|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
|
|
package sun.java2d.marlin; |
|
|
|
import java.util.Iterator; |
|
|
|
final class Curve { |
|
|
|
float ax, ay, bx, by, cx, cy, dx, dy; |
|
float dax, day, dbx, dby; |
|
|
|
private final BreakPtrIterator iterator = new BreakPtrIterator(); |
|
|
|
Curve() { |
|
} |
|
|
|
void set(float[] points, int type) { |
|
switch(type) { |
|
case 8: |
|
set(points[0], points[1], |
|
points[2], points[3], |
|
points[4], points[5], |
|
points[6], points[7]); |
|
return; |
|
case 6: |
|
set(points[0], points[1], |
|
points[2], points[3], |
|
points[4], points[5]); |
|
return; |
|
default: |
|
throw new InternalError("Curves can only be cubic or quadratic"); |
|
} |
|
} |
|
|
|
void set(float x1, float y1, |
|
float x2, float y2, |
|
float x3, float y3, |
|
float x4, float y4) |
|
{ |
|
ax = 3f * (x2 - x3) + x4 - x1; |
|
ay = 3f * (y2 - y3) + y4 - y1; |
|
bx = 3f * (x1 - 2f * x2 + x3); |
|
by = 3f * (y1 - 2f * y2 + y3); |
|
cx = 3f * (x2 - x1); |
|
cy = 3f * (y2 - y1); |
|
dx = x1; |
|
dy = y1; |
|
dax = 3f * ax; day = 3f * ay; |
|
dbx = 2f * bx; dby = 2f * by; |
|
} |
|
|
|
void set(float x1, float y1, |
|
float x2, float y2, |
|
float x3, float y3) |
|
{ |
|
ax = 0f; ay = 0f; |
|
bx = x1 - 2f * x2 + x3; |
|
by = y1 - 2f * y2 + y3; |
|
cx = 2f * (x2 - x1); |
|
cy = 2f * (y2 - y1); |
|
dx = x1; |
|
dy = y1; |
|
dax = 0f; day = 0f; |
|
dbx = 2f * bx; dby = 2f * by; |
|
} |
|
|
|
float xat(float t) { |
|
return t * (t * (t * ax + bx) + cx) + dx; |
|
} |
|
float yat(float t) { |
|
return t * (t * (t * ay + by) + cy) + dy; |
|
} |
|
|
|
float dxat(float t) { |
|
return t * (t * dax + dbx) + cx; |
|
} |
|
|
|
float dyat(float t) { |
|
return t * (t * day + dby) + cy; |
|
} |
|
|
|
int dxRoots(float[] roots, int off) { |
|
return Helpers.quadraticRoots(dax, dbx, cx, roots, off); |
|
} |
|
|
|
int dyRoots(float[] roots, int off) { |
|
return Helpers.quadraticRoots(day, dby, cy, roots, off); |
|
} |
|
|
|
int infPoints(float[] pts, int off) { |
|
// inflection point at t if -f'(t)x*f''(t)y + f'(t)y*f''(t)x == 0 |
|
// Fortunately, this turns out to be quadratic, so there are at |
|
|
|
final float a = dax * dby - dbx * day; |
|
final float b = 2f * (cy * dax - day * cx); |
|
final float c = cy * dbx - cx * dby; |
|
|
|
return Helpers.quadraticRoots(a, b, c, pts, off); |
|
} |
|
|
|
// finds points where the first and second derivative are |
|
// perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where |
|
|
|
private int perpendiculardfddf(float[] pts, int off) { |
|
assert pts.length >= off + 4; |
|
|
|
// these are the coefficients of some multiple of g(t) (not g(t), |
|
// because the roots of a polynomial are not changed after multiplication |
|
|
|
final float a = 2f * (dax*dax + day*day); |
|
final float b = 3f * (dax*dbx + day*dby); |
|
final float c = 2f * (dax*cx + day*cy) + dbx*dbx + dby*dby; |
|
final float d = dbx*cx + dby*cy; |
|
return Helpers.cubicRootsInAB(a, b, c, d, pts, off, 0f, 1f); |
|
} |
|
|
|
// Tries to find the roots of the function ROC(t)-w in [0, 1). It uses |
|
// a variant of the false position algorithm to find the roots. False |
|
// position requires that 2 initial values x0,x1 be given, and that the |
|
// function must have opposite signs at those values. To find such |
|
// values, we need the local extrema of the ROC function, for which we |
|
// need the roots of its derivative; however, it's harder to find the |
|
// roots of the derivative in this case than it is to find the roots |
|
// of the original function. So, we find all points where this curve's |
|
// first and second derivative are perpendicular, and we pretend these |
|
// are our local extrema. There are at most 3 of these, so we will check |
|
// at most 4 sub-intervals of (0,1). ROC has asymptotes at inflection |
|
// points, so roc-w can have at least 6 roots. This shouldn't be a |
|
|
|
int rootsOfROCMinusW(float[] roots, int off, final float w, final float err) { |
|
|
|
assert off <= 6 && roots.length >= 10; |
|
int ret = off; |
|
int numPerpdfddf = perpendiculardfddf(roots, off); |
|
float t0 = 0, ft0 = ROCsq(t0) - w*w; |
|
roots[off + numPerpdfddf] = 1f; |
|
numPerpdfddf++; |
|
for (int i = off; i < off + numPerpdfddf; i++) { |
|
float t1 = roots[i], ft1 = ROCsq(t1) - w*w; |
|
if (ft0 == 0f) { |
|
roots[ret++] = t0; |
|
} else if (ft1 * ft0 < 0f) { // have opposite signs |
|
// (ROC(t)^2 == w^2) == (ROC(t) == w) is true because |
|
|
|
roots[ret++] = falsePositionROCsqMinusX(t0, t1, w*w, err); |
|
} |
|
t0 = t1; |
|
ft0 = ft1; |
|
} |
|
|
|
return ret - off; |
|
} |
|
|
|
private static float eliminateInf(float x) { |
|
return (x == Float.POSITIVE_INFINITY ? Float.MAX_VALUE : |
|
(x == Float.NEGATIVE_INFINITY ? Float.MIN_VALUE : x)); |
|
} |
|
|
|
// A slight modification of the false position algorithm on wikipedia. |
|
// This only works for the ROCsq-x functions. It might be nice to have |
|
// the function as an argument, but that would be awkward in java6. |
|
// TODO: It is something to consider for java8 (or whenever lambda |
|
// expressions make it into the language), depending on how closures |
|
// and turn out. Same goes for the newton's method |
|
|
|
private float falsePositionROCsqMinusX(float x0, float x1, |
|
final float x, final float err) |
|
{ |
|
final int iterLimit = 100; |
|
int side = 0; |
|
float t = x1, ft = eliminateInf(ROCsq(t) - x); |
|
float s = x0, fs = eliminateInf(ROCsq(s) - x); |
|
float r = s, fr; |
|
for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) { |
|
r = (fs * t - ft * s) / (fs - ft); |
|
fr = ROCsq(r) - x; |
|
if (sameSign(fr, ft)) { |
|
ft = fr; t = r; |
|
if (side < 0) { |
|
fs /= (1 << (-side)); |
|
side--; |
|
} else { |
|
side = -1; |
|
} |
|
} else if (fr * fs > 0) { |
|
fs = fr; s = r; |
|
if (side > 0) { |
|
ft /= (1 << side); |
|
side++; |
|
} else { |
|
side = 1; |
|
} |
|
} else { |
|
break; |
|
} |
|
} |
|
return r; |
|
} |
|
|
|
private static boolean sameSign(float x, float y) { |
|
|
|
return (x < 0f && y < 0f) || (x > 0f && y > 0f); |
|
} |
|
|
|
// returns the radius of curvature squared at t of this curve |
|
|
|
private float ROCsq(final float t) { |
|
|
|
final float dx = t * (t * dax + dbx) + cx; |
|
final float dy = t * (t * day + dby) + cy; |
|
final float ddx = 2f * dax * t + dbx; |
|
final float ddy = 2f * day * t + dby; |
|
final float dx2dy2 = dx*dx + dy*dy; |
|
final float ddx2ddy2 = ddx*ddx + ddy*ddy; |
|
final float ddxdxddydy = ddx*dx + ddy*dy; |
|
return dx2dy2*((dx2dy2*dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy*ddxdxddydy)); |
|
} |
|
|
|
// curve to be broken should be in pts |
|
// this will change the contents of pts but not Ts |
|
// TODO: There's no reason for Ts to be an array. All we need is a sequence |
|
// of t values at which to subdivide. An array statisfies this condition, |
|
// but is unnecessarily restrictive. Ts should be an Iterator<Float> instead. |
|
// Doing this will also make dashing easier, since we could easily make |
|
// LengthIterator an Iterator<Float> and feed it to this function to simplify |
|
|
|
BreakPtrIterator breakPtsAtTs(final float[] pts, final int type, |
|
final float[] Ts, final int numTs) |
|
{ |
|
assert pts.length >= 2*type && numTs <= Ts.length; |
|
|
|
|
|
iterator.init(pts, type, Ts, numTs); |
|
|
|
return iterator; |
|
} |
|
|
|
static final class BreakPtrIterator { |
|
private int nextCurveIdx; |
|
private int curCurveOff; |
|
private float prevT; |
|
private float[] pts; |
|
private int type; |
|
private float[] ts; |
|
private int numTs; |
|
|
|
void init(final float[] pts, final int type, |
|
final float[] ts, final int numTs) { |
|
this.pts = pts; |
|
this.type = type; |
|
this.ts = ts; |
|
this.numTs = numTs; |
|
|
|
nextCurveIdx = 0; |
|
curCurveOff = 0; |
|
prevT = 0f; |
|
} |
|
|
|
public boolean hasNext() { |
|
return nextCurveIdx <= numTs; |
|
} |
|
|
|
public int next() { |
|
int ret; |
|
if (nextCurveIdx < numTs) { |
|
float curT = ts[nextCurveIdx]; |
|
float splitT = (curT - prevT) / (1f - prevT); |
|
Helpers.subdivideAt(splitT, |
|
pts, curCurveOff, |
|
pts, 0, |
|
pts, type, type); |
|
prevT = curT; |
|
ret = 0; |
|
curCurveOff = type; |
|
} else { |
|
ret = curCurveOff; |
|
} |
|
nextCurveIdx++; |
|
return ret; |
|
} |
|
} |
|
} |
|
|