table while resizing. All uses of |
|
* the tab arguments must be null checked by callers. All callers |
|
* also paranoically precheck that tab's length is not zero (or an |
|
* equivalent check), thus ensuring that any index argument taking |
|
* the form of a hash value anded with (length - 1) is a valid |
|
* index. Note that, to be correct wrt arbitrary concurrency |
|
* errors by users, these checks must operate on local variables, |
|
* which accounts for some odd-looking inline assignments below. |
|
* Note that calls to setTabAt always occur within locked regions, |
|
* and so in principle require only release ordering, not |
|
* full volatile semantics, but are currently coded as volatile |
|
* writes to be conservative. |
|
*/ |
|
|
|
@SuppressWarnings("unchecked") |
|
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) { |
|
return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE); |
|
} |
|
|
|
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, |
|
Node<K,V> c, Node<K,V> v) { |
|
return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v); |
|
} |
|
|
|
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) { |
|
U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v); |
|
} |
|
|
|
/* ---------------- Fields -------------- */ |
|
|
|
|
|
|
|
|
|
*/ |
|
transient volatile Node<K,V>[] table; |
|
|
|
|
|
|
|
*/ |
|
private transient volatile Node<K,V>[] nextTable; |
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
private transient volatile long baseCount; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
private transient volatile int sizeCtl; |
|
|
|
|
|
|
|
*/ |
|
private transient volatile int transferIndex; |
|
|
|
|
|
|
|
*/ |
|
private transient volatile int cellsBusy; |
|
|
|
|
|
|
|
*/ |
|
private transient volatile CounterCell[] counterCells; |
|
|
|
|
|
private transient KeySetView<K,V> keySet; |
|
private transient ValuesView<K,V> values; |
|
private transient EntrySetView<K,V> entrySet; |
|
|
|
|
|
/* ---------------- Public operations -------------- */ |
|
|
|
|
|
|
|
*/ |
|
public ConcurrentHashMap() { |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public ConcurrentHashMap(int initialCapacity) { |
|
if (initialCapacity < 0) |
|
throw new IllegalArgumentException(); |
|
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ? |
|
MAXIMUM_CAPACITY : |
|
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)); |
|
this.sizeCtl = cap; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public ConcurrentHashMap(Map<? extends K, ? extends V> m) { |
|
this.sizeCtl = DEFAULT_CAPACITY; |
|
putAll(m); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public ConcurrentHashMap(int initialCapacity, float loadFactor) { |
|
this(initialCapacity, loadFactor, 1); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public ConcurrentHashMap(int initialCapacity, |
|
float loadFactor, int concurrencyLevel) { |
|
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) |
|
throw new IllegalArgumentException(); |
|
if (initialCapacity < concurrencyLevel) |
|
initialCapacity = concurrencyLevel; |
|
long size = (long)(1.0 + (long)initialCapacity / loadFactor); |
|
int cap = (size >= (long)MAXIMUM_CAPACITY) ? |
|
MAXIMUM_CAPACITY : tableSizeFor((int)size); |
|
this.sizeCtl = cap; |
|
} |
|
|
|
// Original (since JDK1.2) Map methods |
|
|
|
|
|
|
|
*/ |
|
public int size() { |
|
long n = sumCount(); |
|
return ((n < 0L) ? 0 : |
|
(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE : |
|
(int)n); |
|
} |
|
|
|
|
|
|
|
*/ |
|
public boolean isEmpty() { |
|
return sumCount() <= 0L; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public V get(Object key) { |
|
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek; |
|
int h = spread(key.hashCode()); |
|
if ((tab = table) != null && (n = tab.length) > 0 && |
|
(e = tabAt(tab, (n - 1) & h)) != null) { |
|
if ((eh = e.hash) == h) { |
|
if ((ek = e.key) == key || (ek != null && key.equals(ek))) |
|
return e.val; |
|
} |
|
else if (eh < 0) |
|
return (p = e.find(h, key)) != null ? p.val : null; |
|
while ((e = e.next) != null) { |
|
if (e.hash == h && |
|
((ek = e.key) == key || (ek != null && key.equals(ek)))) |
|
return e.val; |
|
} |
|
} |
|
return null; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public boolean containsKey(Object key) { |
|
return get(key) != null; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public boolean containsValue(Object value) { |
|
if (value == null) |
|
throw new NullPointerException(); |
|
Node<K,V>[] t; |
|
if ((t = table) != null) { |
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); |
|
for (Node<K,V> p; (p = it.advance()) != null; ) { |
|
V v; |
|
if ((v = p.val) == value || (v != null && value.equals(v))) |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public V put(K key, V value) { |
|
return putVal(key, value, false); |
|
} |
|
|
|
|
|
final V putVal(K key, V value, boolean onlyIfAbsent) { |
|
if (key == null || value == null) throw new NullPointerException(); |
|
int hash = spread(key.hashCode()); |
|
int binCount = 0; |
|
for (Node<K,V>[] tab = table;;) { |
|
Node<K,V> f; int n, i, fh; |
|
if (tab == null || (n = tab.length) == 0) |
|
tab = initTable(); |
|
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { |
|
if (casTabAt(tab, i, null, |
|
new Node<K,V>(hash, key, value, null))) |
|
break; |
|
} |
|
else if ((fh = f.hash) == MOVED) |
|
tab = helpTransfer(tab, f); |
|
else { |
|
V oldVal = null; |
|
synchronized (f) { |
|
if (tabAt(tab, i) == f) { |
|
if (fh >= 0) { |
|
binCount = 1; |
|
for (Node<K,V> e = f;; ++binCount) { |
|
K ek; |
|
if (e.hash == hash && |
|
((ek = e.key) == key || |
|
(ek != null && key.equals(ek)))) { |
|
oldVal = e.val; |
|
if (!onlyIfAbsent) |
|
e.val = value; |
|
break; |
|
} |
|
Node<K,V> pred = e; |
|
if ((e = e.next) == null) { |
|
pred.next = new Node<K,V>(hash, key, |
|
value, null); |
|
break; |
|
} |
|
} |
|
} |
|
else if (f instanceof TreeBin) { |
|
Node<K,V> p; |
|
binCount = 2; |
|
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, |
|
value)) != null) { |
|
oldVal = p.val; |
|
if (!onlyIfAbsent) |
|
p.val = value; |
|
} |
|
} |
|
} |
|
} |
|
if (binCount != 0) { |
|
if (binCount >= TREEIFY_THRESHOLD) |
|
treeifyBin(tab, i); |
|
if (oldVal != null) |
|
return oldVal; |
|
break; |
|
} |
|
} |
|
} |
|
addCount(1L, binCount); |
|
return null; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public void putAll(Map<? extends K, ? extends V> m) { |
|
tryPresize(m.size()); |
|
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) |
|
putVal(e.getKey(), e.getValue(), false); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public V remove(Object key) { |
|
return replaceNode(key, null, null); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
final V replaceNode(Object key, V value, Object cv) { |
|
int hash = spread(key.hashCode()); |
|
for (Node<K,V>[] tab = table;;) { |
|
Node<K,V> f; int n, i, fh; |
|
if (tab == null || (n = tab.length) == 0 || |
|
(f = tabAt(tab, i = (n - 1) & hash)) == null) |
|
break; |
|
else if ((fh = f.hash) == MOVED) |
|
tab = helpTransfer(tab, f); |
|
else { |
|
V oldVal = null; |
|
boolean validated = false; |
|
synchronized (f) { |
|
if (tabAt(tab, i) == f) { |
|
if (fh >= 0) { |
|
validated = true; |
|
for (Node<K,V> e = f, pred = null;;) { |
|
K ek; |
|
if (e.hash == hash && |
|
((ek = e.key) == key || |
|
(ek != null && key.equals(ek)))) { |
|
V ev = e.val; |
|
if (cv == null || cv == ev || |
|
(ev != null && cv.equals(ev))) { |
|
oldVal = ev; |
|
if (value != null) |
|
e.val = value; |
|
else if (pred != null) |
|
pred.next = e.next; |
|
else |
|
setTabAt(tab, i, e.next); |
|
} |
|
break; |
|
} |
|
pred = e; |
|
if ((e = e.next) == null) |
|
break; |
|
} |
|
} |
|
else if (f instanceof TreeBin) { |
|
validated = true; |
|
TreeBin<K,V> t = (TreeBin<K,V>)f; |
|
TreeNode<K,V> r, p; |
|
if ((r = t.root) != null && |
|
(p = r.findTreeNode(hash, key, null)) != null) { |
|
V pv = p.val; |
|
if (cv == null || cv == pv || |
|
(pv != null && cv.equals(pv))) { |
|
oldVal = pv; |
|
if (value != null) |
|
p.val = value; |
|
else if (t.removeTreeNode(p)) |
|
setTabAt(tab, i, untreeify(t.first)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
if (validated) { |
|
if (oldVal != null) { |
|
if (value == null) |
|
addCount(-1L, -1); |
|
return oldVal; |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
return null; |
|
} |
|
|
|
|
|
|
|
*/ |
|
public void clear() { |
|
long delta = 0L; |
|
int i = 0; |
|
Node<K,V>[] tab = table; |
|
while (tab != null && i < tab.length) { |
|
int fh; |
|
Node<K,V> f = tabAt(tab, i); |
|
if (f == null) |
|
++i; |
|
else if ((fh = f.hash) == MOVED) { |
|
tab = helpTransfer(tab, f); |
|
i = 0; |
|
} |
|
else { |
|
synchronized (f) { |
|
if (tabAt(tab, i) == f) { |
|
Node<K,V> p = (fh >= 0 ? f : |
|
(f instanceof TreeBin) ? |
|
((TreeBin<K,V>)f).first : null); |
|
while (p != null) { |
|
--delta; |
|
p = p.next; |
|
} |
|
setTabAt(tab, i++, null); |
|
} |
|
} |
|
} |
|
} |
|
if (delta != 0L) |
|
addCount(delta, -1); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public KeySetView<K,V> keySet() { |
|
KeySetView<K,V> ks; |
|
return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null)); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public Collection<V> values() { |
|
ValuesView<K,V> vs; |
|
return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this)); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public Set<Map.Entry<K,V>> entrySet() { |
|
EntrySetView<K,V> es; |
|
return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this)); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public int hashCode() { |
|
int h = 0; |
|
Node<K,V>[] t; |
|
if ((t = table) != null) { |
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); |
|
for (Node<K,V> p; (p = it.advance()) != null; ) |
|
h += p.key.hashCode() ^ p.val.hashCode(); |
|
} |
|
return h; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public String toString() { |
|
Node<K,V>[] t; |
|
int f = (t = table) == null ? 0 : t.length; |
|
Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f); |
|
StringBuilder sb = new StringBuilder(); |
|
sb.append('{'); |
|
Node<K,V> p; |
|
if ((p = it.advance()) != null) { |
|
for (;;) { |
|
K k = p.key; |
|
V v = p.val; |
|
sb.append(k == this ? "(this Map)" : k); |
|
sb.append('='); |
|
sb.append(v == this ? "(this Map)" : v); |
|
if ((p = it.advance()) == null) |
|
break; |
|
sb.append(',').append(' '); |
|
} |
|
} |
|
return sb.append('}').toString(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public boolean equals(Object o) { |
|
if (o != this) { |
|
if (!(o instanceof Map)) |
|
return false; |
|
Map<?,?> m = (Map<?,?>) o; |
|
Node<K,V>[] t; |
|
int f = (t = table) == null ? 0 : t.length; |
|
Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f); |
|
for (Node<K,V> p; (p = it.advance()) != null; ) { |
|
V val = p.val; |
|
Object v = m.get(p.key); |
|
if (v == null || (v != val && !v.equals(val))) |
|
return false; |
|
} |
|
for (Map.Entry<?,?> e : m.entrySet()) { |
|
Object mk, mv, v; |
|
if ((mk = e.getKey()) == null || |
|
(mv = e.getValue()) == null || |
|
(v = get(mk)) == null || |
|
(mv != v && !mv.equals(v))) |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
|
|
|
|
|
|
*/ |
|
static class Segment<K,V> extends ReentrantLock implements Serializable { |
|
private static final long serialVersionUID = 2249069246763182397L; |
|
final float loadFactor; |
|
Segment(float lf) { this.loadFactor = lf; } |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
private void writeObject(java.io.ObjectOutputStream s) |
|
throws java.io.IOException { |
|
// For serialization compatibility |
|
|
|
int sshift = 0; |
|
int ssize = 1; |
|
while (ssize < DEFAULT_CONCURRENCY_LEVEL) { |
|
++sshift; |
|
ssize <<= 1; |
|
} |
|
int segmentShift = 32 - sshift; |
|
int segmentMask = ssize - 1; |
|
@SuppressWarnings("unchecked") |
|
Segment<K,V>[] segments = (Segment<K,V>[]) |
|
new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL]; |
|
for (int i = 0; i < segments.length; ++i) |
|
segments[i] = new Segment<K,V>(LOAD_FACTOR); |
|
s.putFields().put("segments", segments); |
|
s.putFields().put("segmentShift", segmentShift); |
|
s.putFields().put("segmentMask", segmentMask); |
|
s.writeFields(); |
|
|
|
Node<K,V>[] t; |
|
if ((t = table) != null) { |
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); |
|
for (Node<K,V> p; (p = it.advance()) != null; ) { |
|
s.writeObject(p.key); |
|
s.writeObject(p.val); |
|
} |
|
} |
|
s.writeObject(null); |
|
s.writeObject(null); |
|
segments = null; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
private void readObject(java.io.ObjectInputStream s) |
|
throws java.io.IOException, ClassNotFoundException { |
|
/* |
|
* To improve performance in typical cases, we create nodes |
|
* while reading, then place in table once size is known. |
|
* However, we must also validate uniqueness and deal with |
|
* overpopulated bins while doing so, which requires |
|
* specialized versions of putVal mechanics. |
|
*/ |
|
sizeCtl = -1; |
|
s.defaultReadObject(); |
|
long size = 0L; |
|
Node<K,V> p = null; |
|
for (;;) { |
|
@SuppressWarnings("unchecked") |
|
K k = (K) s.readObject(); |
|
@SuppressWarnings("unchecked") |
|
V v = (V) s.readObject(); |
|
if (k != null && v != null) { |
|
p = new Node<K,V>(spread(k.hashCode()), k, v, p); |
|
++size; |
|
} |
|
else |
|
break; |
|
} |
|
if (size == 0L) |
|
sizeCtl = 0; |
|
else { |
|
int n; |
|
if (size >= (long)(MAXIMUM_CAPACITY >>> 1)) |
|
n = MAXIMUM_CAPACITY; |
|
else { |
|
int sz = (int)size; |
|
n = tableSizeFor(sz + (sz >>> 1) + 1); |
|
} |
|
@SuppressWarnings("unchecked") |
|
Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n]; |
|
int mask = n - 1; |
|
long added = 0L; |
|
while (p != null) { |
|
boolean insertAtFront; |
|
Node<K,V> next = p.next, first; |
|
int h = p.hash, j = h & mask; |
|
if ((first = tabAt(tab, j)) == null) |
|
insertAtFront = true; |
|
else { |
|
K k = p.key; |
|
if (first.hash < 0) { |
|
TreeBin<K,V> t = (TreeBin<K,V>)first; |
|
if (t.putTreeVal(h, k, p.val) == null) |
|
++added; |
|
insertAtFront = false; |
|
} |
|
else { |
|
int binCount = 0; |
|
insertAtFront = true; |
|
Node<K,V> q; K qk; |
|
for (q = first; q != null; q = q.next) { |
|
if (q.hash == h && |
|
((qk = q.key) == k || |
|
(qk != null && k.equals(qk)))) { |
|
insertAtFront = false; |
|
break; |
|
} |
|
++binCount; |
|
} |
|
if (insertAtFront && binCount >= TREEIFY_THRESHOLD) { |
|
insertAtFront = false; |
|
++added; |
|
p.next = first; |
|
TreeNode<K,V> hd = null, tl = null; |
|
for (q = p; q != null; q = q.next) { |
|
TreeNode<K,V> t = new TreeNode<K,V> |
|
(q.hash, q.key, q.val, null, null); |
|
if ((t.prev = tl) == null) |
|
hd = t; |
|
else |
|
tl.next = t; |
|
tl = t; |
|
} |
|
setTabAt(tab, j, new TreeBin<K,V>(hd)); |
|
} |
|
} |
|
} |
|
if (insertAtFront) { |
|
++added; |
|
p.next = first; |
|
setTabAt(tab, j, p); |
|
} |
|
p = next; |
|
} |
|
table = tab; |
|
sizeCtl = n - (n >>> 2); |
|
baseCount = added; |
|
} |
|
} |
|
|
|
// ConcurrentMap methods |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public V putIfAbsent(K key, V value) { |
|
return putVal(key, value, true); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public boolean remove(Object key, Object value) { |
|
if (key == null) |
|
throw new NullPointerException(); |
|
return value != null && replaceNode(key, null, value) != null; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public boolean replace(K key, V oldValue, V newValue) { |
|
if (key == null || oldValue == null || newValue == null) |
|
throw new NullPointerException(); |
|
return replaceNode(key, newValue, oldValue) != null; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public V replace(K key, V value) { |
|
if (key == null || value == null) |
|
throw new NullPointerException(); |
|
return replaceNode(key, value, null); |
|
} |
|
|
|
// Overrides of JDK8+ Map extension method defaults |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public V getOrDefault(Object key, V defaultValue) { |
|
V v; |
|
return (v = get(key)) == null ? defaultValue : v; |
|
} |
|
|
|
public void forEach(BiConsumer<? super K, ? super V> action) { |
|
if (action == null) throw new NullPointerException(); |
|
Node<K,V>[] t; |
|
if ((t = table) != null) { |
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); |
|
for (Node<K,V> p; (p = it.advance()) != null; ) { |
|
action.accept(p.key, p.val); |
|
} |
|
} |
|
} |
|
|
|
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { |
|
if (function == null) throw new NullPointerException(); |
|
Node<K,V>[] t; |
|
if ((t = table) != null) { |
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); |
|
for (Node<K,V> p; (p = it.advance()) != null; ) { |
|
V oldValue = p.val; |
|
for (K key = p.key;;) { |
|
V newValue = function.apply(key, oldValue); |
|
if (newValue == null) |
|
throw new NullPointerException(); |
|
if (replaceNode(key, newValue, oldValue) != null || |
|
(oldValue = get(key)) == null) |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { |
|
if (key == null || mappingFunction == null) |
|
throw new NullPointerException(); |
|
int h = spread(key.hashCode()); |
|
V val = null; |
|
int binCount = 0; |
|
for (Node<K,V>[] tab = table;;) { |
|
Node<K,V> f; int n, i, fh; |
|
if (tab == null || (n = tab.length) == 0) |
|
tab = initTable(); |
|
else if ((f = tabAt(tab, i = (n - 1) & h)) == null) { |
|
Node<K,V> r = new ReservationNode<K,V>(); |
|
synchronized (r) { |
|
if (casTabAt(tab, i, null, r)) { |
|
binCount = 1; |
|
Node<K,V> node = null; |
|
try { |
|
if ((val = mappingFunction.apply(key)) != null) |
|
node = new Node<K,V>(h, key, val, null); |
|
} finally { |
|
setTabAt(tab, i, node); |
|
} |
|
} |
|
} |
|
if (binCount != 0) |
|
break; |
|
} |
|
else if ((fh = f.hash) == MOVED) |
|
tab = helpTransfer(tab, f); |
|
else { |
|
boolean added = false; |
|
synchronized (f) { |
|
if (tabAt(tab, i) == f) { |
|
if (fh >= 0) { |
|
binCount = 1; |
|
for (Node<K,V> e = f;; ++binCount) { |
|
K ek; V ev; |
|
if (e.hash == h && |
|
((ek = e.key) == key || |
|
(ek != null && key.equals(ek)))) { |
|
val = e.val; |
|
break; |
|
} |
|
Node<K,V> pred = e; |
|
if ((e = e.next) == null) { |
|
if ((val = mappingFunction.apply(key)) != null) { |
|
added = true; |
|
pred.next = new Node<K,V>(h, key, val, null); |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
else if (f instanceof TreeBin) { |
|
binCount = 2; |
|
TreeBin<K,V> t = (TreeBin<K,V>)f; |
|
TreeNode<K,V> r, p; |
|
if ((r = t.root) != null && |
|
(p = r.findTreeNode(h, key, null)) != null) |
|
val = p.val; |
|
else if ((val = mappingFunction.apply(key)) != null) { |
|
added = true; |
|
t.putTreeVal(h, key, val); |
|
} |
|
} |
|
} |
|
} |
|
if (binCount != 0) { |
|
if (binCount >= TREEIFY_THRESHOLD) |
|
treeifyBin(tab, i); |
|
if (!added) |
|
return val; |
|
break; |
|
} |
|
} |
|
} |
|
if (val != null) |
|
addCount(1L, binCount); |
|
return val; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
|
if (key == null || remappingFunction == null) |
|
throw new NullPointerException(); |
|
int h = spread(key.hashCode()); |
|
V val = null; |
|
int delta = 0; |
|
int binCount = 0; |
|
for (Node<K,V>[] tab = table;;) { |
|
Node<K,V> f; int n, i, fh; |
|
if (tab == null || (n = tab.length) == 0) |
|
tab = initTable(); |
|
else if ((f = tabAt(tab, i = (n - 1) & h)) == null) |
|
break; |
|
else if ((fh = f.hash) == MOVED) |
|
tab = helpTransfer(tab, f); |
|
else { |
|
synchronized (f) { |
|
if (tabAt(tab, i) == f) { |
|
if (fh >= 0) { |
|
binCount = 1; |
|
for (Node<K,V> e = f, pred = null;; ++binCount) { |
|
K ek; |
|
if (e.hash == h && |
|
((ek = e.key) == key || |
|
(ek != null && key.equals(ek)))) { |
|
val = remappingFunction.apply(key, e.val); |
|
if (val != null) |
|
e.val = val; |
|
else { |
|
delta = -1; |
|
Node<K,V> en = e.next; |
|
if (pred != null) |
|
pred.next = en; |
|
else |
|
setTabAt(tab, i, en); |
|
} |
|
break; |
|
} |
|
pred = e; |
|
if ((e = e.next) == null) |
|
break; |
|
} |
|
} |
|
else if (f instanceof TreeBin) { |
|
binCount = 2; |
|
TreeBin<K,V> t = (TreeBin<K,V>)f; |
|
TreeNode<K,V> r, p; |
|
if ((r = t.root) != null && |
|
(p = r.findTreeNode(h, key, null)) != null) { |
|
val = remappingFunction.apply(key, p.val); |
|
if (val != null) |
|
p.val = val; |
|
else { |
|
delta = -1; |
|
if (t.removeTreeNode(p)) |
|
setTabAt(tab, i, untreeify(t.first)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
if (binCount != 0) |
|
break; |
|
} |
|
} |
|
if (delta != 0) |
|
addCount((long)delta, binCount); |
|
return val; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public V compute(K key, |
|
BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
|
if (key == null || remappingFunction == null) |
|
throw new NullPointerException(); |
|
int h = spread(key.hashCode()); |
|
V val = null; |
|
int delta = 0; |
|
int binCount = 0; |
|
for (Node<K,V>[] tab = table;;) { |
|
Node<K,V> f; int n, i, fh; |
|
if (tab == null || (n = tab.length) == 0) |
|
tab = initTable(); |
|
else if ((f = tabAt(tab, i = (n - 1) & h)) == null) { |
|
Node<K,V> r = new ReservationNode<K,V>(); |
|
synchronized (r) { |
|
if (casTabAt(tab, i, null, r)) { |
|
binCount = 1; |
|
Node<K,V> node = null; |
|
try { |
|
if ((val = remappingFunction.apply(key, null)) != null) { |
|
delta = 1; |
|
node = new Node<K,V>(h, key, val, null); |
|
} |
|
} finally { |
|
setTabAt(tab, i, node); |
|
} |
|
} |
|
} |
|
if (binCount != 0) |
|
break; |
|
} |
|
else if ((fh = f.hash) == MOVED) |
|
tab = helpTransfer(tab, f); |
|
else { |
|
synchronized (f) { |
|
if (tabAt(tab, i) == f) { |
|
if (fh >= 0) { |
|
binCount = 1; |
|
for (Node<K,V> e = f, pred = null;; ++binCount) { |
|
K ek; |
|
if (e.hash == h && |
|
((ek = e.key) == key || |
|
(ek != null && key.equals(ek)))) { |
|
val = remappingFunction.apply(key, e.val); |
|
if (val != null) |
|
e.val = val; |
|
else { |
|
delta = -1; |
|
Node<K,V> en = e.next; |
|
if (pred != null) |
|
pred.next = en; |
|
else |
|
setTabAt(tab, i, en); |
|
} |
|
break; |
|
} |
|
pred = e; |
|
if ((e = e.next) == null) { |
|
val = remappingFunction.apply(key, null); |
|
if (val != null) { |
|
delta = 1; |
|
pred.next = |
|
new Node<K,V>(h, key, val, null); |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
else if (f instanceof TreeBin) { |
|
binCount = 1; |
|
TreeBin<K,V> t = (TreeBin<K,V>)f; |
|
TreeNode<K,V> r, p; |
|
if ((r = t.root) != null) |
|
p = r.findTreeNode(h, key, null); |
|
else |
|
p = null; |
|
V pv = (p == null) ? null : p.val; |
|
val = remappingFunction.apply(key, pv); |
|
if (val != null) { |
|
if (p != null) |
|
p.val = val; |
|
else { |
|
delta = 1; |
|
t.putTreeVal(h, key, val); |
|
} |
|
} |
|
else if (p != null) { |
|
delta = -1; |
|
if (t.removeTreeNode(p)) |
|
setTabAt(tab, i, untreeify(t.first)); |
|
} |
|
} |
|
} |
|
} |
|
if (binCount != 0) { |
|
if (binCount >= TREEIFY_THRESHOLD) |
|
treeifyBin(tab, i); |
|
break; |
|
} |
|
} |
|
} |
|
if (delta != 0) |
|
addCount((long)delta, binCount); |
|
return val; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) { |
|
if (key == null || value == null || remappingFunction == null) |
|
throw new NullPointerException(); |
|
int h = spread(key.hashCode()); |
|
V val = null; |
|
int delta = 0; |
|
int binCount = 0; |
|
for (Node<K,V>[] tab = table;;) { |
|
Node<K,V> f; int n, i, fh; |
|
if (tab == null || (n = tab.length) == 0) |
|
tab = initTable(); |
|
else if ((f = tabAt(tab, i = (n - 1) & h)) == null) { |
|
if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) { |
|
delta = 1; |
|
val = value; |
|
break; |
|
} |
|
} |
|
else if ((fh = f.hash) == MOVED) |
|
tab = helpTransfer(tab, f); |
|
else { |
|
synchronized (f) { |
|
if (tabAt(tab, i) == f) { |
|
if (fh >= 0) { |
|
binCount = 1; |
|
for (Node<K,V> e = f, pred = null;; ++binCount) { |
|
K ek; |
|
if (e.hash == h && |
|
((ek = e.key) == key || |
|
(ek != null && key.equals(ek)))) { |
|
val = remappingFunction.apply(e.val, value); |
|
if (val != null) |
|
e.val = val; |
|
else { |
|
delta = -1; |
|
Node<K,V> en = e.next; |
|
if (pred != null) |
|
pred.next = en; |
|
else |
|
setTabAt(tab, i, en); |
|
} |
|
break; |
|
} |
|
pred = e; |
|
if ((e = e.next) == null) { |
|
delta = 1; |
|
val = value; |
|
pred.next = |
|
new Node<K,V>(h, key, val, null); |
|
break; |
|
} |
|
} |
|
} |
|
else if (f instanceof TreeBin) { |
|
binCount = 2; |
|
TreeBin<K,V> t = (TreeBin<K,V>)f; |
|
TreeNode<K,V> r = t.root; |
|
TreeNode<K,V> p = (r == null) ? null : |
|
r.findTreeNode(h, key, null); |
|
val = (p == null) ? value : |
|
remappingFunction.apply(p.val, value); |
|
if (val != null) { |
|
if (p != null) |
|
p.val = val; |
|
else { |
|
delta = 1; |
|
t.putTreeVal(h, key, val); |
|
} |
|
} |
|
else if (p != null) { |
|
delta = -1; |
|
if (t.removeTreeNode(p)) |
|
setTabAt(tab, i, untreeify(t.first)); |
|
} |
|
} |
|
} |
|
} |
|
if (binCount != 0) { |
|
if (binCount >= TREEIFY_THRESHOLD) |
|
treeifyBin(tab, i); |
|
break; |
|
} |
|
} |
|
} |
|
if (delta != 0) |
|
addCount((long)delta, binCount); |
|
return val; |
|
} |
|
|
|
// Hashtable legacy methods |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public boolean contains(Object value) { |
|
return containsValue(value); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public Enumeration<K> keys() { |
|
Node<K,V>[] t; |
|
int f = (t = table) == null ? 0 : t.length; |
|
return new KeyIterator<K,V>(t, f, 0, f, this); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public Enumeration<V> elements() { |
|
Node<K,V>[] t; |
|
int f = (t = table) == null ? 0 : t.length; |
|
return new ValueIterator<K,V>(t, f, 0, f, this); |
|
} |
|
|
|
// ConcurrentHashMap-only methods |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public long mappingCount() { |
|
long n = sumCount(); |
|
return (n < 0L) ? 0L : n; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public static <K> KeySetView<K,Boolean> newKeySet() { |
|
return new KeySetView<K,Boolean> |
|
(new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) { |
|
return new KeySetView<K,Boolean> |
|
(new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public KeySetView<K,V> keySet(V mappedValue) { |
|
if (mappedValue == null) |
|
throw new NullPointerException(); |
|
return new KeySetView<K,V>(this, mappedValue); |
|
} |
|
|
|
/* ---------------- Special Nodes -------------- */ |
|
|
|
|
|
|
|
*/ |
|
static final class ForwardingNode<K,V> extends Node<K,V> { |
|
final Node<K,V>[] nextTable; |
|
ForwardingNode(Node<K,V>[] tab) { |
|
super(MOVED, null, null, null); |
|
this.nextTable = tab; |
|
} |
|
|
|
Node<K,V> find(int h, Object k) { |
|
|
|
outer: for (Node<K,V>[] tab = nextTable;;) { |
|
Node<K,V> e; int n; |
|
if (k == null || tab == null || (n = tab.length) == 0 || |
|
(e = tabAt(tab, (n - 1) & h)) == null) |
|
return null; |
|
for (;;) { |
|
int eh; K ek; |
|
if ((eh = e.hash) == h && |
|
((ek = e.key) == k || (ek != null && k.equals(ek)))) |
|
return e; |
|
if (eh < 0) { |
|
if (e instanceof ForwardingNode) { |
|
tab = ((ForwardingNode<K,V>)e).nextTable; |
|
continue outer; |
|
} |
|
else |
|
return e.find(h, k); |
|
} |
|
if ((e = e.next) == null) |
|
return null; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
*/ |
|
static final class ReservationNode<K,V> extends Node<K,V> { |
|
ReservationNode() { |
|
super(RESERVED, null, null, null); |
|
} |
|
|
|
Node<K,V> find(int h, Object k) { |
|
return null; |
|
} |
|
} |
|
|
|
/* ---------------- Table Initialization and Resizing -------------- */ |
|
|
|
|
|
|
|
|
|
*/ |
|
static final int resizeStamp(int n) { |
|
return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1)); |
|
} |
|
|
|
|
|
|
|
*/ |
|
private final Node<K,V>[] initTable() { |
|
Node<K,V>[] tab; int sc; |
|
while ((tab = table) == null || tab.length == 0) { |
|
if ((sc = sizeCtl) < 0) |
|
Thread.yield(); |
|
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { |
|
try { |
|
if ((tab = table) == null || tab.length == 0) { |
|
int n = (sc > 0) ? sc : DEFAULT_CAPACITY; |
|
@SuppressWarnings("unchecked") |
|
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; |
|
table = tab = nt; |
|
sc = n - (n >>> 2); |
|
} |
|
} finally { |
|
sizeCtl = sc; |
|
} |
|
break; |
|
} |
|
} |
|
return tab; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
private final void addCount(long x, int check) { |
|
CounterCell[] as; long b, s; |
|
if ((as = counterCells) != null || |
|
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { |
|
CounterCell a; long v; int m; |
|
boolean uncontended = true; |
|
if (as == null || (m = as.length - 1) < 0 || |
|
(a = as[ThreadLocalRandom.getProbe() & m]) == null || |
|
!(uncontended = |
|
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { |
|
fullAddCount(x, uncontended); |
|
return; |
|
} |
|
if (check <= 1) |
|
return; |
|
s = sumCount(); |
|
} |
|
if (check >= 0) { |
|
Node<K,V>[] tab, nt; int n, sc; |
|
while (s >= (long)(sc = sizeCtl) && (tab = table) != null && |
|
(n = tab.length) < MAXIMUM_CAPACITY) { |
|
int rs = resizeStamp(n); |
|
if (sc < 0) { |
|
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || |
|
sc == rs + MAX_RESIZERS || (nt = nextTable) == null || |
|
transferIndex <= 0) |
|
break; |
|
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) |
|
transfer(tab, nt); |
|
} |
|
else if (U.compareAndSwapInt(this, SIZECTL, sc, |
|
(rs << RESIZE_STAMP_SHIFT) + 2)) |
|
transfer(tab, null); |
|
s = sumCount(); |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
*/ |
|
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) { |
|
Node<K,V>[] nextTab; int sc; |
|
if (tab != null && (f instanceof ForwardingNode) && |
|
(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) { |
|
int rs = resizeStamp(tab.length); |
|
while (nextTab == nextTable && table == tab && |
|
(sc = sizeCtl) < 0) { |
|
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || |
|
sc == rs + MAX_RESIZERS || transferIndex <= 0) |
|
break; |
|
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { |
|
transfer(tab, nextTab); |
|
break; |
|
} |
|
} |
|
return nextTab; |
|
} |
|
return table; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
private final void tryPresize(int size) { |
|
int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : |
|
tableSizeFor(size + (size >>> 1) + 1); |
|
int sc; |
|
while ((sc = sizeCtl) >= 0) { |
|
Node<K,V>[] tab = table; int n; |
|
if (tab == null || (n = tab.length) == 0) { |
|
n = (sc > c) ? sc : c; |
|
if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { |
|
try { |
|
if (table == tab) { |
|
@SuppressWarnings("unchecked") |
|
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; |
|
table = nt; |
|
sc = n - (n >>> 2); |
|
} |
|
} finally { |
|
sizeCtl = sc; |
|
} |
|
} |
|
} |
|
else if (c <= sc || n >= MAXIMUM_CAPACITY) |
|
break; |
|
else if (tab == table) { |
|
int rs = resizeStamp(n); |
|
if (sc < 0) { |
|
Node<K,V>[] nt; |
|
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || |
|
sc == rs + MAX_RESIZERS || (nt = nextTable) == null || |
|
transferIndex <= 0) |
|
break; |
|
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) |
|
transfer(tab, nt); |
|
} |
|
else if (U.compareAndSwapInt(this, SIZECTL, sc, |
|
(rs << RESIZE_STAMP_SHIFT) + 2)) |
|
transfer(tab, null); |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
*/ |
|
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) { |
|
int n = tab.length, stride; |
|
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE) |
|
stride = MIN_TRANSFER_STRIDE; |
|
if (nextTab == null) { |
|
try { |
|
@SuppressWarnings("unchecked") |
|
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1]; |
|
nextTab = nt; |
|
} catch (Throwable ex) { |
|
sizeCtl = Integer.MAX_VALUE; |
|
return; |
|
} |
|
nextTable = nextTab; |
|
transferIndex = n; |
|
} |
|
int nextn = nextTab.length; |
|
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab); |
|
boolean advance = true; |
|
boolean finishing = false; |
|
for (int i = 0, bound = 0;;) { |
|
Node<K,V> f; int fh; |
|
while (advance) { |
|
int nextIndex, nextBound; |
|
if (--i >= bound || finishing) |
|
advance = false; |
|
else if ((nextIndex = transferIndex) <= 0) { |
|
i = -1; |
|
advance = false; |
|
} |
|
else if (U.compareAndSwapInt |
|
(this, TRANSFERINDEX, nextIndex, |
|
nextBound = (nextIndex > stride ? |
|
nextIndex - stride : 0))) { |
|
bound = nextBound; |
|
i = nextIndex - 1; |
|
advance = false; |
|
} |
|
} |
|
if (i < 0 || i >= n || i + n >= nextn) { |
|
int sc; |
|
if (finishing) { |
|
nextTable = null; |
|
table = nextTab; |
|
sizeCtl = (n << 1) - (n >>> 1); |
|
return; |
|
} |
|
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) { |
|
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT) |
|
return; |
|
finishing = advance = true; |
|
i = n; |
|
} |
|
} |
|
else if ((f = tabAt(tab, i)) == null) |
|
advance = casTabAt(tab, i, null, fwd); |
|
else if ((fh = f.hash) == MOVED) |
|
advance = true; |
|
else { |
|
synchronized (f) { |
|
if (tabAt(tab, i) == f) { |
|
Node<K,V> ln, hn; |
|
if (fh >= 0) { |
|
int runBit = fh & n; |
|
Node<K,V> lastRun = f; |
|
for (Node<K,V> p = f.next; p != null; p = p.next) { |
|
int b = p.hash & n; |
|
if (b != runBit) { |
|
runBit = b; |
|
lastRun = p; |
|
} |
|
} |
|
if (runBit == 0) { |
|
ln = lastRun; |
|
hn = null; |
|
} |
|
else { |
|
hn = lastRun; |
|
ln = null; |
|
} |
|
for (Node<K,V> p = f; p != lastRun; p = p.next) { |
|
int ph = p.hash; K pk = p.key; V pv = p.val; |
|
if ((ph & n) == 0) |
|
ln = new Node<K,V>(ph, pk, pv, ln); |
|
else |
|
hn = new Node<K,V>(ph, pk, pv, hn); |
|
} |
|
setTabAt(nextTab, i, ln); |
|
setTabAt(nextTab, i + n, hn); |
|
setTabAt(tab, i, fwd); |
|
advance = true; |
|
} |
|
else if (f instanceof TreeBin) { |
|
TreeBin<K,V> t = (TreeBin<K,V>)f; |
|
TreeNode<K,V> lo = null, loTail = null; |
|
TreeNode<K,V> hi = null, hiTail = null; |
|
int lc = 0, hc = 0; |
|
for (Node<K,V> e = t.first; e != null; e = e.next) { |
|
int h = e.hash; |
|
TreeNode<K,V> p = new TreeNode<K,V> |
|
(h, e.key, e.val, null, null); |
|
if ((h & n) == 0) { |
|
if ((p.prev = loTail) == null) |
|
lo = p; |
|
else |
|
loTail.next = p; |
|
loTail = p; |
|
++lc; |
|
} |
|
else { |
|
if ((p.prev = hiTail) == null) |
|
hi = p; |
|
else |
|
hiTail.next = p; |
|
hiTail = p; |
|
++hc; |
|
} |
|
} |
|
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) : |
|
(hc != 0) ? new TreeBin<K,V>(lo) : t; |
|
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) : |
|
(lc != 0) ? new TreeBin<K,V>(hi) : t; |
|
setTabAt(nextTab, i, ln); |
|
setTabAt(nextTab, i + n, hn); |
|
setTabAt(tab, i, fwd); |
|
advance = true; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* ---------------- Counter support -------------- */ |
|
|
|
|
|
|
|
|
|
*/ |
|
@sun.misc.Contended static final class CounterCell { |
|
volatile long value; |
|
CounterCell(long x) { value = x; } |
|
} |
|
|
|
final long sumCount() { |
|
CounterCell[] as = counterCells; CounterCell a; |
|
long sum = baseCount; |
|
if (as != null) { |
|
for (int i = 0; i < as.length; ++i) { |
|
if ((a = as[i]) != null) |
|
sum += a.value; |
|
} |
|
} |
|
return sum; |
|
} |
|
|
|
|
|
private final void fullAddCount(long x, boolean wasUncontended) { |
|
int h; |
|
if ((h = ThreadLocalRandom.getProbe()) == 0) { |
|
ThreadLocalRandom.localInit(); |
|
h = ThreadLocalRandom.getProbe(); |
|
wasUncontended = true; |
|
} |
|
boolean collide = false; |
|
for (;;) { |
|
CounterCell[] as; CounterCell a; int n; long v; |
|
if ((as = counterCells) != null && (n = as.length) > 0) { |
|
if ((a = as[(n - 1) & h]) == null) { |
|
if (cellsBusy == 0) { // Try to attach new Cell |
|
CounterCell r = new CounterCell(x); |
|
if (cellsBusy == 0 && |
|
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { |
|
boolean created = false; |
|
try { |
|
CounterCell[] rs; int m, j; |
|
if ((rs = counterCells) != null && |
|
(m = rs.length) > 0 && |
|
rs[j = (m - 1) & h] == null) { |
|
rs[j] = r; |
|
created = true; |
|
} |
|
} finally { |
|
cellsBusy = 0; |
|
} |
|
if (created) |
|
break; |
|
continue; |
|
} |
|
} |
|
collide = false; |
|
} |
|
else if (!wasUncontended) |
|
wasUncontended = true; |
|
else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)) |
|
break; |
|
else if (counterCells != as || n >= NCPU) |
|
collide = false; |
|
else if (!collide) |
|
collide = true; |
|
else if (cellsBusy == 0 && |
|
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { |
|
try { |
|
if (counterCells == as) { |
|
CounterCell[] rs = new CounterCell[n << 1]; |
|
for (int i = 0; i < n; ++i) |
|
rs[i] = as[i]; |
|
counterCells = rs; |
|
} |
|
} finally { |
|
cellsBusy = 0; |
|
} |
|
collide = false; |
|
continue; |
|
} |
|
h = ThreadLocalRandom.advanceProbe(h); |
|
} |
|
else if (cellsBusy == 0 && counterCells == as && |
|
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { |
|
boolean init = false; |
|
try { |
|
if (counterCells == as) { |
|
CounterCell[] rs = new CounterCell[2]; |
|
rs[h & 1] = new CounterCell(x); |
|
counterCells = rs; |
|
init = true; |
|
} |
|
} finally { |
|
cellsBusy = 0; |
|
} |
|
if (init) |
|
break; |
|
} |
|
else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x)) |
|
break; |
|
} |
|
} |
|
|
|
/* ---------------- Conversion from/to TreeBins -------------- */ |
|
|
|
|
|
|
|
|
|
*/ |
|
private final void treeifyBin(Node<K,V>[] tab, int index) { |
|
Node<K,V> b; int n, sc; |
|
if (tab != null) { |
|
if ((n = tab.length) < MIN_TREEIFY_CAPACITY) |
|
tryPresize(n << 1); |
|
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { |
|
synchronized (b) { |
|
if (tabAt(tab, index) == b) { |
|
TreeNode<K,V> hd = null, tl = null; |
|
for (Node<K,V> e = b; e != null; e = e.next) { |
|
TreeNode<K,V> p = |
|
new TreeNode<K,V>(e.hash, e.key, e.val, |
|
null, null); |
|
if ((p.prev = tl) == null) |
|
hd = p; |
|
else |
|
tl.next = p; |
|
tl = p; |
|
} |
|
setTabAt(tab, index, new TreeBin<K,V>(hd)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
*/ |
|
static <K,V> Node<K,V> untreeify(Node<K,V> b) { |
|
Node<K,V> hd = null, tl = null; |
|
for (Node<K,V> q = b; q != null; q = q.next) { |
|
Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null); |
|
if (tl == null) |
|
hd = p; |
|
else |
|
tl.next = p; |
|
tl = p; |
|
} |
|
return hd; |
|
} |
|
|
|
/* ---------------- TreeNodes -------------- */ |
|
|
|
|
|
|
|
*/ |
|
static final class TreeNode<K,V> extends Node<K,V> { |
|
TreeNode<K,V> parent; |
|
TreeNode<K,V> left; |
|
TreeNode<K,V> right; |
|
TreeNode<K,V> prev; |
|
boolean red; |
|
|
|
TreeNode(int hash, K key, V val, Node<K,V> next, |
|
TreeNode<K,V> parent) { |
|
super(hash, key, val, next); |
|
this.parent = parent; |
|
} |
|
|
|
Node<K,V> find(int h, Object k) { |
|
return findTreeNode(h, k, null); |
|
} |
|
|
|
|
|
|
|
|
|
*/ |
|
final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) { |
|
if (k != null) { |
|
TreeNode<K,V> p = this; |
|
do { |
|
int ph, dir; K pk; TreeNode<K,V> q; |
|
TreeNode<K,V> pl = p.left, pr = p.right; |
|
if ((ph = p.hash) > h) |
|
p = pl; |
|
else if (ph < h) |
|
p = pr; |
|
else if ((pk = p.key) == k || (pk != null && k.equals(pk))) |
|
return p; |
|
else if (pl == null) |
|
p = pr; |
|
else if (pr == null) |
|
p = pl; |
|
else if ((kc != null || |
|
(kc = comparableClassFor(k)) != null) && |
|
(dir = compareComparables(kc, k, pk)) != 0) |
|
p = (dir < 0) ? pl : pr; |
|
else if ((q = pr.findTreeNode(h, k, kc)) != null) |
|
return q; |
|
else |
|
p = pl; |
|
} while (p != null); |
|
} |
|
return null; |
|
} |
|
} |
|
|
|
/* ---------------- TreeBins -------------- */ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
static final class TreeBin<K,V> extends Node<K,V> { |
|
TreeNode<K,V> root; |
|
volatile TreeNode<K,V> first; |
|
volatile Thread waiter; |
|
volatile int lockState; |
|
// values for lockState |
|
static final int WRITER = 1; |
|
static final int WAITER = 2; |
|
static final int READER = 4; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
static int tieBreakOrder(Object a, Object b) { |
|
int d; |
|
if (a == null || b == null || |
|
(d = a.getClass().getName(). |
|
compareTo(b.getClass().getName())) == 0) |
|
d = (System.identityHashCode(a) <= System.identityHashCode(b) ? |
|
-1 : 1); |
|
return d; |
|
} |
|
|
|
|
|
|
|
*/ |
|
TreeBin(TreeNode<K,V> b) { |
|
super(TREEBIN, null, null, null); |
|
this.first = b; |
|
TreeNode<K,V> r = null; |
|
for (TreeNode<K,V> x = b, next; x != null; x = next) { |
|
next = (TreeNode<K,V>)x.next; |
|
x.left = x.right = null; |
|
if (r == null) { |
|
x.parent = null; |
|
x.red = false; |
|
r = x; |
|
} |
|
else { |
|
K k = x.key; |
|
int h = x.hash; |
|
Class<?> kc = null; |
|
for (TreeNode<K,V> p = r;;) { |
|
int dir, ph; |
|
K pk = p.key; |
|
if ((ph = p.hash) > h) |
|
dir = -1; |
|
else if (ph < h) |
|
dir = 1; |
|
else if ((kc == null && |
|
(kc = comparableClassFor(k)) == null) || |
|
(dir = compareComparables(kc, k, pk)) == 0) |
|
dir = tieBreakOrder(k, pk); |
|
TreeNode<K,V> xp = p; |
|
if ((p = (dir <= 0) ? p.left : p.right) == null) { |
|
x.parent = xp; |
|
if (dir <= 0) |
|
xp.left = x; |
|
else |
|
xp.right = x; |
|
r = balanceInsertion(r, x); |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
this.root = r; |
|
assert checkInvariants(root); |
|
} |
|
|
|
|
|
|
|
*/ |
|
private final void lockRoot() { |
|
if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER)) |
|
contendedLock(); |
|
} |
|
|
|
|
|
|
|
*/ |
|
private final void unlockRoot() { |
|
lockState = 0; |
|
} |
|
|
|
|
|
|
|
*/ |
|
private final void contendedLock() { |
|
boolean waiting = false; |
|
for (int s;;) { |
|
if (((s = lockState) & ~WAITER) == 0) { |
|
if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) { |
|
if (waiting) |
|
waiter = null; |
|
return; |
|
} |
|
} |
|
else if ((s & WAITER) == 0) { |
|
if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) { |
|
waiting = true; |
|
waiter = Thread.currentThread(); |
|
} |
|
} |
|
else if (waiting) |
|
LockSupport.park(this); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
final Node<K,V> find(int h, Object k) { |
|
if (k != null) { |
|
for (Node<K,V> e = first; e != null; ) { |
|
int s; K ek; |
|
if (((s = lockState) & (WAITER|WRITER)) != 0) { |
|
if (e.hash == h && |
|
((ek = e.key) == k || (ek != null && k.equals(ek)))) |
|
return e; |
|
e = e.next; |
|
} |
|
else if (U.compareAndSwapInt(this, LOCKSTATE, s, |
|
s + READER)) { |
|
TreeNode<K,V> r, p; |
|
try { |
|
p = ((r = root) == null ? null : |
|
r.findTreeNode(h, k, null)); |
|
} finally { |
|
Thread w; |
|
if (U.getAndAddInt(this, LOCKSTATE, -READER) == |
|
(READER|WAITER) && (w = waiter) != null) |
|
LockSupport.unpark(w); |
|
} |
|
return p; |
|
} |
|
} |
|
} |
|
return null; |
|
} |
|
|
|
|
|
|
|
|
|
*/ |
|
final TreeNode<K,V> putTreeVal(int h, K k, V v) { |
|
Class<?> kc = null; |
|
boolean searched = false; |
|
for (TreeNode<K,V> p = root;;) { |
|
int dir, ph; K pk; |
|
if (p == null) { |
|
first = root = new TreeNode<K,V>(h, k, v, null, null); |
|
break; |
|
} |
|
else if ((ph = p.hash) > h) |
|
dir = -1; |
|
else if (ph < h) |
|
dir = 1; |
|
else if ((pk = p.key) == k || (pk != null && k.equals(pk))) |
|
return p; |
|
else if ((kc == null && |
|
(kc = comparableClassFor(k)) == null) || |
|
(dir = compareComparables(kc, k, pk)) == 0) { |
|
if (!searched) { |
|
TreeNode<K,V> q, ch; |
|
searched = true; |
|
if (((ch = p.left) != null && |
|
(q = ch.findTreeNode(h, k, kc)) != null) || |
|
((ch = p.right) != null && |
|
(q = ch.findTreeNode(h, k, kc)) != null)) |
|
return q; |
|
} |
|
dir = tieBreakOrder(k, pk); |
|
} |
|
|
|
TreeNode<K,V> xp = p; |
|
if ((p = (dir <= 0) ? p.left : p.right) == null) { |
|
TreeNode<K,V> x, f = first; |
|
first = x = new TreeNode<K,V>(h, k, v, f, xp); |
|
if (f != null) |
|
f.prev = x; |
|
if (dir <= 0) |
|
xp.left = x; |
|
else |
|
xp.right = x; |
|
if (!xp.red) |
|
x.red = true; |
|
else { |
|
lockRoot(); |
|
try { |
|
root = balanceInsertion(root, x); |
|
} finally { |
|
unlockRoot(); |
|
} |
|
} |
|
break; |
|
} |
|
} |
|
assert checkInvariants(root); |
|
return null; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
final boolean removeTreeNode(TreeNode<K,V> p) { |
|
TreeNode<K,V> next = (TreeNode<K,V>)p.next; |
|
TreeNode<K,V> pred = p.prev; |
|
TreeNode<K,V> r, rl; |
|
if (pred == null) |
|
first = next; |
|
else |
|
pred.next = next; |
|
if (next != null) |
|
next.prev = pred; |
|
if (first == null) { |
|
root = null; |
|
return true; |
|
} |
|
if ((r = root) == null || r.right == null || |
|
(rl = r.left) == null || rl.left == null) |
|
return true; |
|
lockRoot(); |
|
try { |
|
TreeNode<K,V> replacement; |
|
TreeNode<K,V> pl = p.left; |
|
TreeNode<K,V> pr = p.right; |
|
if (pl != null && pr != null) { |
|
TreeNode<K,V> s = pr, sl; |
|
while ((sl = s.left) != null) |
|
s = sl; |
|
boolean c = s.red; s.red = p.red; p.red = c; |
|
TreeNode<K,V> sr = s.right; |
|
TreeNode<K,V> pp = p.parent; |
|
if (s == pr) { |
|
p.parent = s; |
|
s.right = p; |
|
} |
|
else { |
|
TreeNode<K,V> sp = s.parent; |
|
if ((p.parent = sp) != null) { |
|
if (s == sp.left) |
|
sp.left = p; |
|
else |
|
sp.right = p; |
|
} |
|
if ((s.right = pr) != null) |
|
pr.parent = s; |
|
} |
|
p.left = null; |
|
if ((p.right = sr) != null) |
|
sr.parent = p; |
|
if ((s.left = pl) != null) |
|
pl.parent = s; |
|
if ((s.parent = pp) == null) |
|
r = s; |
|
else if (p == pp.left) |
|
pp.left = s; |
|
else |
|
pp.right = s; |
|
if (sr != null) |
|
replacement = sr; |
|
else |
|
replacement = p; |
|
} |
|
else if (pl != null) |
|
replacement = pl; |
|
else if (pr != null) |
|
replacement = pr; |
|
else |
|
replacement = p; |
|
if (replacement != p) { |
|
TreeNode<K,V> pp = replacement.parent = p.parent; |
|
if (pp == null) |
|
r = replacement; |
|
else if (p == pp.left) |
|
pp.left = replacement; |
|
else |
|
pp.right = replacement; |
|
p.left = p.right = p.parent = null; |
|
} |
|
|
|
root = (p.red) ? r : balanceDeletion(r, replacement); |
|
|
|
if (p == replacement) { |
|
TreeNode<K,V> pp; |
|
if ((pp = p.parent) != null) { |
|
if (p == pp.left) |
|
pp.left = null; |
|
else if (p == pp.right) |
|
pp.right = null; |
|
p.parent = null; |
|
} |
|
} |
|
} finally { |
|
unlockRoot(); |
|
} |
|
assert checkInvariants(root); |
|
return false; |
|
} |
|
|
|
/* ------------------------------------------------------------ */ |
|
// Red-black tree methods, all adapted from CLR |
|
|
|
static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root, |
|
TreeNode<K,V> p) { |
|
TreeNode<K,V> r, pp, rl; |
|
if (p != null && (r = p.right) != null) { |
|
if ((rl = p.right = r.left) != null) |
|
rl.parent = p; |
|
if ((pp = r.parent = p.parent) == null) |
|
(root = r).red = false; |
|
else if (pp.left == p) |
|
pp.left = r; |
|
else |
|
pp.right = r; |
|
r.left = p; |
|
p.parent = r; |
|
} |
|
return root; |
|
} |
|
|
|
static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root, |
|
TreeNode<K,V> p) { |
|
TreeNode<K,V> l, pp, lr; |
|
if (p != null && (l = p.left) != null) { |
|
if ((lr = p.left = l.right) != null) |
|
lr.parent = p; |
|
if ((pp = l.parent = p.parent) == null) |
|
(root = l).red = false; |
|
else if (pp.right == p) |
|
pp.right = l; |
|
else |
|
pp.left = l; |
|
l.right = p; |
|
p.parent = l; |
|
} |
|
return root; |
|
} |
|
|
|
static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root, |
|
TreeNode<K,V> x) { |
|
x.red = true; |
|
for (TreeNode<K,V> xp, xpp, xppl, xppr;;) { |
|
if ((xp = x.parent) == null) { |
|
x.red = false; |
|
return x; |
|
} |
|
else if (!xp.red || (xpp = xp.parent) == null) |
|
return root; |
|
if (xp == (xppl = xpp.left)) { |
|
if ((xppr = xpp.right) != null && xppr.red) { |
|
xppr.red = false; |
|
xp.red = false; |
|
xpp.red = true; |
|
x = xpp; |
|
} |
|
else { |
|
if (x == xp.right) { |
|
root = rotateLeft(root, x = xp); |
|
xpp = (xp = x.parent) == null ? null : xp.parent; |
|
} |
|
if (xp != null) { |
|
xp.red = false; |
|
if (xpp != null) { |
|
xpp.red = true; |
|
root = rotateRight(root, xpp); |
|
} |
|
} |
|
} |
|
} |
|
else { |
|
if (xppl != null && xppl.red) { |
|
xppl.red = false; |
|
xp.red = false; |
|
xpp.red = true; |
|
x = xpp; |
|
} |
|
else { |
|
if (x == xp.left) { |
|
root = rotateRight(root, x = xp); |
|
xpp = (xp = x.parent) == null ? null : xp.parent; |
|
} |
|
if (xp != null) { |
|
xp.red = false; |
|
if (xpp != null) { |
|
xpp.red = true; |
|
root = rotateLeft(root, xpp); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root, |
|
TreeNode<K,V> x) { |
|
for (TreeNode<K,V> xp, xpl, xpr;;) { |
|
if (x == null || x == root) |
|
return root; |
|
else if ((xp = x.parent) == null) { |
|
x.red = false; |
|
return x; |
|
} |
|
else if (x.red) { |
|
x.red = false; |
|
return root; |
|
} |
|
else if ((xpl = xp.left) == x) { |
|
if ((xpr = xp.right) != null && xpr.red) { |
|
xpr.red = false; |
|
xp.red = true; |
|
root = rotateLeft(root, xp); |
|
xpr = (xp = x.parent) == null ? null : xp.right; |
|
} |
|
if (xpr == null) |
|
x = xp; |
|
else { |
|
TreeNode<K,V> sl = xpr.left, sr = xpr.right; |
|
if ((sr == null || !sr.red) && |
|
(sl == null || !sl.red)) { |
|
xpr.red = true; |
|
x = xp; |
|
} |
|
else { |
|
if (sr == null || !sr.red) { |
|
if (sl != null) |
|
sl.red = false; |
|
xpr.red = true; |
|
root = rotateRight(root, xpr); |
|
xpr = (xp = x.parent) == null ? |
|
null : xp.right; |
|
} |
|
if (xpr != null) { |
|
xpr.red = (xp == null) ? false : xp.red; |
|
if ((sr = xpr.right) != null) |
|
sr.red = false; |
|
} |
|
if (xp != null) { |
|
xp.red = false; |
|
root = rotateLeft(root, xp); |
|
} |
|
x = root; |
|
} |
|
} |
|
} |
|
else { |
|
if (xpl != null && xpl.red) { |
|
xpl.red = false; |
|
xp.red = true; |
|
root = rotateRight(root, xp); |
|
xpl = (xp = x.parent) == null ? null : xp.left; |
|
} |
|
if (xpl == null) |
|
x = xp; |
|
else { |
|
TreeNode<K,V> sl = xpl.left, sr = xpl.right; |
|
if ((sl == null || !sl.red) && |
|
(sr == null || !sr.red)) { |
|
xpl.red = true; |
|
x = xp; |
|
} |
|
else { |
|
if (sl == null || !sl.red) { |
|
if (sr != null) |
|
sr.red = false; |
|
xpl.red = true; |
|
root = rotateLeft(root, xpl); |
|
xpl = (xp = x.parent) == null ? |
|
null : xp.left; |
|
} |
|
if (xpl != null) { |
|
xpl.red = (xp == null) ? false : xp.red; |
|
if ((sl = xpl.left) != null) |
|
sl.red = false; |
|
} |
|
if (xp != null) { |
|
xp.red = false; |
|
root = rotateRight(root, xp); |
|
} |
|
x = root; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
*/ |
|
static <K,V> boolean checkInvariants(TreeNode<K,V> t) { |
|
TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right, |
|
tb = t.prev, tn = (TreeNode<K,V>)t.next; |
|
if (tb != null && tb.next != t) |
|
return false; |
|
if (tn != null && tn.prev != t) |
|
return false; |
|
if (tp != null && t != tp.left && t != tp.right) |
|
return false; |
|
if (tl != null && (tl.parent != t || tl.hash > t.hash)) |
|
return false; |
|
if (tr != null && (tr.parent != t || tr.hash < t.hash)) |
|
return false; |
|
if (t.red && tl != null && tl.red && tr != null && tr.red) |
|
return false; |
|
if (tl != null && !checkInvariants(tl)) |
|
return false; |
|
if (tr != null && !checkInvariants(tr)) |
|
return false; |
|
return true; |
|
} |
|
|
|
private static final sun.misc.Unsafe U; |
|
private static final long LOCKSTATE; |
|
static { |
|
try { |
|
U = sun.misc.Unsafe.getUnsafe(); |
|
Class<?> k = TreeBin.class; |
|
LOCKSTATE = U.objectFieldOffset |
|
(k.getDeclaredField("lockState")); |
|
} catch (Exception e) { |
|
throw new Error(e); |
|
} |
|
} |
|
} |
|
|
|
/* ----------------Table Traversal -------------- */ |
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
static final class TableStack<K,V> { |
|
int length; |
|
int index; |
|
Node<K,V>[] tab; |
|
TableStack<K,V> next; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
static class Traverser<K,V> { |
|
Node<K,V>[] tab; |
|
Node<K,V> next; |
|
TableStack<K,V> stack, spare; |
|
int index; |
|
int baseIndex; |
|
int baseLimit; |
|
final int baseSize; |
|
|
|
Traverser(Node<K,V>[] tab, int size, int index, int limit) { |
|
this.tab = tab; |
|
this.baseSize = size; |
|
this.baseIndex = this.index = index; |
|
this.baseLimit = limit; |
|
this.next = null; |
|
} |
|
|
|
|
|
|
|
*/ |
|
final Node<K,V> advance() { |
|
Node<K,V> e; |
|
if ((e = next) != null) |
|
e = e.next; |
|
for (;;) { |
|
Node<K,V>[] t; int i, n; |
|
if (e != null) |
|
return next = e; |
|
if (baseIndex >= baseLimit || (t = tab) == null || |
|
(n = t.length) <= (i = index) || i < 0) |
|
return next = null; |
|
if ((e = tabAt(t, i)) != null && e.hash < 0) { |
|
if (e instanceof ForwardingNode) { |
|
tab = ((ForwardingNode<K,V>)e).nextTable; |
|
e = null; |
|
pushState(t, i, n); |
|
continue; |
|
} |
|
else if (e instanceof TreeBin) |
|
e = ((TreeBin<K,V>)e).first; |
|
else |
|
e = null; |
|
} |
|
if (stack != null) |
|
recoverState(n); |
|
else if ((index = i + baseSize) >= n) |
|
index = ++baseIndex; |
|
} |
|
} |
|
|
|
|
|
|
|
*/ |
|
private void pushState(Node<K,V>[] t, int i, int n) { |
|
TableStack<K,V> s = spare; |
|
if (s != null) |
|
spare = s.next; |
|
else |
|
s = new TableStack<K,V>(); |
|
s.tab = t; |
|
s.length = n; |
|
s.index = i; |
|
s.next = stack; |
|
stack = s; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
private void recoverState(int n) { |
|
TableStack<K,V> s; int len; |
|
while ((s = stack) != null && (index += (len = s.length)) >= n) { |
|
n = len; |
|
index = s.index; |
|
tab = s.tab; |
|
s.tab = null; |
|
TableStack<K,V> next = s.next; |
|
s.next = spare; |
|
stack = next; |
|
spare = s; |
|
} |
|
if (s == null && (index += baseSize) >= n) |
|
index = ++baseIndex; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
*/ |
|
static class BaseIterator<K,V> extends Traverser<K,V> { |
|
final ConcurrentHashMap<K,V> map; |
|
Node<K,V> lastReturned; |
|
BaseIterator(Node<K,V>[] tab, int size, int index, int limit, |
|
ConcurrentHashMap<K,V> map) { |
|
super(tab, size, index, limit); |
|
this.map = map; |
|
advance(); |
|
} |
|
|
|
public final boolean hasNext() { return next != null; } |
|
public final boolean hasMoreElements() { return next != null; } |
|
|
|
public final void remove() { |
|
Node<K,V> p; |
|
if ((p = lastReturned) == null) |
|
throw new IllegalStateException(); |
|
lastReturned = null; |
|
map.replaceNode(p.key, null, null); |
|
} |
|
} |
|
|
|
static final class KeyIterator<K,V> extends BaseIterator<K,V> |
|
implements Iterator<K>, Enumeration<K> { |
|
KeyIterator(Node<K,V>[] tab, int index, int size, int limit, |
|
ConcurrentHashMap<K,V> map) { |
|
super(tab, index, size, limit, map); |
|
} |
|
|
|
public final K next() { |
|
Node<K,V> p; |
|
if ((p = next) == null) |
|
throw new NoSuchElementException(); |
|
K k = p.key; |
|
lastReturned = p; |
|
advance(); |
|
return k; |
|
} |
|
|
|
public final K nextElement() { return next(); } |
|
} |
|
|
|
static final class ValueIterator<K,V> extends BaseIterator<K,V> |
|
implements Iterator<V>, Enumeration<V> { |
|
ValueIterator(Node<K,V>[] tab, int index, int size, int limit, |
|
ConcurrentHashMap<K,V> map) { |
|
super(tab, index, size, limit, map); |
|
} |
|
|
|
public final V next() { |
|
Node<K,V> p; |
|
if ((p = next) == null) |
|
throw new NoSuchElementException(); |
|
V v = p.val; |
|
lastReturned = p; |
|
advance(); |
|
return v; |
|
} |
|
|
|
public final V nextElement() { return next(); } |
|
} |
|
|
|
static final class EntryIterator<K,V> extends BaseIterator<K,V> |
|
implements Iterator<Map.Entry<K,V>> { |
|
EntryIterator(Node<K,V>[] tab, int index, int size, int limit, |
|
ConcurrentHashMap<K,V> map) { |
|
super(tab, index, size, limit, map); |
|
} |
|
|
|
public final Map.Entry<K,V> next() { |
|
Node<K,V> p; |
|
if ((p = next) == null) |
|
throw new NoSuchElementException(); |
|
K k = p.key; |
|
V v = p.val; |
|
lastReturned = p; |
|
advance(); |
|
return new MapEntry<K,V>(k, v, map); |
|
} |
|
} |
|
|
|
|
|
|
|
*/ |
|
static final class MapEntry<K,V> implements Map.Entry<K,V> { |
|
final K key; |
|
V val; |
|
final ConcurrentHashMap<K,V> map; |
|
MapEntry(K key, V val, ConcurrentHashMap<K,V> map) { |
|
this.key = key; |
|
this.val = val; |
|
this.map = map; |
|
} |
|
public K getKey() { return key; } |
|
public V getValue() { return val; } |
|
public int hashCode() { return key.hashCode() ^ val.hashCode(); } |
|
public String toString() { return key + "=" + val; } |
|
|
|
public boolean equals(Object o) { |
|
Object k, v; Map.Entry<?,?> e; |
|
return ((o instanceof Map.Entry) && |
|
(k = (e = (Map.Entry<?,?>)o).getKey()) != null && |
|
(v = e.getValue()) != null && |
|
(k == key || k.equals(key)) && |
|
(v == val || v.equals(val))); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public V setValue(V value) { |
|
if (value == null) throw new NullPointerException(); |
|
V v = val; |
|
val = value; |
|
map.put(key, value); |
|
return v; |
|
} |
|
} |
|
|
|
static final class KeySpliterator<K,V> extends Traverser<K,V> |
|
implements Spliterator<K> { |
|
long est; |
|
KeySpliterator(Node<K,V>[] tab, int size, int index, int limit, |
|
long est) { |
|
super(tab, size, index, limit); |
|
this.est = est; |
|
} |
|
|
|
public Spliterator<K> trySplit() { |
|
int i, f, h; |
|
return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null : |
|
new KeySpliterator<K,V>(tab, baseSize, baseLimit = h, |
|
f, est >>>= 1); |
|
} |
|
|
|
public void forEachRemaining(Consumer<? super K> action) { |
|
if (action == null) throw new NullPointerException(); |
|
for (Node<K,V> p; (p = advance()) != null;) |
|
action.accept(p.key); |
|
} |
|
|
|
public boolean tryAdvance(Consumer<? super K> action) { |
|
if (action == null) throw new NullPointerException(); |
|
Node<K,V> p; |
|
if ((p = advance()) == null) |
|
return false; |
|
action.accept(p.key); |
|
return true; |
|
} |
|
|
|
public long estimateSize() { return est; } |
|
|
|
public int characteristics() { |
|
return Spliterator.DISTINCT | Spliterator.CONCURRENT | |
|
Spliterator.NONNULL; |
|
} |
|
} |
|
|
|
static final class ValueSpliterator<K,V> extends Traverser<K,V> |
|
implements Spliterator<V> { |
|
long est; |
|
ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit, |
|
long est) { |
|
super(tab, size, index, limit); |
|
this.est = est; |
|
} |
|
|
|
public Spliterator<V> trySplit() { |
|
int i, f, h; |
|
return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null : |
|
new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h, |
|
f, est >>>= 1); |
|
} |
|
|
|
public void forEachRemaining(Consumer<? super V> action) { |
|
if (action == null) throw new NullPointerException(); |
|
for (Node<K,V> p; (p = advance()) != null;) |
|
action.accept(p.val); |
|
} |
|
|
|
public boolean tryAdvance(Consumer<? super V> action) { |
|
if (action == null) throw new NullPointerException(); |
|
Node<K,V> p; |
|
if ((p = advance()) == null) |
|
return false; |
|
action.accept(p.val); |
|
return true; |
|
} |
|
|
|
public long estimateSize() { return est; } |
|
|
|
public int characteristics() { |
|
return Spliterator.CONCURRENT | Spliterator.NONNULL; |
|
} |
|
} |
|
|
|
static final class EntrySpliterator<K,V> extends Traverser<K,V> |
|
implements Spliterator<Map.Entry<K,V>> { |
|
final ConcurrentHashMap<K,V> map; |
|
long est; |
|
EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit, |
|
long est, ConcurrentHashMap<K,V> map) { |
|
super(tab, size, index, limit); |
|
this.map = map; |
|
this.est = est; |
|
} |
|
|
|
public Spliterator<Map.Entry<K,V>> trySplit() { |
|
int i, f, h; |
|
return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null : |
|
new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h, |
|
f, est >>>= 1, map); |
|
} |
|
|
|
public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) { |
|
if (action == null) throw new NullPointerException(); |
|
for (Node<K,V> p; (p = advance()) != null; ) |
|
action.accept(new MapEntry<K,V>(p.key, p.val, map)); |
|
} |
|
|
|
public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) { |
|
if (action == null) throw new NullPointerException(); |
|
Node<K,V> p; |
|
if ((p = advance()) == null) |
|
return false; |
|
action.accept(new MapEntry<K,V>(p.key, p.val, map)); |
|
return true; |
|
} |
|
|
|
public long estimateSize() { return est; } |
|
|
|
public int characteristics() { |
|
return Spliterator.DISTINCT | Spliterator.CONCURRENT | |
|
Spliterator.NONNULL; |
|
} |
|
} |
|
|
|
// Parallel bulk operations |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
final int batchFor(long b) { |
|
long n; |
|
if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b) |
|
return 0; |
|
int sp = ForkJoinPool.getCommonPoolParallelism() << 2; |
|
return (b <= 0L || (n /= b) >= sp) ? sp : (int)n; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public void forEach(long parallelismThreshold, |
|
BiConsumer<? super K,? super V> action) { |
|
if (action == null) throw new NullPointerException(); |
|
new ForEachMappingTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
action).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public <U> void forEach(long parallelismThreshold, |
|
BiFunction<? super K, ? super V, ? extends U> transformer, |
|
Consumer<? super U> action) { |
|
if (transformer == null || action == null) |
|
throw new NullPointerException(); |
|
new ForEachTransformedMappingTask<K,V,U> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
transformer, action).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public <U> U search(long parallelismThreshold, |
|
BiFunction<? super K, ? super V, ? extends U> searchFunction) { |
|
if (searchFunction == null) throw new NullPointerException(); |
|
return new SearchMappingsTask<K,V,U> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
searchFunction, new AtomicReference<U>()).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public <U> U reduce(long parallelismThreshold, |
|
BiFunction<? super K, ? super V, ? extends U> transformer, |
|
BiFunction<? super U, ? super U, ? extends U> reducer) { |
|
if (transformer == null || reducer == null) |
|
throw new NullPointerException(); |
|
return new MapReduceMappingsTask<K,V,U> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, transformer, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public double reduceToDouble(long parallelismThreshold, |
|
ToDoubleBiFunction<? super K, ? super V> transformer, |
|
double basis, |
|
DoubleBinaryOperator reducer) { |
|
if (transformer == null || reducer == null) |
|
throw new NullPointerException(); |
|
return new MapReduceMappingsToDoubleTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, transformer, basis, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public long reduceToLong(long parallelismThreshold, |
|
ToLongBiFunction<? super K, ? super V> transformer, |
|
long basis, |
|
LongBinaryOperator reducer) { |
|
if (transformer == null || reducer == null) |
|
throw new NullPointerException(); |
|
return new MapReduceMappingsToLongTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, transformer, basis, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public int reduceToInt(long parallelismThreshold, |
|
ToIntBiFunction<? super K, ? super V> transformer, |
|
int basis, |
|
IntBinaryOperator reducer) { |
|
if (transformer == null || reducer == null) |
|
throw new NullPointerException(); |
|
return new MapReduceMappingsToIntTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, transformer, basis, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public void forEachKey(long parallelismThreshold, |
|
Consumer<? super K> action) { |
|
if (action == null) throw new NullPointerException(); |
|
new ForEachKeyTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
action).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public <U> void forEachKey(long parallelismThreshold, |
|
Function<? super K, ? extends U> transformer, |
|
Consumer<? super U> action) { |
|
if (transformer == null || action == null) |
|
throw new NullPointerException(); |
|
new ForEachTransformedKeyTask<K,V,U> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
transformer, action).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public <U> U searchKeys(long parallelismThreshold, |
|
Function<? super K, ? extends U> searchFunction) { |
|
if (searchFunction == null) throw new NullPointerException(); |
|
return new SearchKeysTask<K,V,U> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
searchFunction, new AtomicReference<U>()).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public K reduceKeys(long parallelismThreshold, |
|
BiFunction<? super K, ? super K, ? extends K> reducer) { |
|
if (reducer == null) throw new NullPointerException(); |
|
return new ReduceKeysTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public <U> U reduceKeys(long parallelismThreshold, |
|
Function<? super K, ? extends U> transformer, |
|
BiFunction<? super U, ? super U, ? extends U> reducer) { |
|
if (transformer == null || reducer == null) |
|
throw new NullPointerException(); |
|
return new MapReduceKeysTask<K,V,U> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, transformer, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public double reduceKeysToDouble(long parallelismThreshold, |
|
ToDoubleFunction<? super K> transformer, |
|
double basis, |
|
DoubleBinaryOperator reducer) { |
|
if (transformer == null || reducer == null) |
|
throw new NullPointerException(); |
|
return new MapReduceKeysToDoubleTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, transformer, basis, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public long reduceKeysToLong(long parallelismThreshold, |
|
ToLongFunction<? super K> transformer, |
|
long basis, |
|
LongBinaryOperator reducer) { |
|
if (transformer == null || reducer == null) |
|
throw new NullPointerException(); |
|
return new MapReduceKeysToLongTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, transformer, basis, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public int reduceKeysToInt(long parallelismThreshold, |
|
ToIntFunction<? super K> transformer, |
|
int basis, |
|
IntBinaryOperator reducer) { |
|
if (transformer == null || reducer == null) |
|
throw new NullPointerException(); |
|
return new MapReduceKeysToIntTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, transformer, basis, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public void forEachValue(long parallelismThreshold, |
|
Consumer<? super V> action) { |
|
if (action == null) |
|
throw new NullPointerException(); |
|
new ForEachValueTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
action).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public <U> void forEachValue(long parallelismThreshold, |
|
Function<? super V, ? extends U> transformer, |
|
Consumer<? super U> action) { |
|
if (transformer == null || action == null) |
|
throw new NullPointerException(); |
|
new ForEachTransformedValueTask<K,V,U> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
transformer, action).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public <U> U searchValues(long parallelismThreshold, |
|
Function<? super V, ? extends U> searchFunction) { |
|
if (searchFunction == null) throw new NullPointerException(); |
|
return new SearchValuesTask<K,V,U> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
searchFunction, new AtomicReference<U>()).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public V reduceValues(long parallelismThreshold, |
|
BiFunction<? super V, ? super V, ? extends V> reducer) { |
|
if (reducer == null) throw new NullPointerException(); |
|
return new ReduceValuesTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public <U> U reduceValues(long parallelismThreshold, |
|
Function<? super V, ? extends U> transformer, |
|
BiFunction<? super U, ? super U, ? extends U> reducer) { |
|
if (transformer == null || reducer == null) |
|
throw new NullPointerException(); |
|
return new MapReduceValuesTask<K,V,U> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, transformer, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public double reduceValuesToDouble(long parallelismThreshold, |
|
ToDoubleFunction<? super V> transformer, |
|
double basis, |
|
DoubleBinaryOperator reducer) { |
|
if (transformer == null || reducer == null) |
|
throw new NullPointerException(); |
|
return new MapReduceValuesToDoubleTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, transformer, basis, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public long reduceValuesToLong(long parallelismThreshold, |
|
ToLongFunction<? super V> transformer, |
|
long basis, |
|
LongBinaryOperator reducer) { |
|
if (transformer == null || reducer == null) |
|
throw new NullPointerException(); |
|
return new MapReduceValuesToLongTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, transformer, basis, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public int reduceValuesToInt(long parallelismThreshold, |
|
ToIntFunction<? super V> transformer, |
|
int basis, |
|
IntBinaryOperator reducer) { |
|
if (transformer == null || reducer == null) |
|
throw new NullPointerException(); |
|
return new MapReduceValuesToIntTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, transformer, basis, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public void forEachEntry(long parallelismThreshold, |
|
Consumer<? super Map.Entry<K,V>> action) { |
|
if (action == null) throw new NullPointerException(); |
|
new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table, |
|
action).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public <U> void forEachEntry(long parallelismThreshold, |
|
Function<Map.Entry<K,V>, ? extends U> transformer, |
|
Consumer<? super U> action) { |
|
if (transformer == null || action == null) |
|
throw new NullPointerException(); |
|
new ForEachTransformedEntryTask<K,V,U> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
transformer, action).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public <U> U searchEntries(long parallelismThreshold, |
|
Function<Map.Entry<K,V>, ? extends U> searchFunction) { |
|
if (searchFunction == null) throw new NullPointerException(); |
|
return new SearchEntriesTask<K,V,U> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
searchFunction, new AtomicReference<U>()).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public Map.Entry<K,V> reduceEntries(long parallelismThreshold, |
|
BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) { |
|
if (reducer == null) throw new NullPointerException(); |
|
return new ReduceEntriesTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public <U> U reduceEntries(long parallelismThreshold, |
|
Function<Map.Entry<K,V>, ? extends U> transformer, |
|
BiFunction<? super U, ? super U, ? extends U> reducer) { |
|
if (transformer == null || reducer == null) |
|
throw new NullPointerException(); |
|
return new MapReduceEntriesTask<K,V,U> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, transformer, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public double reduceEntriesToDouble(long parallelismThreshold, |
|
ToDoubleFunction<Map.Entry<K,V>> transformer, |
|
double basis, |
|
DoubleBinaryOperator reducer) { |
|
if (transformer == null || reducer == null) |
|
throw new NullPointerException(); |
|
return new MapReduceEntriesToDoubleTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, transformer, basis, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public long reduceEntriesToLong(long parallelismThreshold, |
|
ToLongFunction<Map.Entry<K,V>> transformer, |
|
long basis, |
|
LongBinaryOperator reducer) { |
|
if (transformer == null || reducer == null) |
|
throw new NullPointerException(); |
|
return new MapReduceEntriesToLongTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, transformer, basis, reducer).invoke(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public int reduceEntriesToInt(long parallelismThreshold, |
|
ToIntFunction<Map.Entry<K,V>> transformer, |
|
int basis, |
|
IntBinaryOperator reducer) { |
|
if (transformer == null || reducer == null) |
|
throw new NullPointerException(); |
|
return new MapReduceEntriesToIntTask<K,V> |
|
(null, batchFor(parallelismThreshold), 0, 0, table, |
|
null, transformer, basis, reducer).invoke(); |
|
} |
|
|
|
|
|
/* ----------------Views -------------- */ |
|
|
|
|
|
|
|
*/ |
|
abstract static class CollectionView<K,V,E> |
|
implements Collection<E>, java.io.Serializable { |
|
private static final long serialVersionUID = 7249069246763182397L; |
|
final ConcurrentHashMap<K,V> map; |
|
CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; } |
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public ConcurrentHashMap<K,V> getMap() { return map; } |
|
|
|
|
|
|
|
|
|
*/ |
|
public final void clear() { map.clear(); } |
|
public final int size() { return map.size(); } |
|
public final boolean isEmpty() { return map.isEmpty(); } |
|
|
|
// implementations below rely on concrete classes supplying these |
|
// abstract methods |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public abstract Iterator<E> iterator(); |
|
public abstract boolean contains(Object o); |
|
public abstract boolean remove(Object o); |
|
|
|
private static final String oomeMsg = "Required array size too large"; |
|
|
|
public final Object[] toArray() { |
|
long sz = map.mappingCount(); |
|
if (sz > MAX_ARRAY_SIZE) |
|
throw new OutOfMemoryError(oomeMsg); |
|
int n = (int)sz; |
|
Object[] r = new Object[n]; |
|
int i = 0; |
|
for (E e : this) { |
|
if (i == n) { |
|
if (n >= MAX_ARRAY_SIZE) |
|
throw new OutOfMemoryError(oomeMsg); |
|
if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) |
|
n = MAX_ARRAY_SIZE; |
|
else |
|
n += (n >>> 1) + 1; |
|
r = Arrays.copyOf(r, n); |
|
} |
|
r[i++] = e; |
|
} |
|
return (i == n) ? r : Arrays.copyOf(r, i); |
|
} |
|
|
|
@SuppressWarnings("unchecked") |
|
public final <T> T[] toArray(T[] a) { |
|
long sz = map.mappingCount(); |
|
if (sz > MAX_ARRAY_SIZE) |
|
throw new OutOfMemoryError(oomeMsg); |
|
int m = (int)sz; |
|
T[] r = (a.length >= m) ? a : |
|
(T[])java.lang.reflect.Array |
|
.newInstance(a.getClass().getComponentType(), m); |
|
int n = r.length; |
|
int i = 0; |
|
for (E e : this) { |
|
if (i == n) { |
|
if (n >= MAX_ARRAY_SIZE) |
|
throw new OutOfMemoryError(oomeMsg); |
|
if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) |
|
n = MAX_ARRAY_SIZE; |
|
else |
|
n += (n >>> 1) + 1; |
|
r = Arrays.copyOf(r, n); |
|
} |
|
r[i++] = (T)e; |
|
} |
|
if (a == r && i < n) { |
|
r[i] = null; |
|
return r; |
|
} |
|
return (i == n) ? r : Arrays.copyOf(r, i); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public final String toString() { |
|
StringBuilder sb = new StringBuilder(); |
|
sb.append('['); |
|
Iterator<E> it = iterator(); |
|
if (it.hasNext()) { |
|
for (;;) { |
|
Object e = it.next(); |
|
sb.append(e == this ? "(this Collection)" : e); |
|
if (!it.hasNext()) |
|
break; |
|
sb.append(',').append(' '); |
|
} |
|
} |
|
return sb.append(']').toString(); |
|
} |
|
|
|
public final boolean containsAll(Collection<?> c) { |
|
if (c != this) { |
|
for (Object e : c) { |
|
if (e == null || !contains(e)) |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
public final boolean removeAll(Collection<?> c) { |
|
if (c == null) throw new NullPointerException(); |
|
boolean modified = false; |
|
for (Iterator<E> it = iterator(); it.hasNext();) { |
|
if (c.contains(it.next())) { |
|
it.remove(); |
|
modified = true; |
|
} |
|
} |
|
return modified; |
|
} |
|
|
|
public final boolean retainAll(Collection<?> c) { |
|
if (c == null) throw new NullPointerException(); |
|
boolean modified = false; |
|
for (Iterator<E> it = iterator(); it.hasNext();) { |
|
if (!c.contains(it.next())) { |
|
it.remove(); |
|
modified = true; |
|
} |
|
} |
|
return modified; |
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public static class KeySetView<K,V> extends CollectionView<K,V,K> |
|
implements Set<K>, java.io.Serializable { |
|
private static final long serialVersionUID = 7249069246763182397L; |
|
private final V value; |
|
KeySetView(ConcurrentHashMap<K,V> map, V value) { |
|
super(map); |
|
this.value = value; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public V getMappedValue() { return value; } |
|
|
|
|
|
|
|
|
|
*/ |
|
public boolean contains(Object o) { return map.containsKey(o); } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public boolean remove(Object o) { return map.remove(o) != null; } |
|
|
|
|
|
|
|
*/ |
|
public Iterator<K> iterator() { |
|
Node<K,V>[] t; |
|
ConcurrentHashMap<K,V> m = map; |
|
int f = (t = m.table) == null ? 0 : t.length; |
|
return new KeyIterator<K,V>(t, f, 0, f, m); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public boolean add(K e) { |
|
V v; |
|
if ((v = value) == null) |
|
throw new UnsupportedOperationException(); |
|
return map.putVal(e, v, true) == null; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public boolean addAll(Collection<? extends K> c) { |
|
boolean added = false; |
|
V v; |
|
if ((v = value) == null) |
|
throw new UnsupportedOperationException(); |
|
for (K e : c) { |
|
if (map.putVal(e, v, true) == null) |
|
added = true; |
|
} |
|
return added; |
|
} |
|
|
|
public int hashCode() { |
|
int h = 0; |
|
for (K e : this) |
|
h += e.hashCode(); |
|
return h; |
|
} |
|
|
|
public boolean equals(Object o) { |
|
Set<?> c; |
|
return ((o instanceof Set) && |
|
((c = (Set<?>)o) == this || |
|
(containsAll(c) && c.containsAll(this)))); |
|
} |
|
|
|
public Spliterator<K> spliterator() { |
|
Node<K,V>[] t; |
|
ConcurrentHashMap<K,V> m = map; |
|
long n = m.sumCount(); |
|
int f = (t = m.table) == null ? 0 : t.length; |
|
return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n); |
|
} |
|
|
|
public void forEach(Consumer<? super K> action) { |
|
if (action == null) throw new NullPointerException(); |
|
Node<K,V>[] t; |
|
if ((t = map.table) != null) { |
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); |
|
for (Node<K,V> p; (p = it.advance()) != null; ) |
|
action.accept(p.key); |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
static final class ValuesView<K,V> extends CollectionView<K,V,V> |
|
implements Collection<V>, java.io.Serializable { |
|
private static final long serialVersionUID = 2249069246763182397L; |
|
ValuesView(ConcurrentHashMap<K,V> map) { super(map); } |
|
public final boolean contains(Object o) { |
|
return map.containsValue(o); |
|
} |
|
|
|
public final boolean remove(Object o) { |
|
if (o != null) { |
|
for (Iterator<V> it = iterator(); it.hasNext();) { |
|
if (o.equals(it.next())) { |
|
it.remove(); |
|
return true; |
|
} |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
public final Iterator<V> iterator() { |
|
ConcurrentHashMap<K,V> m = map; |
|
Node<K,V>[] t; |
|
int f = (t = m.table) == null ? 0 : t.length; |
|
return new ValueIterator<K,V>(t, f, 0, f, m); |
|
} |
|
|
|
public final boolean add(V e) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
public final boolean addAll(Collection<? extends V> c) { |
|
throw new UnsupportedOperationException(); |
|
} |
|
|
|
public Spliterator<V> spliterator() { |
|
Node<K,V>[] t; |
|
ConcurrentHashMap<K,V> m = map; |
|
long n = m.sumCount(); |
|
int f = (t = m.table) == null ? 0 : t.length; |
|
return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n); |
|
} |
|
|
|
public void forEach(Consumer<? super V> action) { |
|
if (action == null) throw new NullPointerException(); |
|
Node<K,V>[] t; |
|
if ((t = map.table) != null) { |
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); |
|
for (Node<K,V> p; (p = it.advance()) != null; ) |
|
action.accept(p.val); |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>> |
|
implements Set<Map.Entry<K,V>>, java.io.Serializable { |
|
private static final long serialVersionUID = 2249069246763182397L; |
|
EntrySetView(ConcurrentHashMap<K,V> map) { super(map); } |
|
|
|
public boolean contains(Object o) { |
|
Object k, v, r; Map.Entry<?,?> e; |
|
return ((o instanceof Map.Entry) && |
|
(k = (e = (Map.Entry<?,?>)o).getKey()) != null && |
|
(r = map.get(k)) != null && |
|
(v = e.getValue()) != null && |
|
(v == r || v.equals(r))); |
|
} |
|
|
|
public boolean remove(Object o) { |
|
Object k, v; Map.Entry<?,?> e; |
|
return ((o instanceof Map.Entry) && |
|
(k = (e = (Map.Entry<?,?>)o).getKey()) != null && |
|
(v = e.getValue()) != null && |
|
map.remove(k, v)); |
|
} |
|
|
|
|
|
|
|
*/ |
|
public Iterator<Map.Entry<K,V>> iterator() { |
|
ConcurrentHashMap<K,V> m = map; |
|
Node<K,V>[] t; |
|
int f = (t = m.table) == null ? 0 : t.length; |
|
return new EntryIterator<K,V>(t, f, 0, f, m); |
|
} |
|
|
|
public boolean add(Entry<K,V> e) { |
|
return map.putVal(e.getKey(), e.getValue(), false) == null; |
|
} |
|
|
|
public boolean addAll(Collection<? extends Entry<K,V>> c) { |
|
boolean added = false; |
|
for (Entry<K,V> e : c) { |
|
if (add(e)) |
|
added = true; |
|
} |
|
return added; |
|
} |
|
|
|
public final int hashCode() { |
|
int h = 0; |
|
Node<K,V>[] t; |
|
if ((t = map.table) != null) { |
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); |
|
for (Node<K,V> p; (p = it.advance()) != null; ) { |
|
h += p.hashCode(); |
|
} |
|
} |
|
return h; |
|
} |
|
|
|
public final boolean equals(Object o) { |
|
Set<?> c; |
|
return ((o instanceof Set) && |
|
((c = (Set<?>)o) == this || |
|
(containsAll(c) && c.containsAll(this)))); |
|
} |
|
|
|
public Spliterator<Map.Entry<K,V>> spliterator() { |
|
Node<K,V>[] t; |
|
ConcurrentHashMap<K,V> m = map; |
|
long n = m.sumCount(); |
|
int f = (t = m.table) == null ? 0 : t.length; |
|
return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m); |
|
} |
|
|
|
public void forEach(Consumer<? super Map.Entry<K,V>> action) { |
|
if (action == null) throw new NullPointerException(); |
|
Node<K,V>[] t; |
|
if ((t = map.table) != null) { |
|
Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); |
|
for (Node<K,V> p; (p = it.advance()) != null; ) |
|
action.accept(new MapEntry<K,V>(p.key, p.val, map)); |
|
} |
|
} |
|
|
|
} |
|
|
|
// ------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
*/ |
|
@SuppressWarnings("serial") |
|
abstract static class BulkTask<K,V,R> extends CountedCompleter<R> { |
|
Node<K,V>[] tab; |
|
Node<K,V> next; |
|
TableStack<K,V> stack, spare; |
|
int index; |
|
int baseIndex; |
|
int baseLimit; |
|
final int baseSize; |
|
int batch; |
|
|
|
BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) { |
|
super(par); |
|
this.batch = b; |
|
this.index = this.baseIndex = i; |
|
if ((this.tab = t) == null) |
|
this.baseSize = this.baseLimit = 0; |
|
else if (par == null) |
|
this.baseSize = this.baseLimit = t.length; |
|
else { |
|
this.baseLimit = f; |
|
this.baseSize = par.baseSize; |
|
} |
|
} |
|
|
|
|
|
|
|
*/ |
|
final Node<K,V> advance() { |
|
Node<K,V> e; |
|
if ((e = next) != null) |
|
e = e.next; |
|
for (;;) { |
|
Node<K,V>[] t; int i, n; |
|
if (e != null) |
|
return next = e; |
|
if (baseIndex >= baseLimit || (t = tab) == null || |
|
(n = t.length) <= (i = index) || i < 0) |
|
return next = null; |
|
if ((e = tabAt(t, i)) != null && e.hash < 0) { |
|
if (e instanceof ForwardingNode) { |
|
tab = ((ForwardingNode<K,V>)e).nextTable; |
|
e = null; |
|
pushState(t, i, n); |
|
continue; |
|
} |
|
else if (e instanceof TreeBin) |
|
e = ((TreeBin<K,V>)e).first; |
|
else |
|
e = null; |
|
} |
|
if (stack != null) |
|
recoverState(n); |
|
else if ((index = i + baseSize) >= n) |
|
index = ++baseIndex; |
|
} |
|
} |
|
|
|
private void pushState(Node<K,V>[] t, int i, int n) { |
|
TableStack<K,V> s = spare; |
|
if (s != null) |
|
spare = s.next; |
|
else |
|
s = new TableStack<K,V>(); |
|
s.tab = t; |
|
s.length = n; |
|
s.index = i; |
|
s.next = stack; |
|
stack = s; |
|
} |
|
|
|
private void recoverState(int n) { |
|
TableStack<K,V> s; int len; |
|
while ((s = stack) != null && (index += (len = s.length)) >= n) { |
|
n = len; |
|
index = s.index; |
|
tab = s.tab; |
|
s.tab = null; |
|
TableStack<K,V> next = s.next; |
|
s.next = spare; |
|
stack = next; |
|
spare = s; |
|
} |
|
if (s == null && (index += baseSize) >= n) |
|
index = ++baseIndex; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
@SuppressWarnings("serial") |
|
static final class ForEachKeyTask<K,V> |
|
extends BulkTask<K,V,Void> { |
|
final Consumer<? super K> action; |
|
ForEachKeyTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
Consumer<? super K> action) { |
|
super(p, b, i, f, t); |
|
this.action = action; |
|
} |
|
public final void compute() { |
|
final Consumer<? super K> action; |
|
if ((action = this.action) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
new ForEachKeyTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
action).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null;) |
|
action.accept(p.key); |
|
propagateCompletion(); |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class ForEachValueTask<K,V> |
|
extends BulkTask<K,V,Void> { |
|
final Consumer<? super V> action; |
|
ForEachValueTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
Consumer<? super V> action) { |
|
super(p, b, i, f, t); |
|
this.action = action; |
|
} |
|
public final void compute() { |
|
final Consumer<? super V> action; |
|
if ((action = this.action) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
new ForEachValueTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
action).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null;) |
|
action.accept(p.val); |
|
propagateCompletion(); |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class ForEachEntryTask<K,V> |
|
extends BulkTask<K,V,Void> { |
|
final Consumer<? super Entry<K,V>> action; |
|
ForEachEntryTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
Consumer<? super Entry<K,V>> action) { |
|
super(p, b, i, f, t); |
|
this.action = action; |
|
} |
|
public final void compute() { |
|
final Consumer<? super Entry<K,V>> action; |
|
if ((action = this.action) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
new ForEachEntryTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
action).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) |
|
action.accept(p); |
|
propagateCompletion(); |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class ForEachMappingTask<K,V> |
|
extends BulkTask<K,V,Void> { |
|
final BiConsumer<? super K, ? super V> action; |
|
ForEachMappingTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
BiConsumer<? super K,? super V> action) { |
|
super(p, b, i, f, t); |
|
this.action = action; |
|
} |
|
public final void compute() { |
|
final BiConsumer<? super K, ? super V> action; |
|
if ((action = this.action) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
new ForEachMappingTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
action).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) |
|
action.accept(p.key, p.val); |
|
propagateCompletion(); |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class ForEachTransformedKeyTask<K,V,U> |
|
extends BulkTask<K,V,Void> { |
|
final Function<? super K, ? extends U> transformer; |
|
final Consumer<? super U> action; |
|
ForEachTransformedKeyTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
Function<? super K, ? extends U> transformer, Consumer<? super U> action) { |
|
super(p, b, i, f, t); |
|
this.transformer = transformer; this.action = action; |
|
} |
|
public final void compute() { |
|
final Function<? super K, ? extends U> transformer; |
|
final Consumer<? super U> action; |
|
if ((transformer = this.transformer) != null && |
|
(action = this.action) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
new ForEachTransformedKeyTask<K,V,U> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
transformer, action).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) { |
|
U u; |
|
if ((u = transformer.apply(p.key)) != null) |
|
action.accept(u); |
|
} |
|
propagateCompletion(); |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class ForEachTransformedValueTask<K,V,U> |
|
extends BulkTask<K,V,Void> { |
|
final Function<? super V, ? extends U> transformer; |
|
final Consumer<? super U> action; |
|
ForEachTransformedValueTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
Function<? super V, ? extends U> transformer, Consumer<? super U> action) { |
|
super(p, b, i, f, t); |
|
this.transformer = transformer; this.action = action; |
|
} |
|
public final void compute() { |
|
final Function<? super V, ? extends U> transformer; |
|
final Consumer<? super U> action; |
|
if ((transformer = this.transformer) != null && |
|
(action = this.action) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
new ForEachTransformedValueTask<K,V,U> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
transformer, action).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) { |
|
U u; |
|
if ((u = transformer.apply(p.val)) != null) |
|
action.accept(u); |
|
} |
|
propagateCompletion(); |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class ForEachTransformedEntryTask<K,V,U> |
|
extends BulkTask<K,V,Void> { |
|
final Function<Map.Entry<K,V>, ? extends U> transformer; |
|
final Consumer<? super U> action; |
|
ForEachTransformedEntryTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) { |
|
super(p, b, i, f, t); |
|
this.transformer = transformer; this.action = action; |
|
} |
|
public final void compute() { |
|
final Function<Map.Entry<K,V>, ? extends U> transformer; |
|
final Consumer<? super U> action; |
|
if ((transformer = this.transformer) != null && |
|
(action = this.action) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
new ForEachTransformedEntryTask<K,V,U> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
transformer, action).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) { |
|
U u; |
|
if ((u = transformer.apply(p)) != null) |
|
action.accept(u); |
|
} |
|
propagateCompletion(); |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class ForEachTransformedMappingTask<K,V,U> |
|
extends BulkTask<K,V,Void> { |
|
final BiFunction<? super K, ? super V, ? extends U> transformer; |
|
final Consumer<? super U> action; |
|
ForEachTransformedMappingTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
BiFunction<? super K, ? super V, ? extends U> transformer, |
|
Consumer<? super U> action) { |
|
super(p, b, i, f, t); |
|
this.transformer = transformer; this.action = action; |
|
} |
|
public final void compute() { |
|
final BiFunction<? super K, ? super V, ? extends U> transformer; |
|
final Consumer<? super U> action; |
|
if ((transformer = this.transformer) != null && |
|
(action = this.action) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
new ForEachTransformedMappingTask<K,V,U> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
transformer, action).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) { |
|
U u; |
|
if ((u = transformer.apply(p.key, p.val)) != null) |
|
action.accept(u); |
|
} |
|
propagateCompletion(); |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class SearchKeysTask<K,V,U> |
|
extends BulkTask<K,V,U> { |
|
final Function<? super K, ? extends U> searchFunction; |
|
final AtomicReference<U> result; |
|
SearchKeysTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
Function<? super K, ? extends U> searchFunction, |
|
AtomicReference<U> result) { |
|
super(p, b, i, f, t); |
|
this.searchFunction = searchFunction; this.result = result; |
|
} |
|
public final U getRawResult() { return result.get(); } |
|
public final void compute() { |
|
final Function<? super K, ? extends U> searchFunction; |
|
final AtomicReference<U> result; |
|
if ((searchFunction = this.searchFunction) != null && |
|
(result = this.result) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
if (result.get() != null) |
|
return; |
|
addToPendingCount(1); |
|
new SearchKeysTask<K,V,U> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
searchFunction, result).fork(); |
|
} |
|
while (result.get() == null) { |
|
U u; |
|
Node<K,V> p; |
|
if ((p = advance()) == null) { |
|
propagateCompletion(); |
|
break; |
|
} |
|
if ((u = searchFunction.apply(p.key)) != null) { |
|
if (result.compareAndSet(null, u)) |
|
quietlyCompleteRoot(); |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class SearchValuesTask<K,V,U> |
|
extends BulkTask<K,V,U> { |
|
final Function<? super V, ? extends U> searchFunction; |
|
final AtomicReference<U> result; |
|
SearchValuesTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
Function<? super V, ? extends U> searchFunction, |
|
AtomicReference<U> result) { |
|
super(p, b, i, f, t); |
|
this.searchFunction = searchFunction; this.result = result; |
|
} |
|
public final U getRawResult() { return result.get(); } |
|
public final void compute() { |
|
final Function<? super V, ? extends U> searchFunction; |
|
final AtomicReference<U> result; |
|
if ((searchFunction = this.searchFunction) != null && |
|
(result = this.result) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
if (result.get() != null) |
|
return; |
|
addToPendingCount(1); |
|
new SearchValuesTask<K,V,U> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
searchFunction, result).fork(); |
|
} |
|
while (result.get() == null) { |
|
U u; |
|
Node<K,V> p; |
|
if ((p = advance()) == null) { |
|
propagateCompletion(); |
|
break; |
|
} |
|
if ((u = searchFunction.apply(p.val)) != null) { |
|
if (result.compareAndSet(null, u)) |
|
quietlyCompleteRoot(); |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class SearchEntriesTask<K,V,U> |
|
extends BulkTask<K,V,U> { |
|
final Function<Entry<K,V>, ? extends U> searchFunction; |
|
final AtomicReference<U> result; |
|
SearchEntriesTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
Function<Entry<K,V>, ? extends U> searchFunction, |
|
AtomicReference<U> result) { |
|
super(p, b, i, f, t); |
|
this.searchFunction = searchFunction; this.result = result; |
|
} |
|
public final U getRawResult() { return result.get(); } |
|
public final void compute() { |
|
final Function<Entry<K,V>, ? extends U> searchFunction; |
|
final AtomicReference<U> result; |
|
if ((searchFunction = this.searchFunction) != null && |
|
(result = this.result) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
if (result.get() != null) |
|
return; |
|
addToPendingCount(1); |
|
new SearchEntriesTask<K,V,U> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
searchFunction, result).fork(); |
|
} |
|
while (result.get() == null) { |
|
U u; |
|
Node<K,V> p; |
|
if ((p = advance()) == null) { |
|
propagateCompletion(); |
|
break; |
|
} |
|
if ((u = searchFunction.apply(p)) != null) { |
|
if (result.compareAndSet(null, u)) |
|
quietlyCompleteRoot(); |
|
return; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class SearchMappingsTask<K,V,U> |
|
extends BulkTask<K,V,U> { |
|
final BiFunction<? super K, ? super V, ? extends U> searchFunction; |
|
final AtomicReference<U> result; |
|
SearchMappingsTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
BiFunction<? super K, ? super V, ? extends U> searchFunction, |
|
AtomicReference<U> result) { |
|
super(p, b, i, f, t); |
|
this.searchFunction = searchFunction; this.result = result; |
|
} |
|
public final U getRawResult() { return result.get(); } |
|
public final void compute() { |
|
final BiFunction<? super K, ? super V, ? extends U> searchFunction; |
|
final AtomicReference<U> result; |
|
if ((searchFunction = this.searchFunction) != null && |
|
(result = this.result) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
if (result.get() != null) |
|
return; |
|
addToPendingCount(1); |
|
new SearchMappingsTask<K,V,U> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
searchFunction, result).fork(); |
|
} |
|
while (result.get() == null) { |
|
U u; |
|
Node<K,V> p; |
|
if ((p = advance()) == null) { |
|
propagateCompletion(); |
|
break; |
|
} |
|
if ((u = searchFunction.apply(p.key, p.val)) != null) { |
|
if (result.compareAndSet(null, u)) |
|
quietlyCompleteRoot(); |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class ReduceKeysTask<K,V> |
|
extends BulkTask<K,V,K> { |
|
final BiFunction<? super K, ? super K, ? extends K> reducer; |
|
K result; |
|
ReduceKeysTask<K,V> rights, nextRight; |
|
ReduceKeysTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
ReduceKeysTask<K,V> nextRight, |
|
BiFunction<? super K, ? super K, ? extends K> reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.reducer = reducer; |
|
} |
|
public final K getRawResult() { return result; } |
|
public final void compute() { |
|
final BiFunction<? super K, ? super K, ? extends K> reducer; |
|
if ((reducer = this.reducer) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new ReduceKeysTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, reducer)).fork(); |
|
} |
|
K r = null; |
|
for (Node<K,V> p; (p = advance()) != null; ) { |
|
K u = p.key; |
|
r = (r == null) ? u : u == null ? r : reducer.apply(r, u); |
|
} |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
ReduceKeysTask<K,V> |
|
t = (ReduceKeysTask<K,V>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
K tr, sr; |
|
if ((sr = s.result) != null) |
|
t.result = (((tr = t.result) == null) ? sr : |
|
reducer.apply(tr, sr)); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class ReduceValuesTask<K,V> |
|
extends BulkTask<K,V,V> { |
|
final BiFunction<? super V, ? super V, ? extends V> reducer; |
|
V result; |
|
ReduceValuesTask<K,V> rights, nextRight; |
|
ReduceValuesTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
ReduceValuesTask<K,V> nextRight, |
|
BiFunction<? super V, ? super V, ? extends V> reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.reducer = reducer; |
|
} |
|
public final V getRawResult() { return result; } |
|
public final void compute() { |
|
final BiFunction<? super V, ? super V, ? extends V> reducer; |
|
if ((reducer = this.reducer) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new ReduceValuesTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, reducer)).fork(); |
|
} |
|
V r = null; |
|
for (Node<K,V> p; (p = advance()) != null; ) { |
|
V v = p.val; |
|
r = (r == null) ? v : reducer.apply(r, v); |
|
} |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
ReduceValuesTask<K,V> |
|
t = (ReduceValuesTask<K,V>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
V tr, sr; |
|
if ((sr = s.result) != null) |
|
t.result = (((tr = t.result) == null) ? sr : |
|
reducer.apply(tr, sr)); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class ReduceEntriesTask<K,V> |
|
extends BulkTask<K,V,Map.Entry<K,V>> { |
|
final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer; |
|
Map.Entry<K,V> result; |
|
ReduceEntriesTask<K,V> rights, nextRight; |
|
ReduceEntriesTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
ReduceEntriesTask<K,V> nextRight, |
|
BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.reducer = reducer; |
|
} |
|
public final Map.Entry<K,V> getRawResult() { return result; } |
|
public final void compute() { |
|
final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer; |
|
if ((reducer = this.reducer) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new ReduceEntriesTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, reducer)).fork(); |
|
} |
|
Map.Entry<K,V> r = null; |
|
for (Node<K,V> p; (p = advance()) != null; ) |
|
r = (r == null) ? p : reducer.apply(r, p); |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
ReduceEntriesTask<K,V> |
|
t = (ReduceEntriesTask<K,V>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
Map.Entry<K,V> tr, sr; |
|
if ((sr = s.result) != null) |
|
t.result = (((tr = t.result) == null) ? sr : |
|
reducer.apply(tr, sr)); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class MapReduceKeysTask<K,V,U> |
|
extends BulkTask<K,V,U> { |
|
final Function<? super K, ? extends U> transformer; |
|
final BiFunction<? super U, ? super U, ? extends U> reducer; |
|
U result; |
|
MapReduceKeysTask<K,V,U> rights, nextRight; |
|
MapReduceKeysTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
MapReduceKeysTask<K,V,U> nextRight, |
|
Function<? super K, ? extends U> transformer, |
|
BiFunction<? super U, ? super U, ? extends U> reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.transformer = transformer; |
|
this.reducer = reducer; |
|
} |
|
public final U getRawResult() { return result; } |
|
public final void compute() { |
|
final Function<? super K, ? extends U> transformer; |
|
final BiFunction<? super U, ? super U, ? extends U> reducer; |
|
if ((transformer = this.transformer) != null && |
|
(reducer = this.reducer) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new MapReduceKeysTask<K,V,U> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, transformer, reducer)).fork(); |
|
} |
|
U r = null; |
|
for (Node<K,V> p; (p = advance()) != null; ) { |
|
U u; |
|
if ((u = transformer.apply(p.key)) != null) |
|
r = (r == null) ? u : reducer.apply(r, u); |
|
} |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
MapReduceKeysTask<K,V,U> |
|
t = (MapReduceKeysTask<K,V,U>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
U tr, sr; |
|
if ((sr = s.result) != null) |
|
t.result = (((tr = t.result) == null) ? sr : |
|
reducer.apply(tr, sr)); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class MapReduceValuesTask<K,V,U> |
|
extends BulkTask<K,V,U> { |
|
final Function<? super V, ? extends U> transformer; |
|
final BiFunction<? super U, ? super U, ? extends U> reducer; |
|
U result; |
|
MapReduceValuesTask<K,V,U> rights, nextRight; |
|
MapReduceValuesTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
MapReduceValuesTask<K,V,U> nextRight, |
|
Function<? super V, ? extends U> transformer, |
|
BiFunction<? super U, ? super U, ? extends U> reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.transformer = transformer; |
|
this.reducer = reducer; |
|
} |
|
public final U getRawResult() { return result; } |
|
public final void compute() { |
|
final Function<? super V, ? extends U> transformer; |
|
final BiFunction<? super U, ? super U, ? extends U> reducer; |
|
if ((transformer = this.transformer) != null && |
|
(reducer = this.reducer) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new MapReduceValuesTask<K,V,U> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, transformer, reducer)).fork(); |
|
} |
|
U r = null; |
|
for (Node<K,V> p; (p = advance()) != null; ) { |
|
U u; |
|
if ((u = transformer.apply(p.val)) != null) |
|
r = (r == null) ? u : reducer.apply(r, u); |
|
} |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
MapReduceValuesTask<K,V,U> |
|
t = (MapReduceValuesTask<K,V,U>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
U tr, sr; |
|
if ((sr = s.result) != null) |
|
t.result = (((tr = t.result) == null) ? sr : |
|
reducer.apply(tr, sr)); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class MapReduceEntriesTask<K,V,U> |
|
extends BulkTask<K,V,U> { |
|
final Function<Map.Entry<K,V>, ? extends U> transformer; |
|
final BiFunction<? super U, ? super U, ? extends U> reducer; |
|
U result; |
|
MapReduceEntriesTask<K,V,U> rights, nextRight; |
|
MapReduceEntriesTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
MapReduceEntriesTask<K,V,U> nextRight, |
|
Function<Map.Entry<K,V>, ? extends U> transformer, |
|
BiFunction<? super U, ? super U, ? extends U> reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.transformer = transformer; |
|
this.reducer = reducer; |
|
} |
|
public final U getRawResult() { return result; } |
|
public final void compute() { |
|
final Function<Map.Entry<K,V>, ? extends U> transformer; |
|
final BiFunction<? super U, ? super U, ? extends U> reducer; |
|
if ((transformer = this.transformer) != null && |
|
(reducer = this.reducer) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new MapReduceEntriesTask<K,V,U> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, transformer, reducer)).fork(); |
|
} |
|
U r = null; |
|
for (Node<K,V> p; (p = advance()) != null; ) { |
|
U u; |
|
if ((u = transformer.apply(p)) != null) |
|
r = (r == null) ? u : reducer.apply(r, u); |
|
} |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
MapReduceEntriesTask<K,V,U> |
|
t = (MapReduceEntriesTask<K,V,U>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
U tr, sr; |
|
if ((sr = s.result) != null) |
|
t.result = (((tr = t.result) == null) ? sr : |
|
reducer.apply(tr, sr)); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class MapReduceMappingsTask<K,V,U> |
|
extends BulkTask<K,V,U> { |
|
final BiFunction<? super K, ? super V, ? extends U> transformer; |
|
final BiFunction<? super U, ? super U, ? extends U> reducer; |
|
U result; |
|
MapReduceMappingsTask<K,V,U> rights, nextRight; |
|
MapReduceMappingsTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
MapReduceMappingsTask<K,V,U> nextRight, |
|
BiFunction<? super K, ? super V, ? extends U> transformer, |
|
BiFunction<? super U, ? super U, ? extends U> reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.transformer = transformer; |
|
this.reducer = reducer; |
|
} |
|
public final U getRawResult() { return result; } |
|
public final void compute() { |
|
final BiFunction<? super K, ? super V, ? extends U> transformer; |
|
final BiFunction<? super U, ? super U, ? extends U> reducer; |
|
if ((transformer = this.transformer) != null && |
|
(reducer = this.reducer) != null) { |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new MapReduceMappingsTask<K,V,U> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, transformer, reducer)).fork(); |
|
} |
|
U r = null; |
|
for (Node<K,V> p; (p = advance()) != null; ) { |
|
U u; |
|
if ((u = transformer.apply(p.key, p.val)) != null) |
|
r = (r == null) ? u : reducer.apply(r, u); |
|
} |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
MapReduceMappingsTask<K,V,U> |
|
t = (MapReduceMappingsTask<K,V,U>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
U tr, sr; |
|
if ((sr = s.result) != null) |
|
t.result = (((tr = t.result) == null) ? sr : |
|
reducer.apply(tr, sr)); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class MapReduceKeysToDoubleTask<K,V> |
|
extends BulkTask<K,V,Double> { |
|
final ToDoubleFunction<? super K> transformer; |
|
final DoubleBinaryOperator reducer; |
|
final double basis; |
|
double result; |
|
MapReduceKeysToDoubleTask<K,V> rights, nextRight; |
|
MapReduceKeysToDoubleTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
MapReduceKeysToDoubleTask<K,V> nextRight, |
|
ToDoubleFunction<? super K> transformer, |
|
double basis, |
|
DoubleBinaryOperator reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.transformer = transformer; |
|
this.basis = basis; this.reducer = reducer; |
|
} |
|
public final Double getRawResult() { return result; } |
|
public final void compute() { |
|
final ToDoubleFunction<? super K> transformer; |
|
final DoubleBinaryOperator reducer; |
|
if ((transformer = this.transformer) != null && |
|
(reducer = this.reducer) != null) { |
|
double r = this.basis; |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new MapReduceKeysToDoubleTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, transformer, r, reducer)).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) |
|
r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key)); |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
MapReduceKeysToDoubleTask<K,V> |
|
t = (MapReduceKeysToDoubleTask<K,V>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
t.result = reducer.applyAsDouble(t.result, s.result); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class MapReduceValuesToDoubleTask<K,V> |
|
extends BulkTask<K,V,Double> { |
|
final ToDoubleFunction<? super V> transformer; |
|
final DoubleBinaryOperator reducer; |
|
final double basis; |
|
double result; |
|
MapReduceValuesToDoubleTask<K,V> rights, nextRight; |
|
MapReduceValuesToDoubleTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
MapReduceValuesToDoubleTask<K,V> nextRight, |
|
ToDoubleFunction<? super V> transformer, |
|
double basis, |
|
DoubleBinaryOperator reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.transformer = transformer; |
|
this.basis = basis; this.reducer = reducer; |
|
} |
|
public final Double getRawResult() { return result; } |
|
public final void compute() { |
|
final ToDoubleFunction<? super V> transformer; |
|
final DoubleBinaryOperator reducer; |
|
if ((transformer = this.transformer) != null && |
|
(reducer = this.reducer) != null) { |
|
double r = this.basis; |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new MapReduceValuesToDoubleTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, transformer, r, reducer)).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) |
|
r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val)); |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
MapReduceValuesToDoubleTask<K,V> |
|
t = (MapReduceValuesToDoubleTask<K,V>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
t.result = reducer.applyAsDouble(t.result, s.result); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class MapReduceEntriesToDoubleTask<K,V> |
|
extends BulkTask<K,V,Double> { |
|
final ToDoubleFunction<Map.Entry<K,V>> transformer; |
|
final DoubleBinaryOperator reducer; |
|
final double basis; |
|
double result; |
|
MapReduceEntriesToDoubleTask<K,V> rights, nextRight; |
|
MapReduceEntriesToDoubleTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
MapReduceEntriesToDoubleTask<K,V> nextRight, |
|
ToDoubleFunction<Map.Entry<K,V>> transformer, |
|
double basis, |
|
DoubleBinaryOperator reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.transformer = transformer; |
|
this.basis = basis; this.reducer = reducer; |
|
} |
|
public final Double getRawResult() { return result; } |
|
public final void compute() { |
|
final ToDoubleFunction<Map.Entry<K,V>> transformer; |
|
final DoubleBinaryOperator reducer; |
|
if ((transformer = this.transformer) != null && |
|
(reducer = this.reducer) != null) { |
|
double r = this.basis; |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new MapReduceEntriesToDoubleTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, transformer, r, reducer)).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) |
|
r = reducer.applyAsDouble(r, transformer.applyAsDouble(p)); |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
MapReduceEntriesToDoubleTask<K,V> |
|
t = (MapReduceEntriesToDoubleTask<K,V>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
t.result = reducer.applyAsDouble(t.result, s.result); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class MapReduceMappingsToDoubleTask<K,V> |
|
extends BulkTask<K,V,Double> { |
|
final ToDoubleBiFunction<? super K, ? super V> transformer; |
|
final DoubleBinaryOperator reducer; |
|
final double basis; |
|
double result; |
|
MapReduceMappingsToDoubleTask<K,V> rights, nextRight; |
|
MapReduceMappingsToDoubleTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
MapReduceMappingsToDoubleTask<K,V> nextRight, |
|
ToDoubleBiFunction<? super K, ? super V> transformer, |
|
double basis, |
|
DoubleBinaryOperator reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.transformer = transformer; |
|
this.basis = basis; this.reducer = reducer; |
|
} |
|
public final Double getRawResult() { return result; } |
|
public final void compute() { |
|
final ToDoubleBiFunction<? super K, ? super V> transformer; |
|
final DoubleBinaryOperator reducer; |
|
if ((transformer = this.transformer) != null && |
|
(reducer = this.reducer) != null) { |
|
double r = this.basis; |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new MapReduceMappingsToDoubleTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, transformer, r, reducer)).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) |
|
r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val)); |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
MapReduceMappingsToDoubleTask<K,V> |
|
t = (MapReduceMappingsToDoubleTask<K,V>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
t.result = reducer.applyAsDouble(t.result, s.result); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class MapReduceKeysToLongTask<K,V> |
|
extends BulkTask<K,V,Long> { |
|
final ToLongFunction<? super K> transformer; |
|
final LongBinaryOperator reducer; |
|
final long basis; |
|
long result; |
|
MapReduceKeysToLongTask<K,V> rights, nextRight; |
|
MapReduceKeysToLongTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
MapReduceKeysToLongTask<K,V> nextRight, |
|
ToLongFunction<? super K> transformer, |
|
long basis, |
|
LongBinaryOperator reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.transformer = transformer; |
|
this.basis = basis; this.reducer = reducer; |
|
} |
|
public final Long getRawResult() { return result; } |
|
public final void compute() { |
|
final ToLongFunction<? super K> transformer; |
|
final LongBinaryOperator reducer; |
|
if ((transformer = this.transformer) != null && |
|
(reducer = this.reducer) != null) { |
|
long r = this.basis; |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new MapReduceKeysToLongTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, transformer, r, reducer)).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) |
|
r = reducer.applyAsLong(r, transformer.applyAsLong(p.key)); |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
MapReduceKeysToLongTask<K,V> |
|
t = (MapReduceKeysToLongTask<K,V>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
t.result = reducer.applyAsLong(t.result, s.result); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class MapReduceValuesToLongTask<K,V> |
|
extends BulkTask<K,V,Long> { |
|
final ToLongFunction<? super V> transformer; |
|
final LongBinaryOperator reducer; |
|
final long basis; |
|
long result; |
|
MapReduceValuesToLongTask<K,V> rights, nextRight; |
|
MapReduceValuesToLongTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
MapReduceValuesToLongTask<K,V> nextRight, |
|
ToLongFunction<? super V> transformer, |
|
long basis, |
|
LongBinaryOperator reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.transformer = transformer; |
|
this.basis = basis; this.reducer = reducer; |
|
} |
|
public final Long getRawResult() { return result; } |
|
public final void compute() { |
|
final ToLongFunction<? super V> transformer; |
|
final LongBinaryOperator reducer; |
|
if ((transformer = this.transformer) != null && |
|
(reducer = this.reducer) != null) { |
|
long r = this.basis; |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new MapReduceValuesToLongTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, transformer, r, reducer)).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) |
|
r = reducer.applyAsLong(r, transformer.applyAsLong(p.val)); |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
MapReduceValuesToLongTask<K,V> |
|
t = (MapReduceValuesToLongTask<K,V>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
t.result = reducer.applyAsLong(t.result, s.result); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class MapReduceEntriesToLongTask<K,V> |
|
extends BulkTask<K,V,Long> { |
|
final ToLongFunction<Map.Entry<K,V>> transformer; |
|
final LongBinaryOperator reducer; |
|
final long basis; |
|
long result; |
|
MapReduceEntriesToLongTask<K,V> rights, nextRight; |
|
MapReduceEntriesToLongTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
MapReduceEntriesToLongTask<K,V> nextRight, |
|
ToLongFunction<Map.Entry<K,V>> transformer, |
|
long basis, |
|
LongBinaryOperator reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.transformer = transformer; |
|
this.basis = basis; this.reducer = reducer; |
|
} |
|
public final Long getRawResult() { return result; } |
|
public final void compute() { |
|
final ToLongFunction<Map.Entry<K,V>> transformer; |
|
final LongBinaryOperator reducer; |
|
if ((transformer = this.transformer) != null && |
|
(reducer = this.reducer) != null) { |
|
long r = this.basis; |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new MapReduceEntriesToLongTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, transformer, r, reducer)).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) |
|
r = reducer.applyAsLong(r, transformer.applyAsLong(p)); |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
MapReduceEntriesToLongTask<K,V> |
|
t = (MapReduceEntriesToLongTask<K,V>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
t.result = reducer.applyAsLong(t.result, s.result); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class MapReduceMappingsToLongTask<K,V> |
|
extends BulkTask<K,V,Long> { |
|
final ToLongBiFunction<? super K, ? super V> transformer; |
|
final LongBinaryOperator reducer; |
|
final long basis; |
|
long result; |
|
MapReduceMappingsToLongTask<K,V> rights, nextRight; |
|
MapReduceMappingsToLongTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
MapReduceMappingsToLongTask<K,V> nextRight, |
|
ToLongBiFunction<? super K, ? super V> transformer, |
|
long basis, |
|
LongBinaryOperator reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.transformer = transformer; |
|
this.basis = basis; this.reducer = reducer; |
|
} |
|
public final Long getRawResult() { return result; } |
|
public final void compute() { |
|
final ToLongBiFunction<? super K, ? super V> transformer; |
|
final LongBinaryOperator reducer; |
|
if ((transformer = this.transformer) != null && |
|
(reducer = this.reducer) != null) { |
|
long r = this.basis; |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new MapReduceMappingsToLongTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, transformer, r, reducer)).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) |
|
r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val)); |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
MapReduceMappingsToLongTask<K,V> |
|
t = (MapReduceMappingsToLongTask<K,V>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
t.result = reducer.applyAsLong(t.result, s.result); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class MapReduceKeysToIntTask<K,V> |
|
extends BulkTask<K,V,Integer> { |
|
final ToIntFunction<? super K> transformer; |
|
final IntBinaryOperator reducer; |
|
final int basis; |
|
int result; |
|
MapReduceKeysToIntTask<K,V> rights, nextRight; |
|
MapReduceKeysToIntTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
MapReduceKeysToIntTask<K,V> nextRight, |
|
ToIntFunction<? super K> transformer, |
|
int basis, |
|
IntBinaryOperator reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.transformer = transformer; |
|
this.basis = basis; this.reducer = reducer; |
|
} |
|
public final Integer getRawResult() { return result; } |
|
public final void compute() { |
|
final ToIntFunction<? super K> transformer; |
|
final IntBinaryOperator reducer; |
|
if ((transformer = this.transformer) != null && |
|
(reducer = this.reducer) != null) { |
|
int r = this.basis; |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new MapReduceKeysToIntTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, transformer, r, reducer)).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) |
|
r = reducer.applyAsInt(r, transformer.applyAsInt(p.key)); |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
MapReduceKeysToIntTask<K,V> |
|
t = (MapReduceKeysToIntTask<K,V>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
t.result = reducer.applyAsInt(t.result, s.result); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class MapReduceValuesToIntTask<K,V> |
|
extends BulkTask<K,V,Integer> { |
|
final ToIntFunction<? super V> transformer; |
|
final IntBinaryOperator reducer; |
|
final int basis; |
|
int result; |
|
MapReduceValuesToIntTask<K,V> rights, nextRight; |
|
MapReduceValuesToIntTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
MapReduceValuesToIntTask<K,V> nextRight, |
|
ToIntFunction<? super V> transformer, |
|
int basis, |
|
IntBinaryOperator reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.transformer = transformer; |
|
this.basis = basis; this.reducer = reducer; |
|
} |
|
public final Integer getRawResult() { return result; } |
|
public final void compute() { |
|
final ToIntFunction<? super V> transformer; |
|
final IntBinaryOperator reducer; |
|
if ((transformer = this.transformer) != null && |
|
(reducer = this.reducer) != null) { |
|
int r = this.basis; |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new MapReduceValuesToIntTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, transformer, r, reducer)).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) |
|
r = reducer.applyAsInt(r, transformer.applyAsInt(p.val)); |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
MapReduceValuesToIntTask<K,V> |
|
t = (MapReduceValuesToIntTask<K,V>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
t.result = reducer.applyAsInt(t.result, s.result); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class MapReduceEntriesToIntTask<K,V> |
|
extends BulkTask<K,V,Integer> { |
|
final ToIntFunction<Map.Entry<K,V>> transformer; |
|
final IntBinaryOperator reducer; |
|
final int basis; |
|
int result; |
|
MapReduceEntriesToIntTask<K,V> rights, nextRight; |
|
MapReduceEntriesToIntTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
MapReduceEntriesToIntTask<K,V> nextRight, |
|
ToIntFunction<Map.Entry<K,V>> transformer, |
|
int basis, |
|
IntBinaryOperator reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.transformer = transformer; |
|
this.basis = basis; this.reducer = reducer; |
|
} |
|
public final Integer getRawResult() { return result; } |
|
public final void compute() { |
|
final ToIntFunction<Map.Entry<K,V>> transformer; |
|
final IntBinaryOperator reducer; |
|
if ((transformer = this.transformer) != null && |
|
(reducer = this.reducer) != null) { |
|
int r = this.basis; |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new MapReduceEntriesToIntTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, transformer, r, reducer)).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) |
|
r = reducer.applyAsInt(r, transformer.applyAsInt(p)); |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
MapReduceEntriesToIntTask<K,V> |
|
t = (MapReduceEntriesToIntTask<K,V>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
t.result = reducer.applyAsInt(t.result, s.result); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
@SuppressWarnings("serial") |
|
static final class MapReduceMappingsToIntTask<K,V> |
|
extends BulkTask<K,V,Integer> { |
|
final ToIntBiFunction<? super K, ? super V> transformer; |
|
final IntBinaryOperator reducer; |
|
final int basis; |
|
int result; |
|
MapReduceMappingsToIntTask<K,V> rights, nextRight; |
|
MapReduceMappingsToIntTask |
|
(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, |
|
MapReduceMappingsToIntTask<K,V> nextRight, |
|
ToIntBiFunction<? super K, ? super V> transformer, |
|
int basis, |
|
IntBinaryOperator reducer) { |
|
super(p, b, i, f, t); this.nextRight = nextRight; |
|
this.transformer = transformer; |
|
this.basis = basis; this.reducer = reducer; |
|
} |
|
public final Integer getRawResult() { return result; } |
|
public final void compute() { |
|
final ToIntBiFunction<? super K, ? super V> transformer; |
|
final IntBinaryOperator reducer; |
|
if ((transformer = this.transformer) != null && |
|
(reducer = this.reducer) != null) { |
|
int r = this.basis; |
|
for (int i = baseIndex, f, h; batch > 0 && |
|
(h = ((f = baseLimit) + i) >>> 1) > i;) { |
|
addToPendingCount(1); |
|
(rights = new MapReduceMappingsToIntTask<K,V> |
|
(this, batch >>>= 1, baseLimit = h, f, tab, |
|
rights, transformer, r, reducer)).fork(); |
|
} |
|
for (Node<K,V> p; (p = advance()) != null; ) |
|
r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val)); |
|
result = r; |
|
CountedCompleter<?> c; |
|
for (c = firstComplete(); c != null; c = c.nextComplete()) { |
|
@SuppressWarnings("unchecked") |
|
MapReduceMappingsToIntTask<K,V> |
|
t = (MapReduceMappingsToIntTask<K,V>)c, |
|
s = t.rights; |
|
while (s != null) { |
|
t.result = reducer.applyAsInt(t.result, s.result); |
|
s = t.rights = s.nextRight; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
private static final sun.misc.Unsafe U; |
|
private static final long SIZECTL; |
|
private static final long TRANSFERINDEX; |
|
private static final long BASECOUNT; |
|
private static final long CELLSBUSY; |
|
private static final long CELLVALUE; |
|
private static final long ABASE; |
|
private static final int ASHIFT; |
|
|
|
static { |
|
try { |
|
U = sun.misc.Unsafe.getUnsafe(); |
|
Class<?> k = ConcurrentHashMap.class; |
|
SIZECTL = U.objectFieldOffset |
|
(k.getDeclaredField("sizeCtl")); |
|
TRANSFERINDEX = U.objectFieldOffset |
|
(k.getDeclaredField("transferIndex")); |
|
BASECOUNT = U.objectFieldOffset |
|
(k.getDeclaredField("baseCount")); |
|
CELLSBUSY = U.objectFieldOffset |
|
(k.getDeclaredField("cellsBusy")); |
|
Class<?> ck = CounterCell.class; |
|
CELLVALUE = U.objectFieldOffset |
|
(ck.getDeclaredField("value")); |
|
Class<?> ak = Node[].class; |
|
ABASE = U.arrayBaseOffset(ak); |
|
int scale = U.arrayIndexScale(ak); |
|
if ((scale & (scale - 1)) != 0) |
|
throw new Error("data type scale not a power of two"); |
|
ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); |
|
} catch (Exception e) { |
|
throw new Error(e); |
|
} |
|
} |
|
} |