|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
|
|
package sun.java2d.pisces; |
|
|
|
import java.util.Arrays; |
|
import java.util.Iterator; |
|
import static java.lang.Math.ulp; |
|
import static java.lang.Math.sqrt; |
|
|
|
import sun.awt.geom.PathConsumer2D; |
|
|
|
// TODO: some of the arithmetic here is too verbose and prone to hard to |
|
// debug typos. We should consider making a small Point/Vector class that |
|
|
|
final class Stroker implements PathConsumer2D { |
|
|
|
private static final int MOVE_TO = 0; |
|
private static final int DRAWING_OP_TO = 1; |
|
private static final int CLOSE = 2; |
|
|
|
|
|
|
|
*/ |
|
public static final int JOIN_MITER = 0; |
|
|
|
|
|
|
|
*/ |
|
public static final int JOIN_ROUND = 1; |
|
|
|
|
|
|
|
*/ |
|
public static final int JOIN_BEVEL = 2; |
|
|
|
|
|
|
|
*/ |
|
public static final int CAP_BUTT = 0; |
|
|
|
|
|
|
|
*/ |
|
public static final int CAP_ROUND = 1; |
|
|
|
|
|
|
|
*/ |
|
public static final int CAP_SQUARE = 2; |
|
|
|
private final PathConsumer2D out; |
|
|
|
private final int capStyle; |
|
private final int joinStyle; |
|
|
|
private final float lineWidth2; |
|
|
|
private final float[][] offset = new float[3][2]; |
|
private final float[] miter = new float[2]; |
|
private final float miterLimitSq; |
|
|
|
private int prev; |
|
|
|
|
|
private float sx0, sy0, sdx, sdy; |
|
// the current point and the slope there. |
|
private float cx0, cy0, cdx, cdy; |
|
// vectors that when added to (sx0,sy0) and (cx0,cy0) respectively yield the |
|
// first and last points on the left parallel path. Since this path is |
|
// parallel, it's slope at any point is parallel to the slope of the |
|
// original path (thought they may have different directions), so these |
|
// could be computed from sdx,sdy and cdx,cdy (and vice versa), but that |
|
|
|
private float smx, smy, cmx, cmy; |
|
|
|
private final PolyStack reverse = new PolyStack(); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
public Stroker(PathConsumer2D pc2d, |
|
float lineWidth, |
|
int capStyle, |
|
int joinStyle, |
|
float miterLimit) |
|
{ |
|
this.out = pc2d; |
|
|
|
this.lineWidth2 = lineWidth / 2; |
|
this.capStyle = capStyle; |
|
this.joinStyle = joinStyle; |
|
|
|
float limit = miterLimit * lineWidth2; |
|
this.miterLimitSq = limit*limit; |
|
|
|
this.prev = CLOSE; |
|
} |
|
|
|
private static void computeOffset(final float lx, final float ly, |
|
final float w, final float[] m) |
|
{ |
|
final float len = (float) sqrt(lx*lx + ly*ly); |
|
if (len == 0) { |
|
m[0] = m[1] = 0; |
|
} else { |
|
m[0] = (ly * w)/len; |
|
m[1] = -(lx * w)/len; |
|
} |
|
} |
|
|
|
// Returns true if the vectors (dx1, dy1) and (dx2, dy2) are |
|
// clockwise (if dx1,dy1 needs to be rotated clockwise to close |
|
// the smallest angle between it and dx2,dy2). |
|
// This is equivalent to detecting whether a point q is on the right side |
|
// of a line passing through points p1, p2 where p2 = p1+(dx1,dy1) and |
|
// q = p2+(dx2,dy2), which is the same as saying p1, p2, q are in a |
|
// clockwise order. |
|
|
|
private static boolean isCW(final float dx1, final float dy1, |
|
final float dx2, final float dy2) |
|
{ |
|
return dx1 * dy2 <= dy1 * dx2; |
|
} |
|
|
|
// pisces used to use fixed point arithmetic with 16 decimal digits. I |
|
// didn't want to change the values of the constant below when I converted |
|
|
|
private static final float ROUND_JOIN_THRESHOLD = 1000/65536f; |
|
|
|
private void drawRoundJoin(float x, float y, |
|
float omx, float omy, float mx, float my, |
|
boolean rev, |
|
float threshold) |
|
{ |
|
if ((omx == 0 && omy == 0) || (mx == 0 && my == 0)) { |
|
return; |
|
} |
|
|
|
float domx = omx - mx; |
|
float domy = omy - my; |
|
float len = domx*domx + domy*domy; |
|
if (len < threshold) { |
|
return; |
|
} |
|
|
|
if (rev) { |
|
omx = -omx; |
|
omy = -omy; |
|
mx = -mx; |
|
my = -my; |
|
} |
|
drawRoundJoin(x, y, omx, omy, mx, my, rev); |
|
} |
|
|
|
private void drawRoundJoin(float cx, float cy, |
|
float omx, float omy, |
|
float mx, float my, |
|
boolean rev) |
|
{ |
|
// The sign of the dot product of mx,my and omx,omy is equal to the |
|
// the sign of the cosine of ext |
|
|
|
final float cosext = omx * mx + omy * my; |
|
// If it is >=0, we know that abs(ext) is <= 90 degrees, so we only |
|
// need 1 curve to approximate the circle section that joins omx,omy |
|
|
|
final int numCurves = (cosext >= 0f) ? 1 : 2; |
|
|
|
switch (numCurves) { |
|
case 1: |
|
drawBezApproxForArc(cx, cy, omx, omy, mx, my, rev); |
|
break; |
|
case 2: |
|
// we need to split the arc into 2 arcs spanning the same angle. |
|
// The point we want will be one of the 2 intersections of the |
|
// perpendicular bisector of the chord (omx,omy)->(mx,my) and the |
|
// circle. We could find this by scaling the vector |
|
// (omx+mx, omy+my)/2 so that it has length=lineWidth2 (and thus lies |
|
// on the circle), but that can have numerical problems when the angle |
|
// between omx,omy and mx,my is close to 180 degrees. So we compute a |
|
// normal of (omx,omy)-(mx,my). This will be the direction of the |
|
// perpendicular bisector. To get one of the intersections, we just scale |
|
// this vector that its length is lineWidth2 (this works because the |
|
// perpendicular bisector goes through the origin). This scaling doesn't |
|
// have numerical problems because we know that lineWidth2 divided by |
|
// this normal's length is at least 0.5 and at most sqrt(2)/2 (because |
|
|
|
float nx = my - omy, ny = omx - mx; |
|
float nlen = (float) sqrt(nx*nx + ny*ny); |
|
float scale = lineWidth2/nlen; |
|
float mmx = nx * scale, mmy = ny * scale; |
|
|
|
// if (isCW(omx, omy, mx, my) != isCW(mmx, mmy, mx, my)) then we've |
|
// computed the wrong intersection so we get the other one. |
|
|
|
if (rev) { |
|
mmx = -mmx; |
|
mmy = -mmy; |
|
} |
|
drawBezApproxForArc(cx, cy, omx, omy, mmx, mmy, rev); |
|
drawBezApproxForArc(cx, cy, mmx, mmy, mx, my, rev); |
|
break; |
|
} |
|
} |
|
|
|
|
|
private void drawBezApproxForArc(final float cx, final float cy, |
|
final float omx, final float omy, |
|
final float mx, final float my, |
|
boolean rev) |
|
{ |
|
final float cosext2 = (omx * mx + omy * my) / (2f * lineWidth2 * lineWidth2); |
|
|
|
// check round off errors producing cos(ext) > 1 and a NaN below |
|
|
|
if (cosext2 >= 0.5f) { |
|
|
|
return; |
|
} |
|
|
|
// cv is the length of P1-P0 and P2-P3 divided by the radius of the arc |
|
// (so, cv assumes the arc has radius 1). P0, P1, P2, P3 are the points that |
|
// define the bezier curve we're computing. |
|
// It is computed using the constraints that P1-P0 and P3-P2 are parallel |
|
|
|
float cv = (float) ((4.0 / 3.0) * sqrt(0.5 - cosext2) / |
|
(1.0 + sqrt(cosext2 + 0.5))); |
|
|
|
if (rev) { |
|
cv = -cv; |
|
} |
|
final float x1 = cx + omx; |
|
final float y1 = cy + omy; |
|
final float x2 = x1 - cv * omy; |
|
final float y2 = y1 + cv * omx; |
|
|
|
final float x4 = cx + mx; |
|
final float y4 = cy + my; |
|
final float x3 = x4 + cv * my; |
|
final float y3 = y4 - cv * mx; |
|
|
|
emitCurveTo(x1, y1, x2, y2, x3, y3, x4, y4, rev); |
|
} |
|
|
|
private void drawRoundCap(float cx, float cy, float mx, float my) { |
|
final float C = 0.5522847498307933f; |
|
// the first and second arguments of the following two calls |
|
// are really will be ignored by emitCurveTo (because of the false), |
|
// but we put them in anyway, as opposed to just giving it 4 zeroes, |
|
// because it's just 4 additions and it's not good to rely on this |
|
|
|
emitCurveTo(cx+mx, cy+my, |
|
cx+mx-C*my, cy+my+C*mx, |
|
cx-my+C*mx, cy+mx+C*my, |
|
cx-my, cy+mx, |
|
false); |
|
emitCurveTo(cx-my, cy+mx, |
|
cx-my-C*mx, cy+mx-C*my, |
|
cx-mx-C*my, cy-my+C*mx, |
|
cx-mx, cy-my, |
|
false); |
|
} |
|
|
|
// Put the intersection point of the lines (x0, y0) -> (x1, y1) |
|
// and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1]. |
|
|
|
private void computeIntersection(final float x0, final float y0, |
|
final float x1, final float y1, |
|
final float x0p, final float y0p, |
|
final float x1p, final float y1p, |
|
final float[] m, int off) |
|
{ |
|
float x10 = x1 - x0; |
|
float y10 = y1 - y0; |
|
float x10p = x1p - x0p; |
|
float y10p = y1p - y0p; |
|
|
|
float den = x10*y10p - x10p*y10; |
|
float t = x10p*(y0-y0p) - y10p*(x0-x0p); |
|
t /= den; |
|
m[off++] = x0 + t*x10; |
|
m[off] = y0 + t*y10; |
|
} |
|
|
|
private void drawMiter(final float pdx, final float pdy, |
|
final float x0, final float y0, |
|
final float dx, final float dy, |
|
float omx, float omy, float mx, float my, |
|
boolean rev) |
|
{ |
|
if ((mx == omx && my == omy) || |
|
(pdx == 0 && pdy == 0) || |
|
(dx == 0 && dy == 0)) |
|
{ |
|
return; |
|
} |
|
|
|
if (rev) { |
|
omx = -omx; |
|
omy = -omy; |
|
mx = -mx; |
|
my = -my; |
|
} |
|
|
|
computeIntersection((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy, |
|
(dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my, |
|
miter, 0); |
|
|
|
float lenSq = (miter[0]-x0)*(miter[0]-x0) + (miter[1]-y0)*(miter[1]-y0); |
|
|
|
// If the lines are parallel, lenSq will be either NaN or +inf |
|
// (actually, I'm not sure if the latter is possible. The important |
|
// thing is that -inf is not possible, because lenSq is a square). |
|
// For both of those values, the comparison below will fail and |
|
|
|
if (lenSq < miterLimitSq) { |
|
emitLineTo(miter[0], miter[1], rev); |
|
} |
|
} |
|
|
|
public void moveTo(float x0, float y0) { |
|
if (prev == DRAWING_OP_TO) { |
|
finish(); |
|
} |
|
this.sx0 = this.cx0 = x0; |
|
this.sy0 = this.cy0 = y0; |
|
this.cdx = this.sdx = 1; |
|
this.cdy = this.sdy = 0; |
|
this.prev = MOVE_TO; |
|
} |
|
|
|
public void lineTo(float x1, float y1) { |
|
float dx = x1 - cx0; |
|
float dy = y1 - cy0; |
|
if (dx == 0f && dy == 0f) { |
|
dx = 1; |
|
} |
|
computeOffset(dx, dy, lineWidth2, offset[0]); |
|
float mx = offset[0][0]; |
|
float my = offset[0][1]; |
|
|
|
drawJoin(cdx, cdy, cx0, cy0, dx, dy, cmx, cmy, mx, my); |
|
|
|
emitLineTo(cx0 + mx, cy0 + my); |
|
emitLineTo(x1 + mx, y1 + my); |
|
|
|
emitLineTo(cx0 - mx, cy0 - my, true); |
|
emitLineTo(x1 - mx, y1 - my, true); |
|
|
|
this.cmx = mx; |
|
this.cmy = my; |
|
this.cdx = dx; |
|
this.cdy = dy; |
|
this.cx0 = x1; |
|
this.cy0 = y1; |
|
this.prev = DRAWING_OP_TO; |
|
} |
|
|
|
public void closePath() { |
|
if (prev != DRAWING_OP_TO) { |
|
if (prev == CLOSE) { |
|
return; |
|
} |
|
emitMoveTo(cx0, cy0 - lineWidth2); |
|
this.cmx = this.smx = 0; |
|
this.cmy = this.smy = -lineWidth2; |
|
this.cdx = this.sdx = 1; |
|
this.cdy = this.sdy = 0; |
|
finish(); |
|
return; |
|
} |
|
|
|
if (cx0 != sx0 || cy0 != sy0) { |
|
lineTo(sx0, sy0); |
|
} |
|
|
|
drawJoin(cdx, cdy, cx0, cy0, sdx, sdy, cmx, cmy, smx, smy); |
|
|
|
emitLineTo(sx0 + smx, sy0 + smy); |
|
|
|
emitMoveTo(sx0 - smx, sy0 - smy); |
|
emitReverse(); |
|
|
|
this.prev = CLOSE; |
|
emitClose(); |
|
} |
|
|
|
private void emitReverse() { |
|
while(!reverse.isEmpty()) { |
|
reverse.pop(out); |
|
} |
|
} |
|
|
|
public void pathDone() { |
|
if (prev == DRAWING_OP_TO) { |
|
finish(); |
|
} |
|
|
|
out.pathDone(); |
|
// this shouldn't matter since this object won't be used |
|
|
|
this.prev = CLOSE; |
|
} |
|
|
|
private void finish() { |
|
if (capStyle == CAP_ROUND) { |
|
drawRoundCap(cx0, cy0, cmx, cmy); |
|
} else if (capStyle == CAP_SQUARE) { |
|
emitLineTo(cx0 - cmy + cmx, cy0 + cmx + cmy); |
|
emitLineTo(cx0 - cmy - cmx, cy0 + cmx - cmy); |
|
} |
|
|
|
emitReverse(); |
|
|
|
if (capStyle == CAP_ROUND) { |
|
drawRoundCap(sx0, sy0, -smx, -smy); |
|
} else if (capStyle == CAP_SQUARE) { |
|
emitLineTo(sx0 + smy - smx, sy0 - smx - smy); |
|
emitLineTo(sx0 + smy + smx, sy0 - smx + smy); |
|
} |
|
|
|
emitClose(); |
|
} |
|
|
|
private void emitMoveTo(final float x0, final float y0) { |
|
out.moveTo(x0, y0); |
|
} |
|
|
|
private void emitLineTo(final float x1, final float y1) { |
|
out.lineTo(x1, y1); |
|
} |
|
|
|
private void emitLineTo(final float x1, final float y1, |
|
final boolean rev) |
|
{ |
|
if (rev) { |
|
reverse.pushLine(x1, y1); |
|
} else { |
|
emitLineTo(x1, y1); |
|
} |
|
} |
|
|
|
private void emitQuadTo(final float x0, final float y0, |
|
final float x1, final float y1, |
|
final float x2, final float y2, final boolean rev) |
|
{ |
|
if (rev) { |
|
reverse.pushQuad(x0, y0, x1, y1); |
|
} else { |
|
out.quadTo(x1, y1, x2, y2); |
|
} |
|
} |
|
|
|
private void emitCurveTo(final float x0, final float y0, |
|
final float x1, final float y1, |
|
final float x2, final float y2, |
|
final float x3, final float y3, final boolean rev) |
|
{ |
|
if (rev) { |
|
reverse.pushCubic(x0, y0, x1, y1, x2, y2); |
|
} else { |
|
out.curveTo(x1, y1, x2, y2, x3, y3); |
|
} |
|
} |
|
|
|
private void emitClose() { |
|
out.closePath(); |
|
} |
|
|
|
private void drawJoin(float pdx, float pdy, |
|
float x0, float y0, |
|
float dx, float dy, |
|
float omx, float omy, |
|
float mx, float my) |
|
{ |
|
if (prev != DRAWING_OP_TO) { |
|
emitMoveTo(x0 + mx, y0 + my); |
|
this.sdx = dx; |
|
this.sdy = dy; |
|
this.smx = mx; |
|
this.smy = my; |
|
} else { |
|
boolean cw = isCW(pdx, pdy, dx, dy); |
|
if (joinStyle == JOIN_MITER) { |
|
drawMiter(pdx, pdy, x0, y0, dx, dy, omx, omy, mx, my, cw); |
|
} else if (joinStyle == JOIN_ROUND) { |
|
drawRoundJoin(x0, y0, |
|
omx, omy, |
|
mx, my, cw, |
|
ROUND_JOIN_THRESHOLD); |
|
} |
|
emitLineTo(x0, y0, !cw); |
|
} |
|
prev = DRAWING_OP_TO; |
|
} |
|
|
|
private static boolean within(final float x1, final float y1, |
|
final float x2, final float y2, |
|
final float ERR) |
|
{ |
|
assert ERR > 0 : ""; |
|
// compare taxicab distance. ERR will always be small, so using |
|
|
|
return (Helpers.within(x1, x2, ERR) && |
|
Helpers.within(y1, y2, ERR)); |
|
} |
|
|
|
private void getLineOffsets(float x1, float y1, |
|
float x2, float y2, |
|
float[] left, float[] right) { |
|
computeOffset(x2 - x1, y2 - y1, lineWidth2, offset[0]); |
|
left[0] = x1 + offset[0][0]; |
|
left[1] = y1 + offset[0][1]; |
|
left[2] = x2 + offset[0][0]; |
|
left[3] = y2 + offset[0][1]; |
|
right[0] = x1 - offset[0][0]; |
|
right[1] = y1 - offset[0][1]; |
|
right[2] = x2 - offset[0][0]; |
|
right[3] = y2 - offset[0][1]; |
|
} |
|
|
|
private int computeOffsetCubic(float[] pts, final int off, |
|
float[] leftOff, float[] rightOff) |
|
{ |
|
// if p1=p2 or p3=p4 it means that the derivative at the endpoint |
|
// vanishes, which creates problems with computeOffset. Usually |
|
// this happens when this stroker object is trying to winden |
|
// a curve with a cusp. What happens is that curveTo splits |
|
// the input curve at the cusp, and passes it to this function. |
|
// because of inaccuracies in the splitting, we consider points |
|
|
|
final float x1 = pts[off + 0], y1 = pts[off + 1]; |
|
final float x2 = pts[off + 2], y2 = pts[off + 3]; |
|
final float x3 = pts[off + 4], y3 = pts[off + 5]; |
|
final float x4 = pts[off + 6], y4 = pts[off + 7]; |
|
|
|
float dx4 = x4 - x3; |
|
float dy4 = y4 - y3; |
|
float dx1 = x2 - x1; |
|
float dy1 = y2 - y1; |
|
|
|
// if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4, |
|
|
|
final boolean p1eqp2 = within(x1,y1,x2,y2, 6 * ulp(y2)); |
|
final boolean p3eqp4 = within(x3,y3,x4,y4, 6 * ulp(y4)); |
|
if (p1eqp2 && p3eqp4) { |
|
getLineOffsets(x1, y1, x4, y4, leftOff, rightOff); |
|
return 4; |
|
} else if (p1eqp2) { |
|
dx1 = x3 - x1; |
|
dy1 = y3 - y1; |
|
} else if (p3eqp4) { |
|
dx4 = x4 - x2; |
|
dy4 = y4 - y2; |
|
} |
|
|
|
|
|
float dotsq = (dx1 * dx4 + dy1 * dy4); |
|
dotsq = dotsq * dotsq; |
|
float l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4; |
|
if (Helpers.within(dotsq, l1sq * l4sq, 4 * ulp(dotsq))) { |
|
getLineOffsets(x1, y1, x4, y4, leftOff, rightOff); |
|
return 4; |
|
} |
|
|
|
// What we're trying to do in this function is to approximate an ideal |
|
// offset curve (call it I) of the input curve B using a bezier curve Bp. |
|
// The constraints I use to get the equations are: |
|
// |
|
// 1. The computed curve Bp should go through I(0) and I(1). These are |
|
// x1p, y1p, x4p, y4p, which are p1p and p4p. We still need to find |
|
// 4 variables: the x and y components of p2p and p3p (i.e. x2p, y2p, x3p, y3p). |
|
// |
|
// 2. Bp should have slope equal in absolute value to I at the endpoints. So, |
|
// (by the way, the operator || in the comments below means "aligned with". |
|
// It is defined on vectors, so when we say I'(0) || Bp'(0) we mean that |
|
// vectors I'(0) and Bp'(0) are aligned, which is the same as saying |
|
// that the tangent lines of I and Bp at 0 are parallel. Mathematically |
|
// this means (I'(t) || Bp'(t)) <==> (I'(t) = c * Bp'(t)) where c is some |
|
// nonzero constant.) |
|
// I'(0) || Bp'(0) and I'(1) || Bp'(1). Obviously, I'(0) || B'(0) and |
|
// I'(1) || B'(1); therefore, Bp'(0) || B'(0) and Bp'(1) || B'(1). |
|
// We know that Bp'(0) || (p2p-p1p) and Bp'(1) || (p4p-p3p) and the same |
|
// is true for any bezier curve; therefore, we get the equations |
|
// (1) p2p = c1 * (p2-p1) + p1p |
|
// (2) p3p = c2 * (p4-p3) + p4p |
|
// We know p1p, p4p, p2, p1, p3, and p4; therefore, this reduces the number |
|
// of unknowns from 4 to 2 (i.e. just c1 and c2). |
|
// To eliminate these 2 unknowns we use the following constraint: |
|
// |
|
// 3. Bp(0.5) == I(0.5). Bp(0.5)=(x,y) and I(0.5)=(xi,yi), and I should note |
|
// that I(0.5) is *the only* reason for computing dxm,dym. This gives us |
|
// (3) Bp(0.5) = (p1p + 3 * (p2p + p3p) + p4p)/8, which is equivalent to |
|
// (4) p2p + p3p = (Bp(0.5)*8 - p1p - p4p) / 3 |
|
// We can substitute (1) and (2) from above into (4) and we get: |
|
// (5) c1*(p2-p1) + c2*(p4-p3) = (Bp(0.5)*8 - p1p - p4p)/3 - p1p - p4p |
|
// which is equivalent to |
|
// (6) c1*(p2-p1) + c2*(p4-p3) = (4/3) * (Bp(0.5) * 2 - p1p - p4p) |
|
// |
|
// The right side of this is a 2D vector, and we know I(0.5), which gives us |
|
// Bp(0.5), which gives us the value of the right side. |
|
// The left side is just a matrix vector multiplication in disguise. It is |
|
// |
|
// [x2-x1, x4-x3][c1] |
|
// [y2-y1, y4-y3][c2] |
|
// which, is equal to |
|
// [dx1, dx4][c1] |
|
// [dy1, dy4][c2] |
|
// At this point we are left with a simple linear system and we solve it by |
|
// getting the inverse of the matrix above. Then we use [c1,c2] to compute |
|
// p2p and p3p. |
|
|
|
float x = 0.125f * (x1 + 3 * (x2 + x3) + x4); |
|
float y = 0.125f * (y1 + 3 * (y2 + y3) + y4); |
|
// (dxm,dym) is some tangent of B at t=0.5. This means it's equal to |
|
|
|
float dxm = x3 + x4 - x1 - x2, dym = y3 + y4 - y1 - y2; |
|
|
|
// this computes the offsets at t=0, 0.5, 1, using the property that |
|
// for any bezier curve the vectors p2-p1 and p4-p3 are parallel to |
|
|
|
computeOffset(dx1, dy1, lineWidth2, offset[0]); |
|
computeOffset(dxm, dym, lineWidth2, offset[1]); |
|
computeOffset(dx4, dy4, lineWidth2, offset[2]); |
|
float x1p = x1 + offset[0][0]; |
|
float y1p = y1 + offset[0][1]; |
|
float xi = x + offset[1][0]; |
|
float yi = y + offset[1][1]; |
|
float x4p = x4 + offset[2][0]; |
|
float y4p = y4 + offset[2][1]; |
|
|
|
float invdet43 = 4f / (3f * (dx1 * dy4 - dy1 * dx4)); |
|
|
|
float two_pi_m_p1_m_p4x = 2*xi - x1p - x4p; |
|
float two_pi_m_p1_m_p4y = 2*yi - y1p - y4p; |
|
float c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y); |
|
float c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x); |
|
|
|
float x2p, y2p, x3p, y3p; |
|
x2p = x1p + c1*dx1; |
|
y2p = y1p + c1*dy1; |
|
x3p = x4p + c2*dx4; |
|
y3p = y4p + c2*dy4; |
|
|
|
leftOff[0] = x1p; leftOff[1] = y1p; |
|
leftOff[2] = x2p; leftOff[3] = y2p; |
|
leftOff[4] = x3p; leftOff[5] = y3p; |
|
leftOff[6] = x4p; leftOff[7] = y4p; |
|
|
|
x1p = x1 - offset[0][0]; y1p = y1 - offset[0][1]; |
|
xi = xi - 2 * offset[1][0]; yi = yi - 2 * offset[1][1]; |
|
x4p = x4 - offset[2][0]; y4p = y4 - offset[2][1]; |
|
|
|
two_pi_m_p1_m_p4x = 2*xi - x1p - x4p; |
|
two_pi_m_p1_m_p4y = 2*yi - y1p - y4p; |
|
c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y); |
|
c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x); |
|
|
|
x2p = x1p + c1*dx1; |
|
y2p = y1p + c1*dy1; |
|
x3p = x4p + c2*dx4; |
|
y3p = y4p + c2*dy4; |
|
|
|
rightOff[0] = x1p; rightOff[1] = y1p; |
|
rightOff[2] = x2p; rightOff[3] = y2p; |
|
rightOff[4] = x3p; rightOff[5] = y3p; |
|
rightOff[6] = x4p; rightOff[7] = y4p; |
|
return 8; |
|
} |
|
|
|
|
|
private int computeOffsetQuad(float[] pts, final int off, |
|
float[] leftOff, float[] rightOff) |
|
{ |
|
final float x1 = pts[off + 0], y1 = pts[off + 1]; |
|
final float x2 = pts[off + 2], y2 = pts[off + 3]; |
|
final float x3 = pts[off + 4], y3 = pts[off + 5]; |
|
|
|
final float dx3 = x3 - x2; |
|
final float dy3 = y3 - y2; |
|
final float dx1 = x2 - x1; |
|
final float dy1 = y2 - y1; |
|
|
|
|
|
computeOffset(dx1, dy1, lineWidth2, offset[0]); |
|
computeOffset(dx3, dy3, lineWidth2, offset[1]); |
|
|
|
leftOff[0] = x1 + offset[0][0]; leftOff[1] = y1 + offset[0][1]; |
|
leftOff[4] = x3 + offset[1][0]; leftOff[5] = y3 + offset[1][1]; |
|
rightOff[0] = x1 - offset[0][0]; rightOff[1] = y1 - offset[0][1]; |
|
rightOff[4] = x3 - offset[1][0]; rightOff[5] = y3 - offset[1][1]; |
|
|
|
float x1p = leftOff[0]; |
|
float y1p = leftOff[1]; |
|
float x3p = leftOff[4]; |
|
float y3p = leftOff[5]; |
|
|
|
// Corner cases: |
|
// 1. If the two control vectors are parallel, we'll end up with NaN's |
|
// in leftOff (and rightOff in the body of the if below), so we'll |
|
// do getLineOffsets, which is right. |
|
// 2. If the first or second two points are equal, then (dx1,dy1)==(0,0) |
|
// or (dx3,dy3)==(0,0), so (x1p, y1p)==(x1p+dx1, y1p+dy1) |
|
// or (x3p, y3p)==(x3p-dx3, y3p-dy3), which means that |
|
// computeIntersection will put NaN's in leftOff and right off, and |
|
|
|
computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2); |
|
float cx = leftOff[2]; |
|
float cy = leftOff[3]; |
|
|
|
if (!(isFinite(cx) && isFinite(cy))) { |
|
|
|
x1p = rightOff[0]; |
|
y1p = rightOff[1]; |
|
x3p = rightOff[4]; |
|
y3p = rightOff[5]; |
|
computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2); |
|
cx = rightOff[2]; |
|
cy = rightOff[3]; |
|
if (!(isFinite(cx) && isFinite(cy))) { |
|
|
|
getLineOffsets(x1, y1, x3, y3, leftOff, rightOff); |
|
return 4; |
|
} |
|
|
|
leftOff[2] = 2*x2 - cx; |
|
leftOff[3] = 2*y2 - cy; |
|
return 6; |
|
} |
|
|
|
// rightOff[2,3] = (x2,y2) - ((left_x2, left_y2) - (x2, y2)) |
|
|
|
rightOff[2] = 2*x2 - cx; |
|
rightOff[3] = 2*y2 - cy; |
|
return 6; |
|
} |
|
|
|
private static boolean isFinite(float x) { |
|
return (Float.NEGATIVE_INFINITY < x && x < Float.POSITIVE_INFINITY); |
|
} |
|
|
|
// This is where the curve to be processed is put. We give it |
|
// enough room to store 2 curves: one for the current subdivision, the |
|
|
|
private float[] middle = new float[2*8]; |
|
private float[] lp = new float[8]; |
|
private float[] rp = new float[8]; |
|
private static final int MAX_N_CURVES = 11; |
|
private float[] subdivTs = new float[MAX_N_CURVES - 1]; |
|
|
|
// If this class is compiled with ecj, then Hotspot crashes when OSR |
|
// compiling this function. See bugs 7004570 and 6675699 |
|
// TODO: until those are fixed, we should work around that by |
|
// manually inlining this into curveTo and quadTo. |
|
/******************************* WORKAROUND ********************************** |
|
private void somethingTo(final int type) { |
|
// need these so we can update the state at the end of this method |
|
final float xf = middle[type-2], yf = middle[type-1]; |
|
float dxs = middle[2] - middle[0]; |
|
float dys = middle[3] - middle[1]; |
|
float dxf = middle[type - 2] - middle[type - 4]; |
|
float dyf = middle[type - 1] - middle[type - 3]; |
|
switch(type) { |
|
case 6: |
|
if ((dxs == 0f && dys == 0f) || |
|
(dxf == 0f && dyf == 0f)) { |
|
dxs = dxf = middle[4] - middle[0]; |
|
dys = dyf = middle[5] - middle[1]; |
|
} |
|
break; |
|
case 8: |
|
boolean p1eqp2 = (dxs == 0f && dys == 0f); |
|
boolean p3eqp4 = (dxf == 0f && dyf == 0f); |
|
if (p1eqp2) { |
|
dxs = middle[4] - middle[0]; |
|
dys = middle[5] - middle[1]; |
|
if (dxs == 0f && dys == 0f) { |
|
dxs = middle[6] - middle[0]; |
|
dys = middle[7] - middle[1]; |
|
} |
|
} |
|
if (p3eqp4) { |
|
dxf = middle[6] - middle[2]; |
|
dyf = middle[7] - middle[3]; |
|
if (dxf == 0f && dyf == 0f) { |
|
dxf = middle[6] - middle[0]; |
|
dyf = middle[7] - middle[1]; |
|
} |
|
} |
|
} |
|
if (dxs == 0f && dys == 0f) { |
|
// this happens iff the "curve" is just a point |
|
lineTo(middle[0], middle[1]); |
|
return; |
|
} |
|
// if these vectors are too small, normalize them, to avoid future |
|
// precision problems. |
|
if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { |
|
float len = (float) sqrt(dxs*dxs + dys*dys); |
|
dxs /= len; |
|
dys /= len; |
|
} |
|
if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { |
|
float len = (float) sqrt(dxf*dxf + dyf*dyf); |
|
dxf /= len; |
|
dyf /= len; |
|
} |
|
|
|
computeOffset(dxs, dys, lineWidth2, offset[0]); |
|
final float mx = offset[0][0]; |
|
final float my = offset[0][1]; |
|
drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, mx, my); |
|
|
|
int nSplits = findSubdivPoints(middle, subdivTs, type, lineWidth2); |
|
|
|
int kind = 0; |
|
Iterator<Integer> it = Curve.breakPtsAtTs(middle, type, subdivTs, nSplits); |
|
while(it.hasNext()) { |
|
int curCurveOff = it.next(); |
|
|
|
switch (type) { |
|
case 8: |
|
kind = computeOffsetCubic(middle, curCurveOff, lp, rp); |
|
break; |
|
case 6: |
|
kind = computeOffsetQuad(middle, curCurveOff, lp, rp); |
|
break; |
|
} |
|
emitLineTo(lp[0], lp[1]); |
|
switch(kind) { |
|
case 8: |
|
emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false); |
|
emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true); |
|
break; |
|
case 6: |
|
emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false); |
|
emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true); |
|
break; |
|
case 4: |
|
emitLineTo(lp[2], lp[3]); |
|
emitLineTo(rp[0], rp[1], true); |
|
break; |
|
} |
|
emitLineTo(rp[kind - 2], rp[kind - 1], true); |
|
} |
|
|
|
this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2; |
|
this.cmy = (lp[kind - 1] - rp[kind - 1]) / 2; |
|
this.cdx = dxf; |
|
this.cdy = dyf; |
|
this.cx0 = xf; |
|
this.cy0 = yf; |
|
this.prev = DRAWING_OP_TO; |
|
} |
|
****************************** END WORKAROUND *******************************/ |
|
|
|
// finds values of t where the curve in pts should be subdivided in order |
|
// to get good offset curves a distance of w away from the middle curve. |
|
|
|
private static Curve c = new Curve(); |
|
private static int findSubdivPoints(float[] pts, float[] ts, final int type, final float w) |
|
{ |
|
final float x12 = pts[2] - pts[0]; |
|
final float y12 = pts[3] - pts[1]; |
|
// if the curve is already parallel to either axis we gain nothing |
|
|
|
if (y12 != 0f && x12 != 0f) { |
|
// we rotate it so that the first vector in the control polygon is |
|
// parallel to the x-axis. This will ensure that rotated quarter |
|
|
|
final float hypot = (float) sqrt(x12 * x12 + y12 * y12); |
|
final float cos = x12 / hypot; |
|
final float sin = y12 / hypot; |
|
final float x1 = cos * pts[0] + sin * pts[1]; |
|
final float y1 = cos * pts[1] - sin * pts[0]; |
|
final float x2 = cos * pts[2] + sin * pts[3]; |
|
final float y2 = cos * pts[3] - sin * pts[2]; |
|
final float x3 = cos * pts[4] + sin * pts[5]; |
|
final float y3 = cos * pts[5] - sin * pts[4]; |
|
switch(type) { |
|
case 8: |
|
final float x4 = cos * pts[6] + sin * pts[7]; |
|
final float y4 = cos * pts[7] - sin * pts[6]; |
|
c.set(x1, y1, x2, y2, x3, y3, x4, y4); |
|
break; |
|
case 6: |
|
c.set(x1, y1, x2, y2, x3, y3); |
|
break; |
|
} |
|
} else { |
|
c.set(pts, type); |
|
} |
|
|
|
int ret = 0; |
|
// we subdivide at values of t such that the remaining rotated |
|
|
|
ret += c.dxRoots(ts, ret); |
|
ret += c.dyRoots(ts, ret); |
|
|
|
if (type == 8) { |
|
|
|
ret += c.infPoints(ts, ret); |
|
} |
|
|
|
// now we must subdivide at points where one of the offset curves will have |
|
|
|
ret += c.rootsOfROCMinusW(ts, ret, w, 0.0001f); |
|
|
|
ret = Helpers.filterOutNotInAB(ts, 0, ret, 0.0001f, 0.9999f); |
|
Helpers.isort(ts, 0, ret); |
|
return ret; |
|
} |
|
|
|
@Override public void curveTo(float x1, float y1, |
|
float x2, float y2, |
|
float x3, float y3) |
|
{ |
|
middle[0] = cx0; middle[1] = cy0; |
|
middle[2] = x1; middle[3] = y1; |
|
middle[4] = x2; middle[5] = y2; |
|
middle[6] = x3; middle[7] = y3; |
|
|
|
// inlined version of somethingTo(8); |
|
// See the TODO on somethingTo |
|
|
|
|
|
final float xf = middle[6], yf = middle[7]; |
|
float dxs = middle[2] - middle[0]; |
|
float dys = middle[3] - middle[1]; |
|
float dxf = middle[6] - middle[4]; |
|
float dyf = middle[7] - middle[5]; |
|
|
|
boolean p1eqp2 = (dxs == 0f && dys == 0f); |
|
boolean p3eqp4 = (dxf == 0f && dyf == 0f); |
|
if (p1eqp2) { |
|
dxs = middle[4] - middle[0]; |
|
dys = middle[5] - middle[1]; |
|
if (dxs == 0f && dys == 0f) { |
|
dxs = middle[6] - middle[0]; |
|
dys = middle[7] - middle[1]; |
|
} |
|
} |
|
if (p3eqp4) { |
|
dxf = middle[6] - middle[2]; |
|
dyf = middle[7] - middle[3]; |
|
if (dxf == 0f && dyf == 0f) { |
|
dxf = middle[6] - middle[0]; |
|
dyf = middle[7] - middle[1]; |
|
} |
|
} |
|
if (dxs == 0f && dys == 0f) { |
|
|
|
lineTo(middle[0], middle[1]); |
|
return; |
|
} |
|
|
|
// if these vectors are too small, normalize them, to avoid future |
|
|
|
if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { |
|
float len = (float) sqrt(dxs*dxs + dys*dys); |
|
dxs /= len; |
|
dys /= len; |
|
} |
|
if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { |
|
float len = (float) sqrt(dxf*dxf + dyf*dyf); |
|
dxf /= len; |
|
dyf /= len; |
|
} |
|
|
|
computeOffset(dxs, dys, lineWidth2, offset[0]); |
|
final float mx = offset[0][0]; |
|
final float my = offset[0][1]; |
|
drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, mx, my); |
|
|
|
int nSplits = findSubdivPoints(middle, subdivTs, 8, lineWidth2); |
|
|
|
int kind = 0; |
|
Iterator<Integer> it = Curve.breakPtsAtTs(middle, 8, subdivTs, nSplits); |
|
while(it.hasNext()) { |
|
int curCurveOff = it.next(); |
|
|
|
kind = computeOffsetCubic(middle, curCurveOff, lp, rp); |
|
emitLineTo(lp[0], lp[1]); |
|
switch(kind) { |
|
case 8: |
|
emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false); |
|
emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true); |
|
break; |
|
case 4: |
|
emitLineTo(lp[2], lp[3]); |
|
emitLineTo(rp[0], rp[1], true); |
|
break; |
|
} |
|
emitLineTo(rp[kind - 2], rp[kind - 1], true); |
|
} |
|
|
|
this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2; |
|
this.cmy = (lp[kind - 1] - rp[kind - 1]) / 2; |
|
this.cdx = dxf; |
|
this.cdy = dyf; |
|
this.cx0 = xf; |
|
this.cy0 = yf; |
|
this.prev = DRAWING_OP_TO; |
|
} |
|
|
|
@Override public void quadTo(float x1, float y1, float x2, float y2) { |
|
middle[0] = cx0; middle[1] = cy0; |
|
middle[2] = x1; middle[3] = y1; |
|
middle[4] = x2; middle[5] = y2; |
|
|
|
// inlined version of somethingTo(8); |
|
// See the TODO on somethingTo |
|
|
|
|
|
final float xf = middle[4], yf = middle[5]; |
|
float dxs = middle[2] - middle[0]; |
|
float dys = middle[3] - middle[1]; |
|
float dxf = middle[4] - middle[2]; |
|
float dyf = middle[5] - middle[3]; |
|
if ((dxs == 0f && dys == 0f) || (dxf == 0f && dyf == 0f)) { |
|
dxs = dxf = middle[4] - middle[0]; |
|
dys = dyf = middle[5] - middle[1]; |
|
} |
|
if (dxs == 0f && dys == 0f) { |
|
|
|
lineTo(middle[0], middle[1]); |
|
return; |
|
} |
|
// if these vectors are too small, normalize them, to avoid future |
|
|
|
if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { |
|
float len = (float) sqrt(dxs*dxs + dys*dys); |
|
dxs /= len; |
|
dys /= len; |
|
} |
|
if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { |
|
float len = (float) sqrt(dxf*dxf + dyf*dyf); |
|
dxf /= len; |
|
dyf /= len; |
|
} |
|
|
|
computeOffset(dxs, dys, lineWidth2, offset[0]); |
|
final float mx = offset[0][0]; |
|
final float my = offset[0][1]; |
|
drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, mx, my); |
|
|
|
int nSplits = findSubdivPoints(middle, subdivTs, 6, lineWidth2); |
|
|
|
int kind = 0; |
|
Iterator<Integer> it = Curve.breakPtsAtTs(middle, 6, subdivTs, nSplits); |
|
while(it.hasNext()) { |
|
int curCurveOff = it.next(); |
|
|
|
kind = computeOffsetQuad(middle, curCurveOff, lp, rp); |
|
emitLineTo(lp[0], lp[1]); |
|
switch(kind) { |
|
case 6: |
|
emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false); |
|
emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true); |
|
break; |
|
case 4: |
|
emitLineTo(lp[2], lp[3]); |
|
emitLineTo(rp[0], rp[1], true); |
|
break; |
|
} |
|
emitLineTo(rp[kind - 2], rp[kind - 1], true); |
|
} |
|
|
|
this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2; |
|
this.cmy = (lp[kind - 1] - rp[kind - 1]) / 2; |
|
this.cdx = dxf; |
|
this.cdy = dyf; |
|
this.cx0 = xf; |
|
this.cy0 = yf; |
|
this.prev = DRAWING_OP_TO; |
|
} |
|
|
|
@Override public long getNativeConsumer() { |
|
throw new InternalError("Stroker doesn't use a native consumer"); |
|
} |
|
|
|
// a stack of polynomial curves where each curve shares endpoints with |
|
|
|
private static final class PolyStack { |
|
float[] curves; |
|
int end; |
|
int[] curveTypes; |
|
int numCurves; |
|
|
|
private static final int INIT_SIZE = 50; |
|
|
|
PolyStack() { |
|
curves = new float[8 * INIT_SIZE]; |
|
curveTypes = new int[INIT_SIZE]; |
|
end = 0; |
|
numCurves = 0; |
|
} |
|
|
|
public boolean isEmpty() { |
|
return numCurves == 0; |
|
} |
|
|
|
private void ensureSpace(int n) { |
|
if (end + n >= curves.length) { |
|
int newSize = (end + n) * 2; |
|
curves = Arrays.copyOf(curves, newSize); |
|
} |
|
if (numCurves >= curveTypes.length) { |
|
int newSize = numCurves * 2; |
|
curveTypes = Arrays.copyOf(curveTypes, newSize); |
|
} |
|
} |
|
|
|
public void pushCubic(float x0, float y0, |
|
float x1, float y1, |
|
float x2, float y2) |
|
{ |
|
ensureSpace(6); |
|
curveTypes[numCurves++] = 8; |
|
// assert(x0 == lastX && y0 == lastY) |
|
|
|
|
|
curves[end++] = x2; curves[end++] = y2; |
|
curves[end++] = x1; curves[end++] = y1; |
|
curves[end++] = x0; curves[end++] = y0; |
|
} |
|
|
|
public void pushQuad(float x0, float y0, |
|
float x1, float y1) |
|
{ |
|
ensureSpace(4); |
|
curveTypes[numCurves++] = 6; |
|
|
|
curves[end++] = x1; curves[end++] = y1; |
|
curves[end++] = x0; curves[end++] = y0; |
|
} |
|
|
|
public void pushLine(float x, float y) { |
|
ensureSpace(2); |
|
curveTypes[numCurves++] = 4; |
|
|
|
curves[end++] = x; curves[end++] = y; |
|
} |
|
|
|
@SuppressWarnings("unused") |
|
public int pop(float[] pts) { |
|
int ret = curveTypes[numCurves - 1]; |
|
numCurves--; |
|
end -= (ret - 2); |
|
System.arraycopy(curves, end, pts, 0, ret - 2); |
|
return ret; |
|
} |
|
|
|
public void pop(PathConsumer2D io) { |
|
numCurves--; |
|
int type = curveTypes[numCurves]; |
|
end -= (type - 2); |
|
switch(type) { |
|
case 8: |
|
io.curveTo(curves[end+0], curves[end+1], |
|
curves[end+2], curves[end+3], |
|
curves[end+4], curves[end+5]); |
|
break; |
|
case 6: |
|
io.quadTo(curves[end+0], curves[end+1], |
|
curves[end+2], curves[end+3]); |
|
break; |
|
case 4: |
|
io.lineTo(curves[end], curves[end+1]); |
|
} |
|
} |
|
|
|
@Override |
|
public String toString() { |
|
String ret = ""; |
|
int nc = numCurves; |
|
int end = this.end; |
|
while (nc > 0) { |
|
nc--; |
|
int type = curveTypes[numCurves]; |
|
end -= (type - 2); |
|
switch(type) { |
|
case 8: |
|
ret += "cubic: "; |
|
break; |
|
case 6: |
|
ret += "quad: "; |
|
break; |
|
case 4: |
|
ret += "line: "; |
|
break; |
|
} |
|
ret += Arrays.toString(Arrays.copyOfRange(curves, end, end+type-2)) + "\n"; |
|
} |
|
return ret; |
|
} |
|
} |
|
} |