| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 */  | 
 | 
 | 
 | 
package sun.java2d.marlin;  | 
 | 
 | 
 | 
import java.util.Iterator;  | 
 | 
 | 
 | 
final class Curve { | 
 | 
 | 
 | 
    float ax, ay, bx, by, cx, cy, dx, dy;  | 
 | 
    float dax, day, dbx, dby;  | 
 | 
      | 
 | 
    private final BreakPtrIterator iterator = new BreakPtrIterator();  | 
 | 
 | 
 | 
    Curve() { | 
 | 
    }  | 
 | 
 | 
 | 
    void set(float[] points, int type) { | 
 | 
        switch(type) { | 
 | 
        case 8:  | 
 | 
            set(points[0], points[1],  | 
 | 
                points[2], points[3],  | 
 | 
                points[4], points[5],  | 
 | 
                points[6], points[7]);  | 
 | 
            return;  | 
 | 
        case 6:  | 
 | 
            set(points[0], points[1],  | 
 | 
                points[2], points[3],  | 
 | 
                points[4], points[5]);  | 
 | 
            return;  | 
 | 
        default:  | 
 | 
            throw new InternalError("Curves can only be cubic or quadratic"); | 
 | 
        }  | 
 | 
    }  | 
 | 
 | 
 | 
    void set(float x1, float y1,  | 
 | 
             float x2, float y2,  | 
 | 
             float x3, float y3,  | 
 | 
             float x4, float y4)  | 
 | 
    { | 
 | 
        ax = 3f * (x2 - x3) + x4 - x1;  | 
 | 
        ay = 3f * (y2 - y3) + y4 - y1;  | 
 | 
        bx = 3f * (x1 - 2f * x2 + x3);  | 
 | 
        by = 3f * (y1 - 2f * y2 + y3);  | 
 | 
        cx = 3f * (x2 - x1);  | 
 | 
        cy = 3f * (y2 - y1);  | 
 | 
        dx = x1;  | 
 | 
        dy = y1;  | 
 | 
        dax = 3f * ax; day = 3f * ay;  | 
 | 
        dbx = 2f * bx; dby = 2f * by;  | 
 | 
    }  | 
 | 
 | 
 | 
    void set(float x1, float y1,  | 
 | 
             float x2, float y2,  | 
 | 
             float x3, float y3)  | 
 | 
    { | 
 | 
        ax = 0f; ay = 0f;  | 
 | 
        bx = x1 - 2f * x2 + x3;  | 
 | 
        by = y1 - 2f * y2 + y3;  | 
 | 
        cx = 2f * (x2 - x1);  | 
 | 
        cy = 2f * (y2 - y1);  | 
 | 
        dx = x1;  | 
 | 
        dy = y1;  | 
 | 
        dax = 0f; day = 0f;  | 
 | 
        dbx = 2f * bx; dby = 2f * by;  | 
 | 
    }  | 
 | 
 | 
 | 
    float xat(float t) { | 
 | 
        return t * (t * (t * ax + bx) + cx) + dx;  | 
 | 
    }  | 
 | 
    float yat(float t) { | 
 | 
        return t * (t * (t * ay + by) + cy) + dy;  | 
 | 
    }  | 
 | 
 | 
 | 
    float dxat(float t) { | 
 | 
        return t * (t * dax + dbx) + cx;  | 
 | 
    }  | 
 | 
 | 
 | 
    float dyat(float t) { | 
 | 
        return t * (t * day + dby) + cy;  | 
 | 
    }  | 
 | 
 | 
 | 
    int dxRoots(float[] roots, int off) { | 
 | 
        return Helpers.quadraticRoots(dax, dbx, cx, roots, off);  | 
 | 
    }  | 
 | 
 | 
 | 
    int dyRoots(float[] roots, int off) { | 
 | 
        return Helpers.quadraticRoots(day, dby, cy, roots, off);  | 
 | 
    }  | 
 | 
 | 
 | 
    int infPoints(float[] pts, int off) { | 
 | 
        // inflection point at t if -f'(t)x*f''(t)y + f'(t)y*f''(t)x == 0  | 
 | 
        // Fortunately, this turns out to be quadratic, so there are at  | 
 | 
          | 
 | 
        final float a = dax * dby - dbx * day;  | 
 | 
        final float b = 2f * (cy * dax - day * cx);  | 
 | 
        final float c = cy * dbx - cx * dby;  | 
 | 
 | 
 | 
        return Helpers.quadraticRoots(a, b, c, pts, off);  | 
 | 
    }  | 
 | 
 | 
 | 
    // finds points where the first and second derivative are  | 
 | 
    // perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where  | 
 | 
      | 
 | 
    private int perpendiculardfddf(float[] pts, int off) { | 
 | 
        assert pts.length >= off + 4;  | 
 | 
 | 
 | 
        // these are the coefficients of some multiple of g(t) (not g(t),  | 
 | 
        // because the roots of a polynomial are not changed after multiplication  | 
 | 
          | 
 | 
        final float a = 2f * (dax*dax + day*day);  | 
 | 
        final float b = 3f * (dax*dbx + day*dby);  | 
 | 
        final float c = 2f * (dax*cx + day*cy) + dbx*dbx + dby*dby;  | 
 | 
        final float d = dbx*cx + dby*cy;  | 
 | 
        return Helpers.cubicRootsInAB(a, b, c, d, pts, off, 0f, 1f);  | 
 | 
    }  | 
 | 
 | 
 | 
    // Tries to find the roots of the function ROC(t)-w in [0, 1). It uses  | 
 | 
    // a variant of the false position algorithm to find the roots. False  | 
 | 
    // position requires that 2 initial values x0,x1 be given, and that the  | 
 | 
    // function must have opposite signs at those values. To find such  | 
 | 
    // values, we need the local extrema of the ROC function, for which we  | 
 | 
    // need the roots of its derivative; however, it's harder to find the  | 
 | 
    // roots of the derivative in this case than it is to find the roots  | 
 | 
    // of the original function. So, we find all points where this curve's  | 
 | 
    // first and second derivative are perpendicular, and we pretend these  | 
 | 
    // are our local extrema. There are at most 3 of these, so we will check  | 
 | 
    // at most 4 sub-intervals of (0,1). ROC has asymptotes at inflection  | 
 | 
    // points, so roc-w can have at least 6 roots. This shouldn't be a  | 
 | 
      | 
 | 
    int rootsOfROCMinusW(float[] roots, int off, final float w, final float err) { | 
 | 
          | 
 | 
        assert off <= 6 && roots.length >= 10;  | 
 | 
        int ret = off;  | 
 | 
        int numPerpdfddf = perpendiculardfddf(roots, off);  | 
 | 
        float t0 = 0, ft0 = ROCsq(t0) - w*w;  | 
 | 
        roots[off + numPerpdfddf] = 1f;   | 
 | 
        numPerpdfddf++;  | 
 | 
        for (int i = off; i < off + numPerpdfddf; i++) { | 
 | 
            float t1 = roots[i], ft1 = ROCsq(t1) - w*w;  | 
 | 
            if (ft0 == 0f) { | 
 | 
                roots[ret++] = t0;  | 
 | 
            } else if (ft1 * ft0 < 0f) { // have opposite signs | 
 | 
                // (ROC(t)^2 == w^2) == (ROC(t) == w) is true because  | 
 | 
                  | 
 | 
                roots[ret++] = falsePositionROCsqMinusX(t0, t1, w*w, err);  | 
 | 
            }  | 
 | 
            t0 = t1;  | 
 | 
            ft0 = ft1;  | 
 | 
        }  | 
 | 
 | 
 | 
        return ret - off;  | 
 | 
    }  | 
 | 
 | 
 | 
    private static float eliminateInf(float x) { | 
 | 
        return (x == Float.POSITIVE_INFINITY ? Float.MAX_VALUE :  | 
 | 
            (x == Float.NEGATIVE_INFINITY ? Float.MIN_VALUE : x));  | 
 | 
    }  | 
 | 
 | 
 | 
    // A slight modification of the false position algorithm on wikipedia.  | 
 | 
    // This only works for the ROCsq-x functions. It might be nice to have  | 
 | 
    // the function as an argument, but that would be awkward in java6.  | 
 | 
    // TODO: It is something to consider for java8 (or whenever lambda  | 
 | 
    // expressions make it into the language), depending on how closures  | 
 | 
    // and turn out. Same goes for the newton's method  | 
 | 
      | 
 | 
    private float falsePositionROCsqMinusX(float x0, float x1,  | 
 | 
                                           final float x, final float err)  | 
 | 
    { | 
 | 
        final int iterLimit = 100;  | 
 | 
        int side = 0;  | 
 | 
        float t = x1, ft = eliminateInf(ROCsq(t) - x);  | 
 | 
        float s = x0, fs = eliminateInf(ROCsq(s) - x);  | 
 | 
        float r = s, fr;  | 
 | 
        for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) { | 
 | 
            r = (fs * t - ft * s) / (fs - ft);  | 
 | 
            fr = ROCsq(r) - x;  | 
 | 
            if (sameSign(fr, ft)) { | 
 | 
                ft = fr; t = r;  | 
 | 
                if (side < 0) { | 
 | 
                    fs /= (1 << (-side));  | 
 | 
                    side--;  | 
 | 
                } else { | 
 | 
                    side = -1;  | 
 | 
                }  | 
 | 
            } else if (fr * fs > 0) { | 
 | 
                fs = fr; s = r;  | 
 | 
                if (side > 0) { | 
 | 
                    ft /= (1 << side);  | 
 | 
                    side++;  | 
 | 
                } else { | 
 | 
                    side = 1;  | 
 | 
                }  | 
 | 
            } else { | 
 | 
                break;  | 
 | 
            }  | 
 | 
        }  | 
 | 
        return r;  | 
 | 
    }  | 
 | 
 | 
 | 
    private static boolean sameSign(float x, float y) { | 
 | 
          | 
 | 
        return (x < 0f && y < 0f) || (x > 0f && y > 0f);  | 
 | 
    }  | 
 | 
 | 
 | 
    // returns the radius of curvature squared at t of this curve  | 
 | 
      | 
 | 
    private float ROCsq(final float t) { | 
 | 
          | 
 | 
        final float dx = t * (t * dax + dbx) + cx;  | 
 | 
        final float dy = t * (t * day + dby) + cy;  | 
 | 
        final float ddx = 2f * dax * t + dbx;  | 
 | 
        final float ddy = 2f * day * t + dby;  | 
 | 
        final float dx2dy2 = dx*dx + dy*dy;  | 
 | 
        final float ddx2ddy2 = ddx*ddx + ddy*ddy;  | 
 | 
        final float ddxdxddydy = ddx*dx + ddy*dy;  | 
 | 
        return dx2dy2*((dx2dy2*dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy*ddxdxddydy));  | 
 | 
    }  | 
 | 
 | 
 | 
    // curve to be broken should be in pts  | 
 | 
    // this will change the contents of pts but not Ts  | 
 | 
    // TODO: There's no reason for Ts to be an array. All we need is a sequence  | 
 | 
    // of t values at which to subdivide. An array statisfies this condition,  | 
 | 
    // but is unnecessarily restrictive. Ts should be an Iterator<Float> instead.  | 
 | 
    // Doing this will also make dashing easier, since we could easily make  | 
 | 
    // LengthIterator an Iterator<Float> and feed it to this function to simplify  | 
 | 
      | 
 | 
    BreakPtrIterator breakPtsAtTs(final float[] pts, final int type,  | 
 | 
                                  final float[] Ts, final int numTs)  | 
 | 
    { | 
 | 
        assert pts.length >= 2*type && numTs <= Ts.length;  | 
 | 
 | 
 | 
          | 
 | 
        iterator.init(pts, type, Ts, numTs);  | 
 | 
 | 
 | 
        return iterator;  | 
 | 
    }  | 
 | 
 | 
 | 
    static final class BreakPtrIterator { | 
 | 
        private int nextCurveIdx;  | 
 | 
        private int curCurveOff;  | 
 | 
        private float prevT;  | 
 | 
        private float[] pts;  | 
 | 
        private int type;  | 
 | 
        private float[] ts;  | 
 | 
        private int numTs;  | 
 | 
 | 
 | 
        void init(final float[] pts, final int type,  | 
 | 
                  final float[] ts, final int numTs) { | 
 | 
            this.pts = pts;  | 
 | 
            this.type = type;  | 
 | 
            this.ts = ts;  | 
 | 
            this.numTs = numTs;  | 
 | 
 | 
 | 
            nextCurveIdx = 0;  | 
 | 
            curCurveOff = 0;  | 
 | 
            prevT = 0f;  | 
 | 
        }  | 
 | 
 | 
 | 
        public boolean hasNext() { | 
 | 
            return nextCurveIdx <= numTs;  | 
 | 
        }  | 
 | 
 | 
 | 
        public int next() { | 
 | 
            int ret;  | 
 | 
            if (nextCurveIdx < numTs) { | 
 | 
                float curT = ts[nextCurveIdx];  | 
 | 
                float splitT = (curT - prevT) / (1f - prevT);  | 
 | 
                Helpers.subdivideAt(splitT,  | 
 | 
                                    pts, curCurveOff,  | 
 | 
                                    pts, 0,  | 
 | 
                                    pts, type, type);  | 
 | 
                prevT = curT;  | 
 | 
                ret = 0;  | 
 | 
                curCurveOff = type;  | 
 | 
            } else { | 
 | 
                ret = curCurveOff;  | 
 | 
            }  | 
 | 
            nextCurveIdx++;  | 
 | 
            return ret;  | 
 | 
        }  | 
 | 
    }  | 
 | 
}  | 
 | 
 |