/* |
|
* Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved. |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
package java.lang.invoke; |
|
import jdk.internal.misc.SharedSecrets; |
|
import jdk.internal.module.IllegalAccessLogger; |
|
import jdk.internal.org.objectweb.asm.ClassReader; |
|
import jdk.internal.reflect.CallerSensitive; |
|
import jdk.internal.reflect.Reflection; |
|
import jdk.internal.vm.annotation.ForceInline; |
|
import sun.invoke.util.ValueConversions; |
|
import sun.invoke.util.VerifyAccess; |
|
import sun.invoke.util.Wrapper; |
|
import sun.reflect.misc.ReflectUtil; |
|
import sun.security.util.SecurityConstants; |
|
import java.lang.invoke.LambdaForm.BasicType; |
|
import java.lang.reflect.Constructor; |
|
import java.lang.reflect.Field; |
|
import java.lang.reflect.Member; |
|
import java.lang.reflect.Method; |
|
import java.lang.reflect.Modifier; |
|
import java.lang.reflect.ReflectPermission; |
|
import java.nio.ByteOrder; |
|
import java.security.AccessController; |
|
import java.security.PrivilegedAction; |
|
import java.security.ProtectionDomain; |
|
import java.util.ArrayList; |
|
import java.util.Arrays; |
|
import java.util.BitSet; |
|
import java.util.Iterator; |
|
import java.util.List; |
|
import java.util.Objects; |
|
import java.util.concurrent.ConcurrentHashMap; |
|
import java.util.stream.Collectors; |
|
import java.util.stream.Stream; |
|
import static java.lang.invoke.MethodHandleImpl.Intrinsic; |
|
import static java.lang.invoke.MethodHandleNatives.Constants.*; |
|
import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException; |
|
import static java.lang.invoke.MethodType.methodType; |
|
/** |
|
* This class consists exclusively of static methods that operate on or return |
|
* method handles. They fall into several categories: |
|
* <ul> |
|
* <li>Lookup methods which help create method handles for methods and fields. |
|
* <li>Combinator methods, which combine or transform pre-existing method handles into new ones. |
|
* <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns. |
|
* </ul> |
|
* |
|
* @author John Rose, JSR 292 EG |
|
* @since 1.7 |
|
*/ |
|
public class MethodHandles { |
|
private MethodHandles() { } // do not instantiate |
|
static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(); |
|
// See IMPL_LOOKUP below. |
|
//// Method handle creation from ordinary methods. |
|
/** |
|
* Returns a {@link Lookup lookup object} with |
|
* full capabilities to emulate all supported bytecode behaviors of the caller. |
|
* These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller. |
|
* Factory methods on the lookup object can create |
|
* <a href="MethodHandleInfo.html#directmh">direct method handles</a> |
|
* for any member that the caller has access to via bytecodes, |
|
* including protected and private fields and methods. |
|
* This lookup object is a <em>capability</em> which may be delegated to trusted agents. |
|
* Do not store it in place where untrusted code can access it. |
|
* <p> |
|
* This method is caller sensitive, which means that it may return different |
|
* values to different callers. |
|
* @return a lookup object for the caller of this method, with private access |
|
*/ |
|
@CallerSensitive |
|
@ForceInline // to ensure Reflection.getCallerClass optimization |
|
public static Lookup lookup() { |
|
return new Lookup(Reflection.getCallerClass()); |
|
} |
|
/** |
|
* This reflected$lookup method is the alternate implementation of |
|
* the lookup method when being invoked by reflection. |
|
*/ |
|
@CallerSensitive |
|
private static Lookup reflected$lookup() { |
|
Class<?> caller = Reflection.getCallerClass(); |
|
if (caller.getClassLoader() == null) { |
|
throw newIllegalArgumentException("illegal lookupClass: "+caller); |
|
} |
|
return new Lookup(caller); |
|
} |
|
/** |
|
* Returns a {@link Lookup lookup object} which is trusted minimally. |
|
* The lookup has the {@code PUBLIC} and {@code UNCONDITIONAL} modes. |
|
* It can only be used to create method handles to public members of |
|
* public classes in packages that are exported unconditionally. |
|
* <p> |
|
* As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class} |
|
* of this lookup object will be {@link java.lang.Object}. |
|
* |
|
* @apiNote The use of Object is conventional, and because the lookup modes are |
|
* limited, there is no special access provided to the internals of Object, its package |
|
* or its module. Consequently, the lookup context of this lookup object will be the |
|
* bootstrap class loader, which means it cannot find user classes. |
|
* |
|
* <p style="font-size:smaller;"> |
|
* <em>Discussion:</em> |
|
* The lookup class can be changed to any other class {@code C} using an expression of the form |
|
* {@link Lookup#in publicLookup().in(C.class)}. |
|
* but may change the lookup context by virtue of changing the class loader. |
|
* A public lookup object is always subject to |
|
* <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>. |
|
* Also, it cannot access |
|
* <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>. |
|
* @return a lookup object which is trusted minimally |
|
* |
|
* @revised 9 |
|
* @spec JPMS |
|
*/ |
|
public static Lookup publicLookup() { |
|
return Lookup.PUBLIC_LOOKUP; |
|
} |
|
/** |
|
* Returns a {@link Lookup lookup object} with full capabilities to emulate all |
|
* supported bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc"> |
|
* private access</a>, on a target class. |
|
* This method checks that a caller, specified as a {@code Lookup} object, is allowed to |
|
* do <em>deep reflection</em> on the target class. If {@code m1} is the module containing |
|
* the {@link Lookup#lookupClass() lookup class}, and {@code m2} is the module containing |
|
* the target class, then this check ensures that |
|
* <ul> |
|
* <li>{@code m1} {@link Module#canRead reads} {@code m2}.</li> |
|
* <li>{@code m2} {@link Module#isOpen(String,Module) opens} the package containing |
|
* the target class to at least {@code m1}.</li> |
|
* <li>The lookup has the {@link Lookup#MODULE MODULE} lookup mode.</li> |
|
* </ul> |
|
* <p> |
|
* If there is a security manager, its {@code checkPermission} method is called to |
|
* check {@code ReflectPermission("suppressAccessChecks")}. |
|
* @apiNote The {@code MODULE} lookup mode serves to authenticate that the lookup object |
|
* was created by code in the caller module (or derived from a lookup object originally |
|
* created by the caller). A lookup object with the {@code MODULE} lookup mode can be |
|
* shared with trusted parties without giving away {@code PRIVATE} and {@code PACKAGE} |
|
* access to the caller. |
|
* @param targetClass the target class |
|
* @param lookup the caller lookup object |
|
* @return a lookup object for the target class, with private access |
|
* @throws IllegalArgumentException if {@code targetClass} is a primitve type or array class |
|
* @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null} |
|
* @throws IllegalAccessException if the access check specified above fails |
|
* @throws SecurityException if denied by the security manager |
|
* @since 9 |
|
* @spec JPMS |
|
* @see Lookup#dropLookupMode |
|
*/ |
|
public static Lookup privateLookupIn(Class<?> targetClass, Lookup lookup) throws IllegalAccessException { |
|
SecurityManager sm = System.getSecurityManager(); |
|
if (sm != null) sm.checkPermission(ACCESS_PERMISSION); |
|
if (targetClass.isPrimitive()) |
|
throw new IllegalArgumentException(targetClass + " is a primitive class"); |
|
if (targetClass.isArray()) |
|
throw new IllegalArgumentException(targetClass + " is an array class"); |
|
Module targetModule = targetClass.getModule(); |
|
Module callerModule = lookup.lookupClass().getModule(); |
|
if (!callerModule.canRead(targetModule)) |
|
throw new IllegalAccessException(callerModule + " does not read " + targetModule); |
|
if (targetModule.isNamed()) { |
|
String pn = targetClass.getPackageName(); |
|
assert pn.length() > 0 : "unnamed package cannot be in named module"; |
|
if (!targetModule.isOpen(pn, callerModule)) |
|
throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule); |
|
} |
|
if ((lookup.lookupModes() & Lookup.MODULE) == 0) |
|
throw new IllegalAccessException("lookup does not have MODULE lookup mode"); |
|
if (!callerModule.isNamed() && targetModule.isNamed()) { |
|
IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger(); |
|
if (logger != null) { |
|
logger.logIfOpenedForIllegalAccess(lookup, targetClass); |
|
} |
|
} |
|
return new Lookup(targetClass); |
|
} |
|
/** |
|
* Performs an unchecked "crack" of a |
|
* <a href="MethodHandleInfo.html#directmh">direct method handle</a>. |
|
* The result is as if the user had obtained a lookup object capable enough |
|
* to crack the target method handle, called |
|
* {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect} |
|
* on the target to obtain its symbolic reference, and then called |
|
* {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs} |
|
* to resolve the symbolic reference to a member. |
|
* <p> |
|
* If there is a security manager, its {@code checkPermission} method |
|
* is called with a {@code ReflectPermission("suppressAccessChecks")} permission. |
|
* @param <T> the desired type of the result, either {@link Member} or a subtype |
|
* @param target a direct method handle to crack into symbolic reference components |
|
* @param expected a class object representing the desired result type {@code T} |
|
* @return a reference to the method, constructor, or field object |
|
* @exception SecurityException if the caller is not privileged to call {@code setAccessible} |
|
* @exception NullPointerException if either argument is {@code null} |
|
* @exception IllegalArgumentException if the target is not a direct method handle |
|
* @exception ClassCastException if the member is not of the expected type |
|
* @since 1.8 |
|
*/ |
|
public static <T extends Member> T |
|
reflectAs(Class<T> expected, MethodHandle target) { |
|
SecurityManager smgr = System.getSecurityManager(); |
|
if (smgr != null) smgr.checkPermission(ACCESS_PERMISSION); |
|
Lookup lookup = Lookup.IMPL_LOOKUP; // use maximally privileged lookup |
|
return lookup.revealDirect(target).reflectAs(expected, lookup); |
|
} |
|
// Copied from AccessibleObject, as used by Method.setAccessible, etc.: |
|
private static final java.security.Permission ACCESS_PERMISSION = |
|
new ReflectPermission("suppressAccessChecks"); |
|
/** |
|
* A <em>lookup object</em> is a factory for creating method handles, |
|
* when the creation requires access checking. |
|
* Method handles do not perform |
|
* access checks when they are called, but rather when they are created. |
|
* Therefore, method handle access |
|
* restrictions must be enforced when a method handle is created. |
|
* The caller class against which those restrictions are enforced |
|
* is known as the {@linkplain #lookupClass() lookup class}. |
|
* <p> |
|
* A lookup class which needs to create method handles will call |
|
* {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself. |
|
* When the {@code Lookup} factory object is created, the identity of the lookup class is |
|
* determined, and securely stored in the {@code Lookup} object. |
|
* The lookup class (or its delegates) may then use factory methods |
|
* on the {@code Lookup} object to create method handles for access-checked members. |
|
* This includes all methods, constructors, and fields which are allowed to the lookup class, |
|
* even private ones. |
|
* |
|
* <h1><a id="lookups"></a>Lookup Factory Methods</h1> |
|
* The factory methods on a {@code Lookup} object correspond to all major |
|
* use cases for methods, constructors, and fields. |
|
* Each method handle created by a factory method is the functional |
|
* equivalent of a particular <em>bytecode behavior</em>. |
|
* (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.) |
|
* Here is a summary of the correspondence between these factory methods and |
|
* the behavior of the resulting method handles: |
|
* <table class="striped"> |
|
* <caption style="display:none">lookup method behaviors</caption> |
|
* <thead> |
|
* <tr> |
|
* <th scope="col"><a id="equiv"></a>lookup expression</th> |
|
* <th scope="col">member</th> |
|
* <th scope="col">bytecode behavior</th> |
|
* </tr> |
|
* </thead> |
|
* <tbody> |
|
* <tr> |
|
* <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th> |
|
* <td>{@code FT f;}</td><td>{@code (T) this.f;}</td> |
|
* </tr> |
|
* <tr> |
|
* <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th> |
|
* <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td> |
|
* </tr> |
|
* <tr> |
|
* <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th> |
|
* <td>{@code FT f;}</td><td>{@code this.f = x;}</td> |
|
* </tr> |
|
* <tr> |
|
* <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th> |
|
* <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td> |
|
* </tr> |
|
* <tr> |
|
* <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th> |
|
* <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td> |
|
* </tr> |
|
* <tr> |
|
* <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th> |
|
* <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td> |
|
* </tr> |
|
* <tr> |
|
* <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th> |
|
* <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td> |
|
* </tr> |
|
* <tr> |
|
* <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th> |
|
* <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td> |
|
* </tr> |
|
* <tr> |
|
* <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th> |
|
* <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td> |
|
* </tr> |
|
* <tr> |
|
* <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th> |
|
* <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td> |
|
* </tr> |
|
* <tr> |
|
* <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th> |
|
* <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td> |
|
* </tr> |
|
* <tr> |
|
* <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th> |
|
* <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td> |
|
* </tr> |
|
* <tr> |
|
* <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th> |
|
* <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td> |
|
* </tr> |
|
* <tr> |
|
* <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th> |
|
* <td>{@code class C { ... }}</td><td>{@code C.class;}</td> |
|
* </tr> |
|
* </tbody> |
|
* </table> |
|
* |
|
* Here, the type {@code C} is the class or interface being searched for a member, |
|
* documented as a parameter named {@code refc} in the lookup methods. |
|
* The method type {@code MT} is composed from the return type {@code T} |
|
* and the sequence of argument types {@code A*}. |
|
* The constructor also has a sequence of argument types {@code A*} and |
|
* is deemed to return the newly-created object of type {@code C}. |
|
* Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}. |
|
* The formal parameter {@code this} stands for the self-reference of type {@code C}; |
|
* if it is present, it is always the leading argument to the method handle invocation. |
|
* (In the case of some {@code protected} members, {@code this} may be |
|
* restricted in type to the lookup class; see below.) |
|
* The name {@code arg} stands for all the other method handle arguments. |
|
* In the code examples for the Core Reflection API, the name {@code thisOrNull} |
|
* stands for a null reference if the accessed method or field is static, |
|
* and {@code this} otherwise. |
|
* The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand |
|
* for reflective objects corresponding to the given members. |
|
* <p> |
|
* The bytecode behavior for a {@code findClass} operation is a load of a constant class, |
|
* as if by {@code ldc CONSTANT_Class}. |
|
* The behavior is represented, not as a method handle, but directly as a {@code Class} constant. |
|
* <p> |
|
* In cases where the given member is of variable arity (i.e., a method or constructor) |
|
* the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}. |
|
* In all other cases, the returned method handle will be of fixed arity. |
|
* <p style="font-size:smaller;"> |
|
* <em>Discussion:</em> |
|
* The equivalence between looked-up method handles and underlying |
|
* class members and bytecode behaviors |
|
* can break down in a few ways: |
|
* <ul style="font-size:smaller;"> |
|
* <li>If {@code C} is not symbolically accessible from the lookup class's loader, |
|
* the lookup can still succeed, even when there is no equivalent |
|
* Java expression or bytecoded constant. |
|
* <li>Likewise, if {@code T} or {@code MT} |
|
* is not symbolically accessible from the lookup class's loader, |
|
* the lookup can still succeed. |
|
* For example, lookups for {@code MethodHandle.invokeExact} and |
|
* {@code MethodHandle.invoke} will always succeed, regardless of requested type. |
|
* <li>If there is a security manager installed, it can forbid the lookup |
|
* on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>). |
|
* By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle} |
|
* constant is not subject to security manager checks. |
|
* <li>If the looked-up method has a |
|
* <a href="MethodHandle.html#maxarity">very large arity</a>, |
|
* the method handle creation may fail, due to the method handle |
|
* type having too many parameters. |
|
* </ul> |
|
* |
|
* <h1><a id="access"></a>Access checking</h1> |
|
* Access checks are applied in the factory methods of {@code Lookup}, |
|
* when a method handle is created. |
|
* This is a key difference from the Core Reflection API, since |
|
* {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} |
|
* performs access checking against every caller, on every call. |
|
* <p> |
|
* All access checks start from a {@code Lookup} object, which |
|
* compares its recorded lookup class against all requests to |
|
* create method handles. |
|
* A single {@code Lookup} object can be used to create any number |
|
* of access-checked method handles, all checked against a single |
|
* lookup class. |
|
* <p> |
|
* A {@code Lookup} object can be shared with other trusted code, |
|
* such as a metaobject protocol. |
|
* A shared {@code Lookup} object delegates the capability |
|
* to create method handles on private members of the lookup class. |
|
* Even if privileged code uses the {@code Lookup} object, |
|
* the access checking is confined to the privileges of the |
|
* original lookup class. |
|
* <p> |
|
* A lookup can fail, because |
|
* the containing class is not accessible to the lookup class, or |
|
* because the desired class member is missing, or because the |
|
* desired class member is not accessible to the lookup class, or |
|
* because the lookup object is not trusted enough to access the member. |
|
* In any of these cases, a {@code ReflectiveOperationException} will be |
|
* thrown from the attempted lookup. The exact class will be one of |
|
* the following: |
|
* <ul> |
|
* <li>NoSuchMethodException — if a method is requested but does not exist |
|
* <li>NoSuchFieldException — if a field is requested but does not exist |
|
* <li>IllegalAccessException — if the member exists but an access check fails |
|
* </ul> |
|
* <p> |
|
* In general, the conditions under which a method handle may be |
|
* looked up for a method {@code M} are no more restrictive than the conditions |
|
* under which the lookup class could have compiled, verified, and resolved a call to {@code M}. |
|
* Where the JVM would raise exceptions like {@code NoSuchMethodError}, |
|
* a method handle lookup will generally raise a corresponding |
|
* checked exception, such as {@code NoSuchMethodException}. |
|
* And the effect of invoking the method handle resulting from the lookup |
|
* is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a> |
|
* to executing the compiled, verified, and resolved call to {@code M}. |
|
* The same point is true of fields and constructors. |
|
* <p style="font-size:smaller;"> |
|
* <em>Discussion:</em> |
|
* Access checks only apply to named and reflected methods, |
|
* constructors, and fields. |
|
* Other method handle creation methods, such as |
|
* {@link MethodHandle#asType MethodHandle.asType}, |
|
* do not require any access checks, and are used |
|
* independently of any {@code Lookup} object. |
|
* <p> |
|
* If the desired member is {@code protected}, the usual JVM rules apply, |
|
* including the requirement that the lookup class must be either be in the |
|
* same package as the desired member, or must inherit that member. |
|
* (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.) |
|
* In addition, if the desired member is a non-static field or method |
|
* in a different package, the resulting method handle may only be applied |
|
* to objects of the lookup class or one of its subclasses. |
|
* This requirement is enforced by narrowing the type of the leading |
|
* {@code this} parameter from {@code C} |
|
* (which will necessarily be a superclass of the lookup class) |
|
* to the lookup class itself. |
|
* <p> |
|
* The JVM imposes a similar requirement on {@code invokespecial} instruction, |
|
* that the receiver argument must match both the resolved method <em>and</em> |
|
* the current class. Again, this requirement is enforced by narrowing the |
|
* type of the leading parameter to the resulting method handle. |
|
* (See the Java Virtual Machine Specification, section 4.10.1.9.) |
|
* <p> |
|
* The JVM represents constructors and static initializer blocks as internal methods |
|
* with special names ({@code "<init>"} and {@code "<clinit>"}). |
|
* The internal syntax of invocation instructions allows them to refer to such internal |
|
* methods as if they were normal methods, but the JVM bytecode verifier rejects them. |
|
* A lookup of such an internal method will produce a {@code NoSuchMethodException}. |
|
* <p> |
|
* If the relationship between nested types is expressed directly through the |
|
* {@code NestHost} and {@code NestMembers} attributes |
|
* (see the Java Virtual Machine Specification, sections 4.7.28 and 4.7.29), |
|
* then the associated {@code Lookup} object provides direct access to |
|
* the lookup class and all of its nestmates |
|
* (see {@link java.lang.Class#getNestHost Class.getNestHost}). |
|
* Otherwise, access between nested classes is obtained by the Java compiler creating |
|
* a wrapper method to access a private method of another class in the same nest. |
|
* For example, a nested class {@code C.D} |
|
* can access private members within other related classes such as |
|
* {@code C}, {@code C.D.E}, or {@code C.B}, |
|
* but the Java compiler may need to generate wrapper methods in |
|
* those related classes. In such cases, a {@code Lookup} object on |
|
* {@code C.E} would be unable to access those private members. |
|
* A workaround for this limitation is the {@link Lookup#in Lookup.in} method, |
|
* which can transform a lookup on {@code C.E} into one on any of those other |
|
* classes, without special elevation of privilege. |
|
* <p> |
|
* The accesses permitted to a given lookup object may be limited, |
|
* according to its set of {@link #lookupModes lookupModes}, |
|
* to a subset of members normally accessible to the lookup class. |
|
* For example, the {@link MethodHandles#publicLookup publicLookup} |
|
* method produces a lookup object which is only allowed to access |
|
* public members in public classes of exported packages. |
|
* The caller sensitive method {@link MethodHandles#lookup lookup} |
|
* produces a lookup object with full capabilities relative to |
|
* its caller class, to emulate all supported bytecode behaviors. |
|
* Also, the {@link Lookup#in Lookup.in} method may produce a lookup object |
|
* with fewer access modes than the original lookup object. |
|
* |
|
* <p style="font-size:smaller;"> |
|
* <a id="privacc"></a> |
|
* <em>Discussion of private access:</em> |
|
* We say that a lookup has <em>private access</em> |
|
* if its {@linkplain #lookupModes lookup modes} |
|
* include the possibility of accessing {@code private} members |
|
* (which includes the private members of nestmates). |
|
* As documented in the relevant methods elsewhere, |
|
* only lookups with private access possess the following capabilities: |
|
* <ul style="font-size:smaller;"> |
|
* <li>access private fields, methods, and constructors of the lookup class and its nestmates |
|
* <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods, |
|
* such as {@code Class.forName} |
|
* <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions |
|
* <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a> |
|
* for classes accessible to the lookup class |
|
* <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes |
|
* within the same package member |
|
* </ul> |
|
* <p style="font-size:smaller;"> |
|
* Each of these permissions is a consequence of the fact that a lookup object |
|
* with private access can be securely traced back to an originating class, |
|
* whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions |
|
* can be reliably determined and emulated by method handles. |
|
* |
|
* <h1><a id="secmgr"></a>Security manager interactions</h1> |
|
* Although bytecode instructions can only refer to classes in |
|
* a related class loader, this API can search for methods in any |
|
* class, as long as a reference to its {@code Class} object is |
|
* available. Such cross-loader references are also possible with the |
|
* Core Reflection API, and are impossible to bytecode instructions |
|
* such as {@code invokestatic} or {@code getfield}. |
|
* There is a {@linkplain java.lang.SecurityManager security manager API} |
|
* to allow applications to check such cross-loader references. |
|
* These checks apply to both the {@code MethodHandles.Lookup} API |
|
* and the Core Reflection API |
|
* (as found on {@link java.lang.Class Class}). |
|
* <p> |
|
* If a security manager is present, member and class lookups are subject to |
|
* additional checks. |
|
* From one to three calls are made to the security manager. |
|
* Any of these calls can refuse access by throwing a |
|
* {@link java.lang.SecurityException SecurityException}. |
|
* Define {@code smgr} as the security manager, |
|
* {@code lookc} as the lookup class of the current lookup object, |
|
* {@code refc} as the containing class in which the member |
|
* is being sought, and {@code defc} as the class in which the |
|
* member is actually defined. |
|
* (If a class or other type is being accessed, |
|
* the {@code refc} and {@code defc} values are the class itself.) |
|
* The value {@code lookc} is defined as <em>not present</em> |
|
* if the current lookup object does not have |
|
* <a href="MethodHandles.Lookup.html#privacc">private access</a>. |
|
* The calls are made according to the following rules: |
|
* <ul> |
|
* <li><b>Step 1:</b> |
|
* If {@code lookc} is not present, or if its class loader is not |
|
* the same as or an ancestor of the class loader of {@code refc}, |
|
* then {@link SecurityManager#checkPackageAccess |
|
* smgr.checkPackageAccess(refcPkg)} is called, |
|
* where {@code refcPkg} is the package of {@code refc}. |
|
* <li><b>Step 2a:</b> |
|
* If the retrieved member is not public and |
|
* {@code lookc} is not present, then |
|
* {@link SecurityManager#checkPermission smgr.checkPermission} |
|
* with {@code RuntimePermission("accessDeclaredMembers")} is called. |
|
* <li><b>Step 2b:</b> |
|
* If the retrieved class has a {@code null} class loader, |
|
* and {@code lookc} is not present, then |
|
* {@link SecurityManager#checkPermission smgr.checkPermission} |
|
* with {@code RuntimePermission("getClassLoader")} is called. |
|
* <li><b>Step 3:</b> |
|
* If the retrieved member is not public, |
|
* and if {@code lookc} is not present, |
|
* and if {@code defc} and {@code refc} are different, |
|
* then {@link SecurityManager#checkPackageAccess |
|
* smgr.checkPackageAccess(defcPkg)} is called, |
|
* where {@code defcPkg} is the package of {@code defc}. |
|
* </ul> |
|
* Security checks are performed after other access checks have passed. |
|
* Therefore, the above rules presuppose a member or class that is public, |
|
* or else that is being accessed from a lookup class that has |
|
* rights to access the member or class. |
|
* |
|
* <h1><a id="callsens"></a>Caller sensitive methods</h1> |
|
* A small number of Java methods have a special property called caller sensitivity. |
|
* A <em>caller-sensitive</em> method can behave differently depending on the |
|
* identity of its immediate caller. |
|
* <p> |
|
* If a method handle for a caller-sensitive method is requested, |
|
* the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply, |
|
* but they take account of the lookup class in a special way. |
|
* The resulting method handle behaves as if it were called |
|
* from an instruction contained in the lookup class, |
|
* so that the caller-sensitive method detects the lookup class. |
|
* (By contrast, the invoker of the method handle is disregarded.) |
|
* Thus, in the case of caller-sensitive methods, |
|
* different lookup classes may give rise to |
|
* differently behaving method handles. |
|
* <p> |
|
* In cases where the lookup object is |
|
* {@link MethodHandles#publicLookup() publicLookup()}, |
|
* or some other lookup object without |
|
* <a href="MethodHandles.Lookup.html#privacc">private access</a>, |
|
* the lookup class is disregarded. |
|
* In such cases, no caller-sensitive method handle can be created, |
|
* access is forbidden, and the lookup fails with an |
|
* {@code IllegalAccessException}. |
|
* <p style="font-size:smaller;"> |
|
* <em>Discussion:</em> |
|
* For example, the caller-sensitive method |
|
* {@link java.lang.Class#forName(String) Class.forName(x)} |
|
* can return varying classes or throw varying exceptions, |
|
* depending on the class loader of the class that calls it. |
|
* A public lookup of {@code Class.forName} will fail, because |
|
* there is no reasonable way to determine its bytecode behavior. |
|
* <p style="font-size:smaller;"> |
|
* If an application caches method handles for broad sharing, |
|
* it should use {@code publicLookup()} to create them. |
|
* If there is a lookup of {@code Class.forName}, it will fail, |
|
* and the application must take appropriate action in that case. |
|
* It may be that a later lookup, perhaps during the invocation of a |
|
* bootstrap method, can incorporate the specific identity |
|
* of the caller, making the method accessible. |
|
* <p style="font-size:smaller;"> |
|
* The function {@code MethodHandles.lookup} is caller sensitive |
|
* so that there can be a secure foundation for lookups. |
|
* Nearly all other methods in the JSR 292 API rely on lookup |
|
* objects to check access requests. |
|
* |
|
* @revised 9 |
|
*/ |
|
public static final |
|
class Lookup { |
|
/** The class on behalf of whom the lookup is being performed. */ |
|
private final Class<?> lookupClass; |
|
/** The allowed sorts of members which may be looked up (PUBLIC, etc.). */ |
|
private final int allowedModes; |
|
/** A single-bit mask representing {@code public} access, |
|
* which may contribute to the result of {@link #lookupModes lookupModes}. |
|
* The value, {@code 0x01}, happens to be the same as the value of the |
|
* {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}. |
|
*/ |
|
public static final int PUBLIC = Modifier.PUBLIC; |
|
/** A single-bit mask representing {@code private} access, |
|
* which may contribute to the result of {@link #lookupModes lookupModes}. |
|
* The value, {@code 0x02}, happens to be the same as the value of the |
|
* {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}. |
|
*/ |
|
public static final int PRIVATE = Modifier.PRIVATE; |
|
/** A single-bit mask representing {@code protected} access, |
|
* which may contribute to the result of {@link #lookupModes lookupModes}. |
|
* The value, {@code 0x04}, happens to be the same as the value of the |
|
* {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}. |
|
*/ |
|
public static final int PROTECTED = Modifier.PROTECTED; |
|
/** A single-bit mask representing {@code package} access (default access), |
|
* which may contribute to the result of {@link #lookupModes lookupModes}. |
|
* The value is {@code 0x08}, which does not correspond meaningfully to |
|
* any particular {@linkplain java.lang.reflect.Modifier modifier bit}. |
|
*/ |
|
public static final int PACKAGE = Modifier.STATIC; |
|
/** A single-bit mask representing {@code module} access (default access), |
|
* which may contribute to the result of {@link #lookupModes lookupModes}. |
|
* The value is {@code 0x10}, which does not correspond meaningfully to |
|
* any particular {@linkplain java.lang.reflect.Modifier modifier bit}. |
|
* In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup} |
|
* with this lookup mode can access all public types in the module of the |
|
* lookup class and public types in packages exported by other modules |
|
* to the module of the lookup class. |
|
* @since 9 |
|
* @spec JPMS |
|
*/ |
|
public static final int MODULE = PACKAGE << 1; |
|
/** A single-bit mask representing {@code unconditional} access |
|
* which may contribute to the result of {@link #lookupModes lookupModes}. |
|
* The value is {@code 0x20}, which does not correspond meaningfully to |
|
* any particular {@linkplain java.lang.reflect.Modifier modifier bit}. |
|
* A {@code Lookup} with this lookup mode assumes {@linkplain |
|
* java.lang.Module#canRead(java.lang.Module) readability}. |
|
* In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup} |
|
* with this lookup mode can access all public members of public types |
|
* of all modules where the type is in a package that is {@link |
|
* java.lang.Module#isExported(String) exported unconditionally}. |
|
* @since 9 |
|
* @spec JPMS |
|
* @see #publicLookup() |
|
*/ |
|
public static final int UNCONDITIONAL = PACKAGE << 2; |
|
private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL); |
|
private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL); |
|
private static final int TRUSTED = -1; |
|
private static int fixmods(int mods) { |
|
mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL); |
|
return (mods != 0) ? mods : (PACKAGE | MODULE | UNCONDITIONAL); |
|
} |
|
/** Tells which class is performing the lookup. It is this class against |
|
* which checks are performed for visibility and access permissions. |
|
* <p> |
|
* The class implies a maximum level of access permission, |
|
* but the permissions may be additionally limited by the bitmask |
|
* {@link #lookupModes lookupModes}, which controls whether non-public members |
|
* can be accessed. |
|
* @return the lookup class, on behalf of which this lookup object finds members |
|
*/ |
|
public Class<?> lookupClass() { |
|
return lookupClass; |
|
} |
|
// This is just for calling out to MethodHandleImpl. |
|
private Class<?> lookupClassOrNull() { |
|
return (allowedModes == TRUSTED) ? null : lookupClass; |
|
} |
|
/** Tells which access-protection classes of members this lookup object can produce. |
|
* The result is a bit-mask of the bits |
|
* {@linkplain #PUBLIC PUBLIC (0x01)}, |
|
* {@linkplain #PRIVATE PRIVATE (0x02)}, |
|
* {@linkplain #PROTECTED PROTECTED (0x04)}, |
|
* {@linkplain #PACKAGE PACKAGE (0x08)}, |
|
* {@linkplain #MODULE MODULE (0x10)}, |
|
* and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}. |
|
* <p> |
|
* A freshly-created lookup object |
|
* on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has |
|
* all possible bits set, except {@code UNCONDITIONAL}. |
|
* A lookup object on a new lookup class |
|
* {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object} |
|
* may have some mode bits set to zero. |
|
* Mode bits can also be |
|
* {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}. |
|
* Once cleared, mode bits cannot be restored from the downgraded lookup object. |
|
* The purpose of this is to restrict access via the new lookup object, |
|
* so that it can access only names which can be reached by the original |
|
* lookup object, and also by the new lookup class. |
|
* @return the lookup modes, which limit the kinds of access performed by this lookup object |
|
* @see #in |
|
* @see #dropLookupMode |
|
* |
|
* @revised 9 |
|
* @spec JPMS |
|
*/ |
|
public int lookupModes() { |
|
return allowedModes & ALL_MODES; |
|
} |
|
/** Embody the current class (the lookupClass) as a lookup class |
|
* for method handle creation. |
|
* Must be called by from a method in this package, |
|
* which in turn is called by a method not in this package. |
|
*/ |
|
Lookup(Class<?> lookupClass) { |
|
this(lookupClass, FULL_POWER_MODES); |
|
// make sure we haven't accidentally picked up a privileged class: |
|
checkUnprivilegedlookupClass(lookupClass); |
|
} |
|
private Lookup(Class<?> lookupClass, int allowedModes) { |
|
this.lookupClass = lookupClass; |
|
this.allowedModes = allowedModes; |
|
} |
|
/** |
|
* Creates a lookup on the specified new lookup class. |
|
* The resulting object will report the specified |
|
* class as its own {@link #lookupClass() lookupClass}. |
|
* <p> |
|
* However, the resulting {@code Lookup} object is guaranteed |
|
* to have no more access capabilities than the original. |
|
* In particular, access capabilities can be lost as follows:<ul> |
|
* <li>If the old lookup class is in a {@link Module#isNamed() named} module, and |
|
* the new lookup class is in a different module {@code M}, then no members, not |
|
* even public members in {@code M}'s exported packages, will be accessible. |
|
* The exception to this is when this lookup is {@link #publicLookup() |
|
* publicLookup}, in which case {@code PUBLIC} access is not lost. |
|
* <li>If the old lookup class is in an unnamed module, and the new lookup class |
|
* is a different module then {@link #MODULE MODULE} access is lost. |
|
* <li>If the new lookup class differs from the old one then {@code UNCONDITIONAL} is lost. |
|
* <li>If the new lookup class is in a different package |
|
* than the old one, protected and default (package) members will not be accessible. |
|
* <li>If the new lookup class is not within the same package member |
|
* as the old one, private members will not be accessible, and protected members |
|
* will not be accessible by virtue of inheritance. |
|
* (Protected members may continue to be accessible because of package sharing.) |
|
* <li>If the new lookup class is not accessible to the old lookup class, |
|
* then no members, not even public members, will be accessible. |
|
* (In all other cases, public members will continue to be accessible.) |
|
* </ul> |
|
* <p> |
|
* The resulting lookup's capabilities for loading classes |
|
* (used during {@link #findClass} invocations) |
|
* are determined by the lookup class' loader, |
|
* which may change due to this operation. |
|
* |
|
* @param requestedLookupClass the desired lookup class for the new lookup object |
|
* @return a lookup object which reports the desired lookup class, or the same object |
|
* if there is no change |
|
* @throws NullPointerException if the argument is null |
|
* |
|
* @revised 9 |
|
* @spec JPMS |
|
*/ |
|
public Lookup in(Class<?> requestedLookupClass) { |
|
Objects.requireNonNull(requestedLookupClass); |
|
if (allowedModes == TRUSTED) // IMPL_LOOKUP can make any lookup at all |
|
return new Lookup(requestedLookupClass, FULL_POWER_MODES); |
|
if (requestedLookupClass == this.lookupClass) |
|
return this; // keep same capabilities |
|
int newModes = (allowedModes & FULL_POWER_MODES); |
|
if (!VerifyAccess.isSameModule(this.lookupClass, requestedLookupClass)) { |
|
// Need to drop all access when teleporting from a named module to another |
|
// module. The exception is publicLookup where PUBLIC is not lost. |
|
if (this.lookupClass.getModule().isNamed() |
|
&& (this.allowedModes & UNCONDITIONAL) == 0) |
|
newModes = 0; |
|
else |
|
newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED); |
|
} |
|
if ((newModes & PACKAGE) != 0 |
|
&& !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) { |
|
newModes &= ~(PACKAGE|PRIVATE|PROTECTED); |
|
} |
|
// Allow nestmate lookups to be created without special privilege: |
|
if ((newModes & PRIVATE) != 0 |
|
&& !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) { |
|
newModes &= ~(PRIVATE|PROTECTED); |
|
} |
|
if ((newModes & PUBLIC) != 0 |
|
&& !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) { |
|
// The requested class it not accessible from the lookup class. |
|
// No permissions. |
|
newModes = 0; |
|
} |
|
checkUnprivilegedlookupClass(requestedLookupClass); |
|
return new Lookup(requestedLookupClass, newModes); |
|
} |
|
/** |
|
* Creates a lookup on the same lookup class which this lookup object |
|
* finds members, but with a lookup mode that has lost the given lookup mode. |
|
* The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE |
|
* MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}. |
|
* {@link #PROTECTED PROTECTED} and {@link #UNCONDITIONAL UNCONDITIONAL} are always |
|
* dropped and so the resulting lookup mode will never have these access capabilities. |
|
* When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE} |
|
* or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will |
|
* not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC} |
|
* is dropped then the resulting lookup has no access. |
|
* @param modeToDrop the lookup mode to drop |
|
* @return a lookup object which lacks the indicated mode, or the same object if there is no change |
|
* @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC}, |
|
* {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL} |
|
* @see MethodHandles#privateLookupIn |
|
* @since 9 |
|
*/ |
|
public Lookup dropLookupMode(int modeToDrop) { |
|
int oldModes = lookupModes(); |
|
int newModes = oldModes & ~(modeToDrop | PROTECTED | UNCONDITIONAL); |
|
switch (modeToDrop) { |
|
case PUBLIC: newModes &= ~(ALL_MODES); break; |
|
case MODULE: newModes &= ~(PACKAGE | PRIVATE); break; |
|
case PACKAGE: newModes &= ~(PRIVATE); break; |
|
case PROTECTED: |
|
case PRIVATE: |
|
case UNCONDITIONAL: break; |
|
default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop"); |
|
} |
|
if (newModes == oldModes) return this; // return self if no change |
|
return new Lookup(lookupClass(), newModes); |
|
} |
|
/** |
|
* Defines a class to the same class loader and in the same runtime package and |
|
* {@linkplain java.security.ProtectionDomain protection domain} as this lookup's |
|
* {@linkplain #lookupClass() lookup class}. |
|
* |
|
* <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include |
|
* {@link #PACKAGE PACKAGE} access as default (package) members will be |
|
* accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate |
|
* that the lookup object was created by a caller in the runtime package (or derived |
|
* from a lookup originally created by suitably privileged code to a target class in |
|
* the runtime package). </p> |
|
* |
|
* <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined |
|
* by the <em>The Java Virtual Machine Specification</em>) with a class name in the |
|
* same package as the lookup class. </p> |
|
* |
|
* <p> This method does not run the class initializer. The class initializer may |
|
* run at a later time, as detailed in section 12.4 of the <em>The Java Language |
|
* Specification</em>. </p> |
|
* |
|
* <p> If there is a security manager, its {@code checkPermission} method is first called |
|
* to check {@code RuntimePermission("defineClass")}. </p> |
|
* |
|
* @param bytes the class bytes |
|
* @return the {@code Class} object for the class |
|
* @throws IllegalArgumentException the bytes are for a class in a different package |
|
* to the lookup class |
|
* @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access |
|
* @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be |
|
* verified ({@code VerifyError}), is already defined, or another linkage error occurs |
|
* @throws SecurityException if denied by the security manager |
|
* @throws NullPointerException if {@code bytes} is {@code null} |
|
* @since 9 |
|
* @spec JPMS |
|
* @see Lookup#privateLookupIn |
|
* @see Lookup#dropLookupMode |
|
* @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain) |
|
*/ |
|
public Class<?> defineClass(byte[] bytes) throws IllegalAccessException { |
|
SecurityManager sm = System.getSecurityManager(); |
|
if (sm != null) |
|
sm.checkPermission(new RuntimePermission("defineClass")); |
|
if ((lookupModes() & PACKAGE) == 0) |
|
throw new IllegalAccessException("Lookup does not have PACKAGE access"); |
|
assert (lookupModes() & (MODULE|PUBLIC)) != 0; |
|
// parse class bytes to get class name (in internal form) |
|
bytes = bytes.clone(); |
|
String name; |
|
try { |
|
ClassReader reader = new ClassReader(bytes); |
|
name = reader.getClassName(); |
|
} catch (RuntimeException e) { |
|
// ASM exceptions are poorly specified |
|
ClassFormatError cfe = new ClassFormatError(); |
|
cfe.initCause(e); |
|
throw cfe; |
|
} |
|
// get package and class name in binary form |
|
String cn, pn; |
|
int index = name.lastIndexOf('/'); |
|
if (index == -1) { |
|
cn = name; |
|
pn = ""; |
|
} else { |
|
cn = name.replace('/', '.'); |
|
pn = cn.substring(0, index); |
|
} |
|
if (!pn.equals(lookupClass.getPackageName())) { |
|
throw new IllegalArgumentException("Class not in same package as lookup class"); |
|
} |
|
// invoke the class loader's defineClass method |
|
ClassLoader loader = lookupClass.getClassLoader(); |
|
ProtectionDomain pd = (loader != null) ? lookupClassProtectionDomain() : null; |
|
String source = "__Lookup_defineClass__"; |
|
Class<?> clazz = SharedSecrets.getJavaLangAccess().defineClass(loader, cn, bytes, pd, source); |
|
assert clazz.getClassLoader() == lookupClass.getClassLoader() |
|
&& clazz.getPackageName().equals(lookupClass.getPackageName()) |
|
&& protectionDomain(clazz) == lookupClassProtectionDomain(); |
|
return clazz; |
|
} |
|
private ProtectionDomain lookupClassProtectionDomain() { |
|
ProtectionDomain pd = cachedProtectionDomain; |
|
if (pd == null) { |
|
cachedProtectionDomain = pd = protectionDomain(lookupClass); |
|
} |
|
return pd; |
|
} |
|
private ProtectionDomain protectionDomain(Class<?> clazz) { |
|
PrivilegedAction<ProtectionDomain> pa = clazz::getProtectionDomain; |
|
return AccessController.doPrivileged(pa); |
|
} |
|
// cached protection domain |
|
private volatile ProtectionDomain cachedProtectionDomain; |
|
// Make sure outer class is initialized first. |
|
static { IMPL_NAMES.getClass(); } |
|
/** Package-private version of lookup which is trusted. */ |
|
static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED); |
|
/** Version of lookup which is trusted minimally. |
|
* It can only be used to create method handles to publicly accessible |
|
* members in packages that are exported unconditionally. |
|
*/ |
|
static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, (PUBLIC|UNCONDITIONAL)); |
|
private static void checkUnprivilegedlookupClass(Class<?> lookupClass) { |
|
String name = lookupClass.getName(); |
|
if (name.startsWith("java.lang.invoke.")) |
|
throw newIllegalArgumentException("illegal lookupClass: "+lookupClass); |
|
} |
|
/** |
|
* Displays the name of the class from which lookups are to be made. |
|
* (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.) |
|
* If there are restrictions on the access permitted to this lookup, |
|
* this is indicated by adding a suffix to the class name, consisting |
|
* of a slash and a keyword. The keyword represents the strongest |
|
* allowed access, and is chosen as follows: |
|
* <ul> |
|
* <li>If no access is allowed, the suffix is "/noaccess". |
|
* <li>If only public access to types in exported packages is allowed, the suffix is "/public". |
|
* <li>If only public access and unconditional access are allowed, the suffix is "/publicLookup". |
|
* <li>If only public and module access are allowed, the suffix is "/module". |
|
* <li>If only public, module and package access are allowed, the suffix is "/package". |
|
* <li>If only public, module, package, and private access are allowed, the suffix is "/private". |
|
* </ul> |
|
* If none of the above cases apply, it is the case that full |
|
* access (public, module, package, private, and protected) is allowed. |
|
* In this case, no suffix is added. |
|
* This is true only of an object obtained originally from |
|
* {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}. |
|
* Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in} |
|
* always have restricted access, and will display a suffix. |
|
* <p> |
|
* (It may seem strange that protected access should be |
|
* stronger than private access. Viewed independently from |
|
* package access, protected access is the first to be lost, |
|
* because it requires a direct subclass relationship between |
|
* caller and callee.) |
|
* @see #in |
|
* |
|
* @revised 9 |
|
* @spec JPMS |
|
*/ |
|
@Override |
|
public String toString() { |
|
String cname = lookupClass.getName(); |
|
switch (allowedModes) { |
|
case 0: // no privileges |
|
return cname + "/noaccess"; |
|
case PUBLIC: |
|
return cname + "/public"; |
|
case PUBLIC|UNCONDITIONAL: |
|
return cname + "/publicLookup"; |
|
case PUBLIC|MODULE: |
|
return cname + "/module"; |
|
case PUBLIC|MODULE|PACKAGE: |
|
return cname + "/package"; |
|
case FULL_POWER_MODES & ~PROTECTED: |
|
return cname + "/private"; |
|
case FULL_POWER_MODES: |
|
return cname; |
|
case TRUSTED: |
|
return "/trusted"; // internal only; not exported |
|
default: // Should not happen, but it's a bitfield... |
|
cname = cname + "/" + Integer.toHexString(allowedModes); |
|
assert(false) : cname; |
|
return cname; |
|
} |
|
} |
|
/** |
|
* Produces a method handle for a static method. |
|
* The type of the method handle will be that of the method. |
|
* (Since static methods do not take receivers, there is no |
|
* additional receiver argument inserted into the method handle type, |
|
* as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.) |
|
* The method and all its argument types must be accessible to the lookup object. |
|
* <p> |
|
* The returned method handle will have |
|
* {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
|
* the method's variable arity modifier bit ({@code 0x0080}) is set. |
|
* <p> |
|
* If the returned method handle is invoked, the method's class will |
|
* be initialized, if it has not already been initialized. |
|
* <p><b>Example:</b> |
|
* <blockquote><pre>{@code |
|
import static java.lang.invoke.MethodHandles.*; |
|
import static java.lang.invoke.MethodType.*; |
|
... |
|
MethodHandle MH_asList = publicLookup().findStatic(Arrays.class, |
|
"asList", methodType(List.class, Object[].class)); |
|
assertEquals("[x, y]", MH_asList.invoke("x", "y").toString()); |
|
* }</pre></blockquote> |
|
* @param refc the class from which the method is accessed |
|
* @param name the name of the method |
|
* @param type the type of the method |
|
* @return the desired method handle |
|
* @throws NoSuchMethodException if the method does not exist |
|
* @throws IllegalAccessException if access checking fails, |
|
* or if the method is not {@code static}, |
|
* or if the method's variable arity modifier bit |
|
* is set and {@code asVarargsCollector} fails |
|
* @exception SecurityException if a security manager is present and it |
|
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
* @throws NullPointerException if any argument is null |
|
*/ |
|
public |
|
MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { |
|
MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type); |
|
return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method)); |
|
} |
|
/** |
|
* Produces a method handle for a virtual method. |
|
* The type of the method handle will be that of the method, |
|
* with the receiver type (usually {@code refc}) prepended. |
|
* The method and all its argument types must be accessible to the lookup object. |
|
* <p> |
|
* When called, the handle will treat the first argument as a receiver |
|
* and, for non-private methods, dispatch on the receiver's type to determine which method |
|
* implementation to enter. |
|
* For private methods the named method in {@code refc} will be invoked on the receiver. |
|
* (The dispatching action is identical with that performed by an |
|
* {@code invokevirtual} or {@code invokeinterface} instruction.) |
|
* <p> |
|
* The first argument will be of type {@code refc} if the lookup |
|
* class has full privileges to access the member. Otherwise |
|
* the member must be {@code protected} and the first argument |
|
* will be restricted in type to the lookup class. |
|
* <p> |
|
* The returned method handle will have |
|
* {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
|
* the method's variable arity modifier bit ({@code 0x0080}) is set. |
|
* <p> |
|
* Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual} |
|
* instructions and method handles produced by {@code findVirtual}, |
|
* if the class is {@code MethodHandle} and the name string is |
|
* {@code invokeExact} or {@code invoke}, the resulting |
|
* method handle is equivalent to one produced by |
|
* {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or |
|
* {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker} |
|
* with the same {@code type} argument. |
|
* <p> |
|
* If the class is {@code VarHandle} and the name string corresponds to |
|
* the name of a signature-polymorphic access mode method, the resulting |
|
* method handle is equivalent to one produced by |
|
* {@link java.lang.invoke.MethodHandles#varHandleInvoker} with |
|
* the access mode corresponding to the name string and with the same |
|
* {@code type} arguments. |
|
* <p> |
|
* <b>Example:</b> |
|
* <blockquote><pre>{@code |
|
import static java.lang.invoke.MethodHandles.*; |
|
import static java.lang.invoke.MethodType.*; |
|
... |
|
MethodHandle MH_concat = publicLookup().findVirtual(String.class, |
|
"concat", methodType(String.class, String.class)); |
|
MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class, |
|
"hashCode", methodType(int.class)); |
|
MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class, |
|
"hashCode", methodType(int.class)); |
|
assertEquals("xy", (String) MH_concat.invokeExact("x", "y")); |
|
assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy")); |
|
assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy")); |
|
// interface method: |
|
MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class, |
|
"subSequence", methodType(CharSequence.class, int.class, int.class)); |
|
assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString()); |
|
// constructor "internal method" must be accessed differently: |
|
MethodType MT_newString = methodType(void.class); //()V for new String() |
|
try { assertEquals("impossible", lookup() |
|
.findVirtual(String.class, "<init>", MT_newString)); |
|
} catch (NoSuchMethodException ex) { } // OK |
|
MethodHandle MH_newString = publicLookup() |
|
.findConstructor(String.class, MT_newString); |
|
assertEquals("", (String) MH_newString.invokeExact()); |
|
* }</pre></blockquote> |
|
* |
|
* @param refc the class or interface from which the method is accessed |
|
* @param name the name of the method |
|
* @param type the type of the method, with the receiver argument omitted |
|
* @return the desired method handle |
|
* @throws NoSuchMethodException if the method does not exist |
|
* @throws IllegalAccessException if access checking fails, |
|
* or if the method is {@code static}, |
|
* or if the method's variable arity modifier bit |
|
* is set and {@code asVarargsCollector} fails |
|
* @exception SecurityException if a security manager is present and it |
|
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
* @throws NullPointerException if any argument is null |
|
*/ |
|
public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { |
|
if (refc == MethodHandle.class) { |
|
MethodHandle mh = findVirtualForMH(name, type); |
|
if (mh != null) return mh; |
|
} else if (refc == VarHandle.class) { |
|
MethodHandle mh = findVirtualForVH(name, type); |
|
if (mh != null) return mh; |
|
} |
|
byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual); |
|
MemberName method = resolveOrFail(refKind, refc, name, type); |
|
return getDirectMethod(refKind, refc, method, findBoundCallerClass(method)); |
|
} |
|
private MethodHandle findVirtualForMH(String name, MethodType type) { |
|
// these names require special lookups because of the implicit MethodType argument |
|
if ("invoke".equals(name)) |
|
return invoker(type); |
|
if ("invokeExact".equals(name)) |
|
return exactInvoker(type); |
|
assert(!MemberName.isMethodHandleInvokeName(name)); |
|
return null; |
|
} |
|
private MethodHandle findVirtualForVH(String name, MethodType type) { |
|
try { |
|
return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type); |
|
} catch (IllegalArgumentException e) { |
|
return null; |
|
} |
|
} |
|
/** |
|
* Produces a method handle which creates an object and initializes it, using |
|
* the constructor of the specified type. |
|
* The parameter types of the method handle will be those of the constructor, |
|
* while the return type will be a reference to the constructor's class. |
|
* The constructor and all its argument types must be accessible to the lookup object. |
|
* <p> |
|
* The requested type must have a return type of {@code void}. |
|
* (This is consistent with the JVM's treatment of constructor type descriptors.) |
|
* <p> |
|
* The returned method handle will have |
|
* {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
|
* the constructor's variable arity modifier bit ({@code 0x0080}) is set. |
|
* <p> |
|
* If the returned method handle is invoked, the constructor's class will |
|
* be initialized, if it has not already been initialized. |
|
* <p><b>Example:</b> |
|
* <blockquote><pre>{@code |
|
import static java.lang.invoke.MethodHandles.*; |
|
import static java.lang.invoke.MethodType.*; |
|
... |
|
MethodHandle MH_newArrayList = publicLookup().findConstructor( |
|
ArrayList.class, methodType(void.class, Collection.class)); |
|
Collection orig = Arrays.asList("x", "y"); |
|
Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig); |
|
assert(orig != copy); |
|
assertEquals(orig, copy); |
|
// a variable-arity constructor: |
|
MethodHandle MH_newProcessBuilder = publicLookup().findConstructor( |
|
ProcessBuilder.class, methodType(void.class, String[].class)); |
|
ProcessBuilder pb = (ProcessBuilder) |
|
MH_newProcessBuilder.invoke("x", "y", "z"); |
|
assertEquals("[x, y, z]", pb.command().toString()); |
|
* }</pre></blockquote> |
|
* @param refc the class or interface from which the method is accessed |
|
* @param type the type of the method, with the receiver argument omitted, and a void return type |
|
* @return the desired method handle |
|
* @throws NoSuchMethodException if the constructor does not exist |
|
* @throws IllegalAccessException if access checking fails |
|
* or if the method's variable arity modifier bit |
|
* is set and {@code asVarargsCollector} fails |
|
* @exception SecurityException if a security manager is present and it |
|
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
* @throws NullPointerException if any argument is null |
|
*/ |
|
public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException { |
|
if (refc.isArray()) { |
|
throw new NoSuchMethodException("no constructor for array class: " + refc.getName()); |
|
} |
|
String name = "<init>"; |
|
MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type); |
|
return getDirectConstructor(refc, ctor); |
|
} |
|
/** |
|
* Looks up a class by name from the lookup context defined by this {@code Lookup} object. The static |
|
* initializer of the class is not run. |
|
* <p> |
|
* The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class |
|
* loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to |
|
* load the requested class, and then determines whether the class is accessible to this lookup object. |
|
* |
|
* @param targetName the fully qualified name of the class to be looked up. |
|
* @return the requested class. |
|
* @exception SecurityException if a security manager is present and it |
|
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
* @throws LinkageError if the linkage fails |
|
* @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader. |
|
* @throws IllegalAccessException if the class is not accessible, using the allowed access |
|
* modes. |
|
* @exception SecurityException if a security manager is present and it |
|
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
* @since 9 |
|
*/ |
|
public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException { |
|
Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader()); |
|
return accessClass(targetClass); |
|
} |
|
/** |
|
* Determines if a class can be accessed from the lookup context defined by this {@code Lookup} object. The |
|
* static initializer of the class is not run. |
|
* <p> |
|
* The lookup context here is determined by the {@linkplain #lookupClass() lookup class} and the |
|
* {@linkplain #lookupModes() lookup modes}. |
|
* |
|
* @param targetClass the class to be access-checked |
|
* |
|
* @return the class that has been access-checked |
|
* |
|
* @throws IllegalAccessException if the class is not accessible from the lookup class, using the allowed access |
|
* modes. |
|
* @exception SecurityException if a security manager is present and it |
|
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
* @since 9 |
|
*/ |
|
public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException { |
|
if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, allowedModes)) { |
|
throw new MemberName(targetClass).makeAccessException("access violation", this); |
|
} |
|
checkSecurityManager(targetClass, null); |
|
return targetClass; |
|
} |
|
/** |
|
* Produces an early-bound method handle for a virtual method. |
|
* It will bypass checks for overriding methods on the receiver, |
|
* <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial} |
|
* instruction from within the explicitly specified {@code specialCaller}. |
|
* The type of the method handle will be that of the method, |
|
* with a suitably restricted receiver type prepended. |
|
* (The receiver type will be {@code specialCaller} or a subtype.) |
|
* The method and all its argument types must be accessible |
|
* to the lookup object. |
|
* <p> |
|
* Before method resolution, |
|
* if the explicitly specified caller class is not identical with the |
|
* lookup class, or if this lookup object does not have |
|
* <a href="MethodHandles.Lookup.html#privacc">private access</a> |
|
* privileges, the access fails. |
|
* <p> |
|
* The returned method handle will have |
|
* {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
|
* the method's variable arity modifier bit ({@code 0x0080}) is set. |
|
* <p style="font-size:smaller;"> |
|
* <em>(Note: JVM internal methods named {@code "<init>"} are not visible to this API, |
|
* even though the {@code invokespecial} instruction can refer to them |
|
* in special circumstances. Use {@link #findConstructor findConstructor} |
|
* to access instance initialization methods in a safe manner.)</em> |
|
* <p><b>Example:</b> |
|
* <blockquote><pre>{@code |
|
import static java.lang.invoke.MethodHandles.*; |
|
import static java.lang.invoke.MethodType.*; |
|
... |
|
static class Listie extends ArrayList { |
|
public String toString() { return "[wee Listie]"; } |
|
static Lookup lookup() { return MethodHandles.lookup(); } |
|
} |
|
... |
|
// no access to constructor via invokeSpecial: |
|
MethodHandle MH_newListie = Listie.lookup() |
|
.findConstructor(Listie.class, methodType(void.class)); |
|
Listie l = (Listie) MH_newListie.invokeExact(); |
|
try { assertEquals("impossible", Listie.lookup().findSpecial( |
|
Listie.class, "<init>", methodType(void.class), Listie.class)); |
|
} catch (NoSuchMethodException ex) { } // OK |
|
// access to super and self methods via invokeSpecial: |
|
MethodHandle MH_super = Listie.lookup().findSpecial( |
|
ArrayList.class, "toString" , methodType(String.class), Listie.class); |
|
MethodHandle MH_this = Listie.lookup().findSpecial( |
|
Listie.class, "toString" , methodType(String.class), Listie.class); |
|
MethodHandle MH_duper = Listie.lookup().findSpecial( |
|
Object.class, "toString" , methodType(String.class), Listie.class); |
|
assertEquals("[]", (String) MH_super.invokeExact(l)); |
|
assertEquals(""+l, (String) MH_this.invokeExact(l)); |
|
assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method |
|
try { assertEquals("inaccessible", Listie.lookup().findSpecial( |
|
String.class, "toString", methodType(String.class), Listie.class)); |
|
} catch (IllegalAccessException ex) { } // OK |
|
Listie subl = new Listie() { public String toString() { return "[subclass]"; } }; |
|
assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method |
|
* }</pre></blockquote> |
|
* |
|
* @param refc the class or interface from which the method is accessed |
|
* @param name the name of the method (which must not be "<init>") |
|
* @param type the type of the method, with the receiver argument omitted |
|
* @param specialCaller the proposed calling class to perform the {@code invokespecial} |
|
* @return the desired method handle |
|
* @throws NoSuchMethodException if the method does not exist |
|
* @throws IllegalAccessException if access checking fails, |
|
* or if the method is {@code static}, |
|
* or if the method's variable arity modifier bit |
|
* is set and {@code asVarargsCollector} fails |
|
* @exception SecurityException if a security manager is present and it |
|
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
* @throws NullPointerException if any argument is null |
|
*/ |
|
public MethodHandle findSpecial(Class<?> refc, String name, MethodType type, |
|
Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException { |
|
checkSpecialCaller(specialCaller, refc); |
|
Lookup specialLookup = this.in(specialCaller); |
|
MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type); |
|
return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method)); |
|
} |
|
/** |
|
* Produces a method handle giving read access to a non-static field. |
|
* The type of the method handle will have a return type of the field's |
|
* value type. |
|
* The method handle's single argument will be the instance containing |
|
* the field. |
|
* Access checking is performed immediately on behalf of the lookup class. |
|
* @param refc the class or interface from which the method is accessed |
|
* @param name the field's name |
|
* @param type the field's type |
|
* @return a method handle which can load values from the field |
|
* @throws NoSuchFieldException if the field does not exist |
|
* @throws IllegalAccessException if access checking fails, or if the field is {@code static} |
|
* @exception SecurityException if a security manager is present and it |
|
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
* @throws NullPointerException if any argument is null |
|
* @see #findVarHandle(Class, String, Class) |
|
*/ |
|
public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
|
MemberName field = resolveOrFail(REF_getField, refc, name, type); |
|
return getDirectField(REF_getField, refc, field); |
|
} |
|
/** |
|
* Produces a method handle giving write access to a non-static field. |
|
* The type of the method handle will have a void return type. |
|
* The method handle will take two arguments, the instance containing |
|
* the field, and the value to be stored. |
|
* The second argument will be of the field's value type. |
|
* Access checking is performed immediately on behalf of the lookup class. |
|
* @param refc the class or interface from which the method is accessed |
|
* @param name the field's name |
|
* @param type the field's type |
|
* @return a method handle which can store values into the field |
|
* @throws NoSuchFieldException if the field does not exist |
|
* @throws IllegalAccessException if access checking fails, or if the field is {@code static} |
|
* @exception SecurityException if a security manager is present and it |
|
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
* @throws NullPointerException if any argument is null |
|
* @see #findVarHandle(Class, String, Class) |
|
*/ |
|
public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
|
MemberName field = resolveOrFail(REF_putField, refc, name, type); |
|
return getDirectField(REF_putField, refc, field); |
|
} |
|
/** |
|
* Produces a VarHandle giving access to a non-static field {@code name} |
|
* of type {@code type} declared in a class of type {@code recv}. |
|
* The VarHandle's variable type is {@code type} and it has one |
|
* coordinate type, {@code recv}. |
|
* <p> |
|
* Access checking is performed immediately on behalf of the lookup |
|
* class. |
|
* <p> |
|
* Certain access modes of the returned VarHandle are unsupported under |
|
* the following conditions: |
|
* <ul> |
|
* <li>if the field is declared {@code final}, then the write, atomic |
|
* update, numeric atomic update, and bitwise atomic update access |
|
* modes are unsupported. |
|
* <li>if the field type is anything other than {@code byte}, |
|
* {@code short}, {@code char}, {@code int}, {@code long}, |
|
* {@code float}, or {@code double} then numeric atomic update |
|
* access modes are unsupported. |
|
* <li>if the field type is anything other than {@code boolean}, |
|
* {@code byte}, {@code short}, {@code char}, {@code int} or |
|
* {@code long} then bitwise atomic update access modes are |
|
* unsupported. |
|
* </ul> |
|
* <p> |
|
* If the field is declared {@code volatile} then the returned VarHandle |
|
* will override access to the field (effectively ignore the |
|
* {@code volatile} declaration) in accordance to its specified |
|
* access modes. |
|
* <p> |
|
* If the field type is {@code float} or {@code double} then numeric |
|
* and atomic update access modes compare values using their bitwise |
|
* representation (see {@link Float#floatToRawIntBits} and |
|
* {@link Double#doubleToRawLongBits}, respectively). |
|
* @apiNote |
|
* Bitwise comparison of {@code float} values or {@code double} values, |
|
* as performed by the numeric and atomic update access modes, differ |
|
* from the primitive {@code ==} operator and the {@link Float#equals} |
|
* and {@link Double#equals} methods, specifically with respect to |
|
* comparing NaN values or comparing {@code -0.0} with {@code +0.0}. |
|
* Care should be taken when performing a compare and set or a compare |
|
* and exchange operation with such values since the operation may |
|
* unexpectedly fail. |
|
* There are many possible NaN values that are considered to be |
|
* {@code NaN} in Java, although no IEEE 754 floating-point operation |
|
* provided by Java can distinguish between them. Operation failure can |
|
* occur if the expected or witness value is a NaN value and it is |
|
* transformed (perhaps in a platform specific manner) into another NaN |
|
* value, and thus has a different bitwise representation (see |
|
* {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more |
|
* details). |
|
* The values {@code -0.0} and {@code +0.0} have different bitwise |
|
* representations but are considered equal when using the primitive |
|
* {@code ==} operator. Operation failure can occur if, for example, a |
|
* numeric algorithm computes an expected value to be say {@code -0.0} |
|
* and previously computed the witness value to be say {@code +0.0}. |
|
* @param recv the receiver class, of type {@code R}, that declares the |
|
* non-static field |
|
* @param name the field's name |
|
* @param type the field's type, of type {@code T} |
|
* @return a VarHandle giving access to non-static fields. |
|
* @throws NoSuchFieldException if the field does not exist |
|
* @throws IllegalAccessException if access checking fails, or if the field is {@code static} |
|
* @exception SecurityException if a security manager is present and it |
|
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
* @throws NullPointerException if any argument is null |
|
* @since 9 |
|
*/ |
|
public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
|
MemberName getField = resolveOrFail(REF_getField, recv, name, type); |
|
MemberName putField = resolveOrFail(REF_putField, recv, name, type); |
|
return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField); |
|
} |
|
/** |
|
* Produces a method handle giving read access to a static field. |
|
* The type of the method handle will have a return type of the field's |
|
* value type. |
|
* The method handle will take no arguments. |
|
* Access checking is performed immediately on behalf of the lookup class. |
|
* <p> |
|
* If the returned method handle is invoked, the field's class will |
|
* be initialized, if it has not already been initialized. |
|
* @param refc the class or interface from which the method is accessed |
|
* @param name the field's name |
|
* @param type the field's type |
|
* @return a method handle which can load values from the field |
|
* @throws NoSuchFieldException if the field does not exist |
|
* @throws IllegalAccessException if access checking fails, or if the field is not {@code static} |
|
* @exception SecurityException if a security manager is present and it |
|
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
* @throws NullPointerException if any argument is null |
|
*/ |
|
public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
|
MemberName field = resolveOrFail(REF_getStatic, refc, name, type); |
|
return getDirectField(REF_getStatic, refc, field); |
|
} |
|
/** |
|
* Produces a method handle giving write access to a static field. |
|
* The type of the method handle will have a void return type. |
|
* The method handle will take a single |
|
* argument, of the field's value type, the value to be stored. |
|
* Access checking is performed immediately on behalf of the lookup class. |
|
* <p> |
|
* If the returned method handle is invoked, the field's class will |
|
* be initialized, if it has not already been initialized. |
|
* @param refc the class or interface from which the method is accessed |
|
* @param name the field's name |
|
* @param type the field's type |
|
* @return a method handle which can store values into the field |
|
* @throws NoSuchFieldException if the field does not exist |
|
* @throws IllegalAccessException if access checking fails, or if the field is not {@code static} |
|
* @exception SecurityException if a security manager is present and it |
|
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
* @throws NullPointerException if any argument is null |
|
*/ |
|
public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
|
MemberName field = resolveOrFail(REF_putStatic, refc, name, type); |
|
return getDirectField(REF_putStatic, refc, field); |
|
} |
|
/** |
|
* Produces a VarHandle giving access to a static field {@code name} of |
|
* type {@code type} declared in a class of type {@code decl}. |
|
* The VarHandle's variable type is {@code type} and it has no |
|
* coordinate types. |
|
* <p> |
|
* Access checking is performed immediately on behalf of the lookup |
|
* class. |
|
* <p> |
|
* If the returned VarHandle is operated on, the declaring class will be |
|
* initialized, if it has not already been initialized. |
|
* <p> |
|
* Certain access modes of the returned VarHandle are unsupported under |
|
* the following conditions: |
|
* <ul> |
|
* <li>if the field is declared {@code final}, then the write, atomic |
|
* update, numeric atomic update, and bitwise atomic update access |
|
* modes are unsupported. |
|
* <li>if the field type is anything other than {@code byte}, |
|
* {@code short}, {@code char}, {@code int}, {@code long}, |
|
* {@code float}, or {@code double}, then numeric atomic update |
|
* access modes are unsupported. |
|
* <li>if the field type is anything other than {@code boolean}, |
|
* {@code byte}, {@code short}, {@code char}, {@code int} or |
|
* {@code long} then bitwise atomic update access modes are |
|
* unsupported. |
|
* </ul> |
|
* <p> |
|
* If the field is declared {@code volatile} then the returned VarHandle |
|
* will override access to the field (effectively ignore the |
|
* {@code volatile} declaration) in accordance to its specified |
|
* access modes. |
|
* <p> |
|
* If the field type is {@code float} or {@code double} then numeric |
|
* and atomic update access modes compare values using their bitwise |
|
* representation (see {@link Float#floatToRawIntBits} and |
|
* {@link Double#doubleToRawLongBits}, respectively). |
|
* @apiNote |
|
* Bitwise comparison of {@code float} values or {@code double} values, |
|
* as performed by the numeric and atomic update access modes, differ |
|
* from the primitive {@code ==} operator and the {@link Float#equals} |
|
* and {@link Double#equals} methods, specifically with respect to |
|
* comparing NaN values or comparing {@code -0.0} with {@code +0.0}. |
|
* Care should be taken when performing a compare and set or a compare |
|
* and exchange operation with such values since the operation may |
|
* unexpectedly fail. |
|
* There are many possible NaN values that are considered to be |
|
* {@code NaN} in Java, although no IEEE 754 floating-point operation |
|
* provided by Java can distinguish between them. Operation failure can |
|
* occur if the expected or witness value is a NaN value and it is |
|
* transformed (perhaps in a platform specific manner) into another NaN |
|
* value, and thus has a different bitwise representation (see |
|
* {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more |
|
* details). |
|
* The values {@code -0.0} and {@code +0.0} have different bitwise |
|
* representations but are considered equal when using the primitive |
|
* {@code ==} operator. Operation failure can occur if, for example, a |
|
* numeric algorithm computes an expected value to be say {@code -0.0} |
|
* and previously computed the witness value to be say {@code +0.0}. |
|
* @param decl the class that declares the static field |
|
* @param name the field's name |
|
* @param type the field's type, of type {@code T} |
|
* @return a VarHandle giving access to a static field |
|
* @throws NoSuchFieldException if the field does not exist |
|
* @throws IllegalAccessException if access checking fails, or if the field is not {@code static} |
|
* @exception SecurityException if a security manager is present and it |
|
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
* @throws NullPointerException if any argument is null |
|
* @since 9 |
|
*/ |
|
public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
|
MemberName getField = resolveOrFail(REF_getStatic, decl, name, type); |
|
MemberName putField = resolveOrFail(REF_putStatic, decl, name, type); |
|
return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField); |
|
} |
|
/** |
|
* Produces an early-bound method handle for a non-static method. |
|
* The receiver must have a supertype {@code defc} in which a method |
|
* of the given name and type is accessible to the lookup class. |
|
* The method and all its argument types must be accessible to the lookup object. |
|
* The type of the method handle will be that of the method, |
|
* without any insertion of an additional receiver parameter. |
|
* The given receiver will be bound into the method handle, |
|
* so that every call to the method handle will invoke the |
|
* requested method on the given receiver. |
|
* <p> |
|
* The returned method handle will have |
|
* {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
|
* the method's variable arity modifier bit ({@code 0x0080}) is set |
|
* <em>and</em> the trailing array argument is not the only argument. |
|
* (If the trailing array argument is the only argument, |
|
* the given receiver value will be bound to it.) |
|
* <p> |
|
* This is almost equivalent to the following code, with some differences noted below: |
|
* <blockquote><pre>{@code |
|
import static java.lang.invoke.MethodHandles.*; |
|
import static java.lang.invoke.MethodType.*; |
|
... |
|
MethodHandle mh0 = lookup().findVirtual(defc, name, type); |
|
MethodHandle mh1 = mh0.bindTo(receiver); |
|
mh1 = mh1.withVarargs(mh0.isVarargsCollector()); |
|
return mh1; |
|
* }</pre></blockquote> |
|
* where {@code defc} is either {@code receiver.getClass()} or a super |
|
* type of that class, in which the requested method is accessible |
|
* to the lookup class. |
|
* (Unlike {@code bind}, {@code bindTo} does not preserve variable arity. |
|
* Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would |
|
* throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and |
|
* the receiver is restricted by {@code findVirtual} to the lookup class.) |
|
* @param receiver the object from which the method is accessed |
|
* @param name the name of the method |
|
* @param type the type of the method, with the receiver argument omitted |
|
* @return the desired method handle |
|
* @throws NoSuchMethodException if the method does not exist |
|
* @throws IllegalAccessException if access checking fails |
|
* or if the method's variable arity modifier bit |
|
* is set and {@code asVarargsCollector} fails |
|
* @exception SecurityException if a security manager is present and it |
|
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
* @throws NullPointerException if any argument is null |
|
* @see MethodHandle#bindTo |
|
* @see #findVirtual |
|
*/ |
|
public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { |
|
Class<? extends Object> refc = receiver.getClass(); // may get NPE |
|
MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type); |
|
MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerClass(method)); |
|
if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) { |
|
throw new IllegalAccessException("The restricted defining class " + |
|
mh.type().leadingReferenceParameter().getName() + |
|
" is not assignable from receiver class " + |
|
receiver.getClass().getName()); |
|
} |
|
return mh.bindArgumentL(0, receiver).setVarargs(method); |
|
} |
|
/** |
|
* Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a> |
|
* to <i>m</i>, if the lookup class has permission. |
|
* If <i>m</i> is non-static, the receiver argument is treated as an initial argument. |
|
* If <i>m</i> is virtual, overriding is respected on every call. |
|
* Unlike the Core Reflection API, exceptions are <em>not</em> wrapped. |
|
* The type of the method handle will be that of the method, |
|
* with the receiver type prepended (but only if it is non-static). |
|
* If the method's {@code accessible} flag is not set, |
|
* access checking is performed immediately on behalf of the lookup class. |
|
* If <i>m</i> is not public, do not share the resulting handle with untrusted parties. |
|
* <p> |
|
* The returned method handle will have |
|
* {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
|
* the method's variable arity modifier bit ({@code 0x0080}) is set. |
|
* <p> |
|
* If <i>m</i> is static, and |
|
* if the returned method handle is invoked, the method's class will |
|
* be initialized, if it has not already been initialized. |
|
* @param m the reflected method |
|
* @return a method handle which can invoke the reflected method |
|
* @throws IllegalAccessException if access checking fails |
|
* or if the method's variable arity modifier bit |
|
* is set and {@code asVarargsCollector} fails |
|
* @throws NullPointerException if the argument is null |
|
*/ |
|
public MethodHandle unreflect(Method m) throws IllegalAccessException { |
|
if (m.getDeclaringClass() == MethodHandle.class) { |
|
MethodHandle mh = unreflectForMH(m); |
|
if (mh != null) return mh; |
|
} |
|
if (m.getDeclaringClass() == VarHandle.class) { |
|
MethodHandle mh = unreflectForVH(m); |
|
if (mh != null) return mh; |
|
} |
|
MemberName method = new MemberName(m); |
|
byte refKind = method.getReferenceKind(); |
|
if (refKind == REF_invokeSpecial) |
|
refKind = REF_invokeVirtual; |
|
assert(method.isMethod()); |
|
@SuppressWarnings("deprecation") |
|
Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this; |
|
return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method)); |
|
} |
|
private MethodHandle unreflectForMH(Method m) { |
|
// these names require special lookups because they throw UnsupportedOperationException |
|
if (MemberName.isMethodHandleInvokeName(m.getName())) |
|
return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m)); |
|
return null; |
|
} |
|
private MethodHandle unreflectForVH(Method m) { |
|
// these names require special lookups because they throw UnsupportedOperationException |
|
if (MemberName.isVarHandleMethodInvokeName(m.getName())) |
|
return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m)); |
|
return null; |
|
} |
|
/** |
|
* Produces a method handle for a reflected method. |
|
* It will bypass checks for overriding methods on the receiver, |
|
* <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial} |
|
* instruction from within the explicitly specified {@code specialCaller}. |
|
* The type of the method handle will be that of the method, |
|
* with a suitably restricted receiver type prepended. |
|
* (The receiver type will be {@code specialCaller} or a subtype.) |
|
* If the method's {@code accessible} flag is not set, |
|
* access checking is performed immediately on behalf of the lookup class, |
|
* as if {@code invokespecial} instruction were being linked. |
|
* <p> |
|
* Before method resolution, |
|
* if the explicitly specified caller class is not identical with the |
|
* lookup class, or if this lookup object does not have |
|
* <a href="MethodHandles.Lookup.html#privacc">private access</a> |
|
* privileges, the access fails. |
|
* <p> |
|
* The returned method handle will have |
|
* {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
|
* the method's variable arity modifier bit ({@code 0x0080}) is set. |
|
* @param m the reflected method |
|
* @param specialCaller the class nominally calling the method |
|
* @return a method handle which can invoke the reflected method |
|
* @throws IllegalAccessException if access checking fails, |
|
* or if the method is {@code static}, |
|
* or if the method's variable arity modifier bit |
|
* is set and {@code asVarargsCollector} fails |
|
* @throws NullPointerException if any argument is null |
|
*/ |
|
public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException { |
|
checkSpecialCaller(specialCaller, null); |
|
Lookup specialLookup = this.in(specialCaller); |
|
MemberName method = new MemberName(m, true); |
|
assert(method.isMethod()); |
|
// ignore m.isAccessible: this is a new kind of access |
|
return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method)); |
|
} |
|
/** |
|
* Produces a method handle for a reflected constructor. |
|
* The type of the method handle will be that of the constructor, |
|
* with the return type changed to the declaring class. |
|
* The method handle will perform a {@code newInstance} operation, |
|
* creating a new instance of the constructor's class on the |
|
* arguments passed to the method handle. |
|
* <p> |
|
* If the constructor's {@code accessible} flag is not set, |
|
* access checking is performed immediately on behalf of the lookup class. |
|
* <p> |
|
* The returned method handle will have |
|
* {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
|
* the constructor's variable arity modifier bit ({@code 0x0080}) is set. |
|
* <p> |
|
* If the returned method handle is invoked, the constructor's class will |
|
* be initialized, if it has not already been initialized. |
|
* @param c the reflected constructor |
|
* @return a method handle which can invoke the reflected constructor |
|
* @throws IllegalAccessException if access checking fails |
|
* or if the method's variable arity modifier bit |
|
* is set and {@code asVarargsCollector} fails |
|
* @throws NullPointerException if the argument is null |
|
*/ |
|
public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException { |
|
MemberName ctor = new MemberName(c); |
|
assert(ctor.isConstructor()); |
|
@SuppressWarnings("deprecation") |
|
Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this; |
|
return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor); |
|
} |
|
/** |
|
* Produces a method handle giving read access to a reflected field. |
|
* The type of the method handle will have a return type of the field's |
|
* value type. |
|
* If the field is static, the method handle will take no arguments. |
|
* Otherwise, its single argument will be the instance containing |
|
* the field. |
|
* If the field's {@code accessible} flag is not set, |
|
* access checking is performed immediately on behalf of the lookup class. |
|
* <p> |
|
* If the field is static, and |
|
* if the returned method handle is invoked, the field's class will |
|
* be initialized, if it has not already been initialized. |
|
* @param f the reflected field |
|
* @return a method handle which can load values from the reflected field |
|
* @throws IllegalAccessException if access checking fails |
|
* @throws NullPointerException if the argument is null |
|
*/ |
|
public MethodHandle unreflectGetter(Field f) throws IllegalAccessException { |
|
return unreflectField(f, false); |
|
} |
|
private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException { |
|
MemberName field = new MemberName(f, isSetter); |
|
assert(isSetter |
|
? MethodHandleNatives.refKindIsSetter(field.getReferenceKind()) |
|
: MethodHandleNatives.refKindIsGetter(field.getReferenceKind())); |
|
@SuppressWarnings("deprecation") |
|
Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this; |
|
return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field); |
|
} |
|
/** |
|
* Produces a method handle giving write access to a reflected field. |
|
* The type of the method handle will have a void return type. |
|
* If the field is static, the method handle will take a single |
|
* argument, of the field's value type, the value to be stored. |
|
* Otherwise, the two arguments will be the instance containing |
|
* the field, and the value to be stored. |
|
* If the field's {@code accessible} flag is not set, |
|
* access checking is performed immediately on behalf of the lookup class. |
|
* <p> |
|
* If the field is static, and |
|
* if the returned method handle is invoked, the field's class will |
|
* be initialized, if it has not already been initialized. |
|
* @param f the reflected field |
|
* @return a method handle which can store values into the reflected field |
|
* @throws IllegalAccessException if access checking fails |
|
* @throws NullPointerException if the argument is null |
|
*/ |
|
public MethodHandle unreflectSetter(Field f) throws IllegalAccessException { |
|
return unreflectField(f, true); |
|
} |
|
/** |
|
* Produces a VarHandle giving access to a reflected field {@code f} |
|
* of type {@code T} declared in a class of type {@code R}. |
|
* The VarHandle's variable type is {@code T}. |
|
* If the field is non-static the VarHandle has one coordinate type, |
|
* {@code R}. Otherwise, the field is static, and the VarHandle has no |
|
* coordinate types. |
|
* <p> |
|
* Access checking is performed immediately on behalf of the lookup |
|
* class, regardless of the value of the field's {@code accessible} |
|
* flag. |
|
* <p> |
|
* If the field is static, and if the returned VarHandle is operated |
|
* on, the field's declaring class will be initialized, if it has not |
|
* already been initialized. |
|
* <p> |
|
* Certain access modes of the returned VarHandle are unsupported under |
|
* the following conditions: |
|
* <ul> |
|
* <li>if the field is declared {@code final}, then the write, atomic |
|
* update, numeric atomic update, and bitwise atomic update access |
|
* modes are unsupported. |
|
* <li>if the field type is anything other than {@code byte}, |
|
* {@code short}, {@code char}, {@code int}, {@code long}, |
|
* {@code float}, or {@code double} then numeric atomic update |
|
* access modes are unsupported. |
|
* <li>if the field type is anything other than {@code boolean}, |
|
* {@code byte}, {@code short}, {@code char}, {@code int} or |
|
* {@code long} then bitwise atomic update access modes are |
|
* unsupported. |
|
* </ul> |
|
* <p> |
|
* If the field is declared {@code volatile} then the returned VarHandle |
|
* will override access to the field (effectively ignore the |
|
* {@code volatile} declaration) in accordance to its specified |
|
* access modes. |
|
* <p> |
|
* If the field type is {@code float} or {@code double} then numeric |
|
* and atomic update access modes compare values using their bitwise |
|
* representation (see {@link Float#floatToRawIntBits} and |
|
* {@link Double#doubleToRawLongBits}, respectively). |
|
* @apiNote |
|
* Bitwise comparison of {@code float} values or {@code double} values, |
|
* as performed by the numeric and atomic update access modes, differ |
|
* from the primitive {@code ==} operator and the {@link Float#equals} |
|
* and {@link Double#equals} methods, specifically with respect to |
|
* comparing NaN values or comparing {@code -0.0} with {@code +0.0}. |
|
* Care should be taken when performing a compare and set or a compare |
|
* and exchange operation with such values since the operation may |
|
* unexpectedly fail. |
|
* There are many possible NaN values that are considered to be |
|
* {@code NaN} in Java, although no IEEE 754 floating-point operation |
|
* provided by Java can distinguish between them. Operation failure can |
|
* occur if the expected or witness value is a NaN value and it is |
|
* transformed (perhaps in a platform specific manner) into another NaN |
|
* value, and thus has a different bitwise representation (see |
|
* {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more |
|
* details). |
|
* The values {@code -0.0} and {@code +0.0} have different bitwise |
|
* representations but are considered equal when using the primitive |
|
* {@code ==} operator. Operation failure can occur if, for example, a |
|
* numeric algorithm computes an expected value to be say {@code -0.0} |
|
* and previously computed the witness value to be say {@code +0.0}. |
|
* @param f the reflected field, with a field of type {@code T}, and |
|
* a declaring class of type {@code R} |
|
* @return a VarHandle giving access to non-static fields or a static |
|
* field |
|
* @throws IllegalAccessException if access checking fails |
|
* @throws NullPointerException if the argument is null |
|
* @since 9 |
|
*/ |
|
public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException { |
|
MemberName getField = new MemberName(f, false); |
|
MemberName putField = new MemberName(f, true); |
|
return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(), |
|
f.getDeclaringClass(), getField, putField); |
|
} |
|
/** |
|
* Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a> |
|
* created by this lookup object or a similar one. |
|
* Security and access checks are performed to ensure that this lookup object |
|
* is capable of reproducing the target method handle. |
|
* This means that the cracking may fail if target is a direct method handle |
|
* but was created by an unrelated lookup object. |
|
* This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> |
|
* and was created by a lookup object for a different class. |
|
* @param target a direct method handle to crack into symbolic reference components |
|
* @return a symbolic reference which can be used to reconstruct this method handle from this lookup object |
|
* @exception SecurityException if a security manager is present and it |
|
* <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
* @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails |
|
* @exception NullPointerException if the target is {@code null} |
|
* @see MethodHandleInfo |
|
* @since 1.8 |
|
*/ |
|
public MethodHandleInfo revealDirect(MethodHandle target) { |
|
MemberName member = target.internalMemberName(); |
|
if (member == null || (!member.isResolved() && |
|
!member.isMethodHandleInvoke() && |
|
!member.isVarHandleMethodInvoke())) |
|
throw newIllegalArgumentException("not a direct method handle"); |
|
Class<?> defc = member.getDeclaringClass(); |
|
byte refKind = member.getReferenceKind(); |
|
assert(MethodHandleNatives.refKindIsValid(refKind)); |
|
if (refKind == REF_invokeSpecial && !target.isInvokeSpecial()) |
|
// Devirtualized method invocation is usually formally virtual. |
|
// To avoid creating extra MemberName objects for this common case, |
|
// we encode this extra degree of freedom using MH.isInvokeSpecial. |
|
refKind = REF_invokeVirtual; |
|
if (refKind == REF_invokeVirtual && defc.isInterface()) |
|
// Symbolic reference is through interface but resolves to Object method (toString, etc.) |
|
refKind = REF_invokeInterface; |
|
// Check SM permissions and member access before cracking. |
|
try { |
|
checkAccess(refKind, defc, member); |
|
checkSecurityManager(defc, member); |
|
} catch (IllegalAccessException ex) { |
|
throw new IllegalArgumentException(ex); |
|
} |
|
if (allowedModes != TRUSTED && member.isCallerSensitive()) { |
|
Class<?> callerClass = target.internalCallerClass(); |
|
if (!hasPrivateAccess() || callerClass != lookupClass()) |
|
throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass); |
|
} |
|
// Produce the handle to the results. |
|
return new InfoFromMemberName(this, member, refKind); |
|
} |
|
/// Helper methods, all package-private. |
|
MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
|
checkSymbolicClass(refc); // do this before attempting to resolve |
|
Objects.requireNonNull(name); |
|
Objects.requireNonNull(type); |
|
return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), |
|
NoSuchFieldException.class); |
|
} |
|
MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { |
|
checkSymbolicClass(refc); // do this before attempting to resolve |
|
Objects.requireNonNull(name); |
|
Objects.requireNonNull(type); |
|
checkMethodName(refKind, name); // NPE check on name |
|
return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), |
|
NoSuchMethodException.class); |
|
} |
|
MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException { |
|
checkSymbolicClass(member.getDeclaringClass()); // do this before attempting to resolve |
|
Objects.requireNonNull(member.getName()); |
|
Objects.requireNonNull(member.getType()); |
|
return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(), |
|
ReflectiveOperationException.class); |
|
} |
|
MemberName resolveOrNull(byte refKind, MemberName member) { |
|
// do this before attempting to resolve |
|
if (!isClassAccessible(member.getDeclaringClass())) { |
|
return null; |
|
} |
|
Objects.requireNonNull(member.getName()); |
|
Objects.requireNonNull(member.getType()); |
|
return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull()); |
|
} |
|
void checkSymbolicClass(Class<?> refc) throws IllegalAccessException { |
|
if (!isClassAccessible(refc)) { |
|
throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this); |
|
} |
|
} |
|
boolean isClassAccessible(Class<?> refc) { |
|
Objects.requireNonNull(refc); |
|
Class<?> caller = lookupClassOrNull(); |
|
return caller == null || VerifyAccess.isClassAccessible(refc, caller, allowedModes); |
|
} |
|
/** Check name for an illegal leading "<" character. */ |
|
void checkMethodName(byte refKind, String name) throws NoSuchMethodException { |
|
if (name.startsWith("<") && refKind != REF_newInvokeSpecial) |
|
throw new NoSuchMethodException("illegal method name: "+name); |
|
} |
|
/** |
|
* Find my trustable caller class if m is a caller sensitive method. |
|
* If this lookup object has private access, then the caller class is the lookupClass. |
|
* Otherwise, if m is caller-sensitive, throw IllegalAccessException. |
|
*/ |
|
Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException { |
|
Class<?> callerClass = null; |
|
if (MethodHandleNatives.isCallerSensitive(m)) { |
|
// Only lookups with private access are allowed to resolve caller-sensitive methods |
|
if (hasPrivateAccess()) { |
|
callerClass = lookupClass; |
|
} else { |
|
throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object"); |
|
} |
|
} |
|
return callerClass; |
|
} |
|
/** |
|
* Returns {@code true} if this lookup has {@code PRIVATE} access. |
|
* @return {@code true} if this lookup has {@code PRIVATE} access. |
|
* @since 9 |
|
*/ |
|
public boolean hasPrivateAccess() { |
|
return (allowedModes & PRIVATE) != 0; |
|
} |
|
/** |
|
* Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>. |
|
* Determines a trustable caller class to compare with refc, the symbolic reference class. |
|
* If this lookup object has private access, then the caller class is the lookupClass. |
|
*/ |
|
void checkSecurityManager(Class<?> refc, MemberName m) { |
|
SecurityManager smgr = System.getSecurityManager(); |
|
if (smgr == null) return; |
|
if (allowedModes == TRUSTED) return; |
|
// Step 1: |
|
boolean fullPowerLookup = hasPrivateAccess(); |
|
if (!fullPowerLookup || |
|
!VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) { |
|
ReflectUtil.checkPackageAccess(refc); |
|
} |
|
if (m == null) { // findClass or accessClass |
|
// Step 2b: |
|
if (!fullPowerLookup) { |
|
smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION); |
|
} |
|
return; |
|
} |
|
// Step 2a: |
|
if (m.isPublic()) return; |
|
if (!fullPowerLookup) { |
|
smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION); |
|
} |
|
// Step 3: |
|
Class<?> defc = m.getDeclaringClass(); |
|
if (!fullPowerLookup && defc != refc) { |
|
ReflectUtil.checkPackageAccess(defc); |
|
} |
|
} |
|
void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException { |
|
boolean wantStatic = (refKind == REF_invokeStatic); |
|
String message; |
|
if (m.isConstructor()) |
|
message = "expected a method, not a constructor"; |
|
else if (!m.isMethod()) |
|
message = "expected a method"; |
|
else if (wantStatic != m.isStatic()) |
|
message = wantStatic ? "expected a static method" : "expected a non-static method"; |
|
else |
|
{ checkAccess(refKind, refc, m); return; } |
|
throw m.makeAccessException(message, this); |
|
} |
|
void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException { |
|
boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind); |
|
String message; |
|
if (wantStatic != m.isStatic()) |
|
message = wantStatic ? "expected a static field" : "expected a non-static field"; |
|
else |
|
{ checkAccess(refKind, refc, m); return; } |
|
throw m.makeAccessException(message, this); |
|
} |
|
/** Check public/protected/private bits on the symbolic reference class and its member. */ |
|
void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException { |
|
assert(m.referenceKindIsConsistentWith(refKind) && |
|
MethodHandleNatives.refKindIsValid(refKind) && |
|
(MethodHandleNatives.refKindIsField(refKind) == m.isField())); |
|
int allowedModes = this.allowedModes; |
|
if (allowedModes == TRUSTED) return; |
|
int mods = m.getModifiers(); |
|
if (Modifier.isProtected(mods) && |
|
refKind == REF_invokeVirtual && |
|
m.getDeclaringClass() == Object.class && |
|
m.getName().equals("clone") && |
|
refc.isArray()) { |
|
// The JVM does this hack also. |
|
// (See ClassVerifier::verify_invoke_instructions |
|
// and LinkResolver::check_method_accessability.) |
|
// Because the JVM does not allow separate methods on array types, |
|
// there is no separate method for int[].clone. |
|
// All arrays simply inherit Object.clone. |
|
// But for access checking logic, we make Object.clone |
|
// (normally protected) appear to be public. |
|
// Later on, when the DirectMethodHandle is created, |
|
// its leading argument will be restricted to the |
|
// requested array type. |
|
// N.B. The return type is not adjusted, because |
|
// that is *not* the bytecode behavior. |
|
mods ^= Modifier.PROTECTED | Modifier.PUBLIC; |
|
} |
|
if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) { |
|
// cannot "new" a protected ctor in a different package |
|
mods ^= Modifier.PROTECTED; |
|
} |
|
if (Modifier.isFinal(mods) && |
|
MethodHandleNatives.refKindIsSetter(refKind)) |
|
throw m.makeAccessException("unexpected set of a final field", this); |
|
int requestedModes = fixmods(mods); // adjust 0 => PACKAGE |
|
if ((requestedModes & allowedModes) != 0) { |
|
if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(), |
|
mods, lookupClass(), allowedModes)) |
|
return; |
|
} else { |
|
// Protected members can also be checked as if they were package-private. |
|
if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0 |
|
&& VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass())) |
|
return; |
|
} |
|
throw m.makeAccessException(accessFailedMessage(refc, m), this); |
|
} |
|
String accessFailedMessage(Class<?> refc, MemberName m) { |
|
Class<?> defc = m.getDeclaringClass(); |
|
int mods = m.getModifiers(); |
|
// check the class first: |
|
boolean classOK = (Modifier.isPublic(defc.getModifiers()) && |
|
(defc == refc || |
|
Modifier.isPublic(refc.getModifiers()))); |
|
if (!classOK && (allowedModes & PACKAGE) != 0) { |
|
classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), FULL_POWER_MODES) && |
|
(defc == refc || |
|
VerifyAccess.isClassAccessible(refc, lookupClass(), FULL_POWER_MODES))); |
|
} |
|
if (!classOK) |
|
return "class is not public"; |
|
if (Modifier.isPublic(mods)) |
|
return "access to public member failed"; // (how?, module not readable?) |
|
if (Modifier.isPrivate(mods)) |
|
return "member is private"; |
|
if (Modifier.isProtected(mods)) |
|
return "member is protected"; |
|
return "member is private to package"; |
|
} |
|
private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException { |
|
int allowedModes = this.allowedModes; |
|
if (allowedModes == TRUSTED) return; |
|
if (!hasPrivateAccess() |
|
|| (specialCaller != lookupClass() |
|
// ensure non-abstract methods in superinterfaces can be special-invoked |
|
&& !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller)))) |
|
throw new MemberName(specialCaller). |
|
makeAccessException("no private access for invokespecial", this); |
|
} |
|
private boolean restrictProtectedReceiver(MemberName method) { |
|
// The accessing class only has the right to use a protected member |
|
// on itself or a subclass. Enforce that restriction, from JVMS 5.4.4, etc. |
|
if (!method.isProtected() || method.isStatic() |
|
|| allowedModes == TRUSTED |
|
|| method.getDeclaringClass() == lookupClass() |
|
|| VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())) |
|
return false; |
|
return true; |
|
} |
|
private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException { |
|
assert(!method.isStatic()); |
|
// receiver type of mh is too wide; narrow to caller |
|
if (!method.getDeclaringClass().isAssignableFrom(caller)) { |
|
throw method.makeAccessException("caller class must be a subclass below the method", caller); |
|
} |
|
MethodType rawType = mh.type(); |
|
if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow |
|
MethodType narrowType = rawType.changeParameterType(0, caller); |
|
assert(!mh.isVarargsCollector()); // viewAsType will lose varargs-ness |
|
assert(mh.viewAsTypeChecks(narrowType, true)); |
|
return mh.copyWith(narrowType, mh.form); |
|
} |
|
/** Check access and get the requested method. */ |
|
private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException { |
|
final boolean doRestrict = true; |
|
final boolean checkSecurity = true; |
|
return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass); |
|
} |
|
/** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */ |
|
private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException { |
|
final boolean doRestrict = false; |
|
final boolean checkSecurity = true; |
|
return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, boundCallerClass); |
|
} |
|
/** Check access and get the requested method, eliding security manager checks. */ |
|
private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException { |
|
final boolean doRestrict = true; |
|
final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants |
|
return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass); |
|
} |
|
/** Common code for all methods; do not call directly except from immediately above. */ |
|
private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method, |
|
boolean checkSecurity, |
|
boolean doRestrict, Class<?> boundCallerClass) throws IllegalAccessException { |
|
checkMethod(refKind, refc, method); |
|
// Optionally check with the security manager; this isn't needed for unreflect* calls. |
|
if (checkSecurity) |
|
checkSecurityManager(refc, method); |
|
assert(!method.isMethodHandleInvoke()); |
|
if (refKind == REF_invokeSpecial && |
|
refc != lookupClass() && |
|
!refc.isInterface() && |
|
refc != lookupClass().getSuperclass() && |
|
refc.isAssignableFrom(lookupClass())) { |
|
assert(!method.getName().equals("<init>")); // not this code path |
|
// Per JVMS 6.5, desc. of invokespecial instruction: |
|
// If the method is in a superclass of the LC, |
|
// and if our original search was above LC.super, |
|
// repeat the search (symbolic lookup) from LC.super |
|
// and continue with the direct superclass of that class, |
|
// and so forth, until a match is found or no further superclasses exist. |
|
// FIXME: MemberName.resolve should handle this instead. |
|
Class<?> refcAsSuper = lookupClass(); |
|
MemberName m2; |
|
do { |
|
refcAsSuper = refcAsSuper.getSuperclass(); |
|
m2 = new MemberName(refcAsSuper, |
|
method.getName(), |
|
method.getMethodType(), |
|
REF_invokeSpecial); |
|
m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull()); |
|
} while (m2 == null && // no method is found yet |
|
refc != refcAsSuper); // search up to refc |
|
if (m2 == null) throw new InternalError(method.toString()); |
|
method = m2; |
|
refc = refcAsSuper; |
|
// redo basic checks |
|
checkMethod(refKind, refc, method); |
|
} |
|
DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass()); |
|
MethodHandle mh = dmh; |
|
// Optionally narrow the receiver argument to lookupClass using restrictReceiver. |
|
if ((doRestrict && refKind == REF_invokeSpecial) || |
|
(MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) { |
|
mh = restrictReceiver(method, dmh, lookupClass()); |
|
} |
|
mh = maybeBindCaller(method, mh, boundCallerClass); |
|
mh = mh.setVarargs(method); |
|
return mh; |
|
} |
|
private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh, |
|
Class<?> boundCallerClass) |
|
throws IllegalAccessException { |
|
if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method)) |
|
return mh; |
|
Class<?> hostClass = lookupClass; |
|
if (!hasPrivateAccess()) // caller must have private access |
|
hostClass = boundCallerClass; // boundCallerClass came from a security manager style stack walk |
|
MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass); |
|
// Note: caller will apply varargs after this step happens. |
|
return cbmh; |
|
} |
|
/** Check access and get the requested field. */ |
|
private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException { |
|
final boolean checkSecurity = true; |
|
return getDirectFieldCommon(refKind, refc, field, checkSecurity); |
|
} |
|
/** Check access and get the requested field, eliding security manager checks. */ |
|
private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException { |
|
final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants |
|
return getDirectFieldCommon(refKind, refc, field, checkSecurity); |
|
} |
|
/** Common code for all fields; do not call directly except from immediately above. */ |
|
private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field, |
|
boolean checkSecurity) throws IllegalAccessException { |
|
checkField(refKind, refc, field); |
|
// Optionally check with the security manager; this isn't needed for unreflect* calls. |
|
if (checkSecurity) |
|
checkSecurityManager(refc, field); |
|
DirectMethodHandle dmh = DirectMethodHandle.make(refc, field); |
|
boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) && |
|
restrictProtectedReceiver(field)); |
|
if (doRestrict) |
|
return restrictReceiver(field, dmh, lookupClass()); |
|
return dmh; |
|
} |
|
private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind, |
|
Class<?> refc, MemberName getField, MemberName putField) |
|
throws IllegalAccessException { |
|
final boolean checkSecurity = true; |
|
return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity); |
|
} |
|
private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind, |
|
Class<?> refc, MemberName getField, MemberName putField) |
|
throws IllegalAccessException { |
|
final boolean checkSecurity = false; |
|
return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity); |
|
} |
|
private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind, |
|
Class<?> refc, MemberName getField, MemberName putField, |
|
boolean checkSecurity) throws IllegalAccessException { |
|
assert getField.isStatic() == putField.isStatic(); |
|
assert getField.isGetter() && putField.isSetter(); |
|
assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind); |
|
assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind); |
|
checkField(getRefKind, refc, getField); |
|
if (checkSecurity) |
|
checkSecurityManager(refc, getField); |
|
if (!putField.isFinal()) { |
|
// A VarHandle does not support updates to final fields, any |
|
// such VarHandle to a final field will be read-only and |
|
// therefore the following write-based accessibility checks are |
|
// only required for non-final fields |
|
checkField(putRefKind, refc, putField); |
|
if (checkSecurity) |
|
checkSecurityManager(refc, putField); |
|
} |
|
boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) && |
|
restrictProtectedReceiver(getField)); |
|
if (doRestrict) { |
|
assert !getField.isStatic(); |
|
// receiver type of VarHandle is too wide; narrow to caller |
|
if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) { |
|
throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass()); |
|
} |
|
refc = lookupClass(); |
|
} |
|
return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED); |
|
} |
|
/** Check access and get the requested constructor. */ |
|
private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException { |
|
final boolean checkSecurity = true; |
|
return getDirectConstructorCommon(refc, ctor, checkSecurity); |
|
} |
|
/** Check access and get the requested constructor, eliding security manager checks. */ |
|
private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException { |
|
final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants |
|
return getDirectConstructorCommon(refc, ctor, checkSecurity); |
|
} |
|
/** Common code for all constructors; do not call directly except from immediately above. */ |
|
private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor, |
|
boolean checkSecurity) throws IllegalAccessException { |
|
assert(ctor.isConstructor()); |
|
checkAccess(REF_newInvokeSpecial, refc, ctor); |
|
// Optionally check with the security manager; this isn't needed for unreflect* calls. |
|
if (checkSecurity) |
|
checkSecurityManager(refc, ctor); |
|
assert(!MethodHandleNatives.isCallerSensitive(ctor)); // maybeBindCaller not relevant here |
|
return DirectMethodHandle.make(ctor).setVarargs(ctor); |
|
} |
|
/** Hook called from the JVM (via MethodHandleNatives) to link MH constants: |
|
*/ |
|
/*non-public*/ |
|
MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException { |
|
if (!(type instanceof Class || type instanceof MethodType)) |
|
throw new InternalError("unresolved MemberName"); |
|
MemberName member = new MemberName(refKind, defc, name, type); |
|
MethodHandle mh = LOOKASIDE_TABLE.get(member); |
|
if (mh != null) { |
|
checkSymbolicClass(defc); |
|
return mh; |
|
} |
|
if (defc == MethodHandle.class && refKind == REF_invokeVirtual) { |
|
// Treat MethodHandle.invoke and invokeExact specially. |
|
mh = findVirtualForMH(member.getName(), member.getMethodType()); |
|
if (mh != null) { |
|
return mh; |
|
} |
|
} else if (defc == VarHandle.class && refKind == REF_invokeVirtual) { |
|
// Treat signature-polymorphic methods on VarHandle specially. |
|
mh = findVirtualForVH(member.getName(), member.getMethodType()); |
|
if (mh != null) { |
|
return mh; |
|
} |
|
} |
|
MemberName resolved = resolveOrFail(refKind, member); |
|
mh = getDirectMethodForConstant(refKind, defc, resolved); |
|
if (mh instanceof DirectMethodHandle |
|
&& canBeCached(refKind, defc, resolved)) { |
|
MemberName key = mh.internalMemberName(); |
|
if (key != null) { |
|
key = key.asNormalOriginal(); |
|
} |
|
if (member.equals(key)) { // better safe than sorry |
|
LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh); |
|
} |
|
} |
|
return mh; |
|
} |
|
private |
|
boolean canBeCached(byte refKind, Class<?> defc, MemberName member) { |
|
if (refKind == REF_invokeSpecial) { |
|
return false; |
|
} |
|
if (!Modifier.isPublic(defc.getModifiers()) || |
|
!Modifier.isPublic(member.getDeclaringClass().getModifiers()) || |
|
!member.isPublic() || |
|
member.isCallerSensitive()) { |
|
return false; |
|
} |
|
ClassLoader loader = defc.getClassLoader(); |
|
if (loader != null) { |
|
ClassLoader sysl = ClassLoader.getSystemClassLoader(); |
|
boolean found = false; |
|
while (sysl != null) { |
|
if (loader == sysl) { found = true; break; } |
|
sysl = sysl.getParent(); |
|
} |
|
if (!found) { |
|
return false; |
|
} |
|
} |
|
try { |
|
MemberName resolved2 = publicLookup().resolveOrNull(refKind, |
|
new MemberName(refKind, defc, member.getName(), member.getType())); |
|
if (resolved2 == null) { |
|
return false; |
|
} |
|
checkSecurityManager(defc, resolved2); |
|
} catch (SecurityException ex) { |
|
return false; |
|
} |
|
return true; |
|
} |
|
private |
|
MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member) |
|
throws ReflectiveOperationException { |
|
if (MethodHandleNatives.refKindIsField(refKind)) { |
|
return getDirectFieldNoSecurityManager(refKind, defc, member); |
|
} else if (MethodHandleNatives.refKindIsMethod(refKind)) { |
|
return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass); |
|
} else if (refKind == REF_newInvokeSpecial) { |
|
return getDirectConstructorNoSecurityManager(defc, member); |
|
} |
|
// oops |
|
throw newIllegalArgumentException("bad MethodHandle constant #"+member); |
|
} |
|
static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>(); |
|
} |
|
/** |
|
* Produces a method handle constructing arrays of a desired type, |
|
* as if by the {@code anewarray} bytecode. |
|
* The return type of the method handle will be the array type. |
|
* The type of its sole argument will be {@code int}, which specifies the size of the array. |
|
* |
|
* <p> If the returned method handle is invoked with a negative |
|
* array size, a {@code NegativeArraySizeException} will be thrown. |
|
* |
|
* @param arrayClass an array type |
|
* @return a method handle which can create arrays of the given type |
|
* @throws NullPointerException if the argument is {@code null} |
|
* @throws IllegalArgumentException if {@code arrayClass} is not an array type |
|
* @see java.lang.reflect.Array#newInstance(Class, int) |
|
* @jvms 6.5 {@code anewarray} Instruction |
|
* @since 9 |
|
*/ |
|
public static |
|
MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException { |
|
if (!arrayClass.isArray()) { |
|
throw newIllegalArgumentException("not an array class: " + arrayClass.getName()); |
|
} |
|
MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance). |
|
bindTo(arrayClass.getComponentType()); |
|
return ani.asType(ani.type().changeReturnType(arrayClass)); |
|
} |
|
/** |
|
* Produces a method handle returning the length of an array, |
|
* as if by the {@code arraylength} bytecode. |
|
* The type of the method handle will have {@code int} as return type, |
|
* and its sole argument will be the array type. |
|
* |
|
* <p> If the returned method handle is invoked with a {@code null} |
|
* array reference, a {@code NullPointerException} will be thrown. |
|
* |
|
* @param arrayClass an array type |
|
* @return a method handle which can retrieve the length of an array of the given array type |
|
* @throws NullPointerException if the argument is {@code null} |
|
* @throws IllegalArgumentException if arrayClass is not an array type |
|
* @jvms 6.5 {@code arraylength} Instruction |
|
* @since 9 |
|
*/ |
|
public static |
|
MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException { |
|
return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH); |
|
} |
|
/** |
|
* Produces a method handle giving read access to elements of an array, |
|
* as if by the {@code aaload} bytecode. |
|
* The type of the method handle will have a return type of the array's |
|
* element type. Its first argument will be the array type, |
|
* and the second will be {@code int}. |
|
* |
|
* <p> When the returned method handle is invoked, |
|
* the array reference and array index are checked. |
|
* A {@code NullPointerException} will be thrown if the array reference |
|
* is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be |
|
* thrown if the index is negative or if it is greater than or equal to |
|
* the length of the array. |
|
* |
|
* @param arrayClass an array type |
|
* @return a method handle which can load values from the given array type |
|
* @throws NullPointerException if the argument is null |
|
* @throws IllegalArgumentException if arrayClass is not an array type |
|
* @jvms 6.5 {@code aaload} Instruction |
|
*/ |
|
public static |
|
MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException { |
|
return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET); |
|
} |
|
/** |
|
* Produces a method handle giving write access to elements of an array, |
|
* as if by the {@code astore} bytecode. |
|
* The type of the method handle will have a void return type. |
|
* Its last argument will be the array's element type. |
|
* The first and second arguments will be the array type and int. |
|
* |
|
* <p> When the returned method handle is invoked, |
|
* the array reference and array index are checked. |
|
* A {@code NullPointerException} will be thrown if the array reference |
|
* is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be |
|
* thrown if the index is negative or if it is greater than or equal to |
|
* the length of the array. |
|
* |
|
* @param arrayClass the class of an array |
|
* @return a method handle which can store values into the array type |
|
* @throws NullPointerException if the argument is null |
|
* @throws IllegalArgumentException if arrayClass is not an array type |
|
* @jvms 6.5 {@code aastore} Instruction |
|
*/ |
|
public static |
|
MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException { |
|
return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET); |
|
} |
|
/** |
|
* Produces a VarHandle giving access to elements of an array of type |
|
* {@code arrayClass}. The VarHandle's variable type is the component type |
|
* of {@code arrayClass} and the list of coordinate types is |
|
* {@code (arrayClass, int)}, where the {@code int} coordinate type |
|
* corresponds to an argument that is an index into an array. |
|
* <p> |
|
* Certain access modes of the returned VarHandle are unsupported under |
|
* the following conditions: |
|
* <ul> |
|
* <li>if the component type is anything other than {@code byte}, |
|
* {@code short}, {@code char}, {@code int}, {@code long}, |
|
* {@code float}, or {@code double} then numeric atomic update access |
|
* modes are unsupported. |
|
* <li>if the field type is anything other than {@code boolean}, |
|
* {@code byte}, {@code short}, {@code char}, {@code int} or |
|
* {@code long} then bitwise atomic update access modes are |
|
* unsupported. |
|
* </ul> |
|
* <p> |
|
* If the component type is {@code float} or {@code double} then numeric |
|
* and atomic update access modes compare values using their bitwise |
|
* representation (see {@link Float#floatToRawIntBits} and |
|
* {@link Double#doubleToRawLongBits}, respectively). |
|
* |
|
* <p> When the returned {@code VarHandle} is invoked, |
|
* the array reference and array index are checked. |
|
* A {@code NullPointerException} will be thrown if the array reference |
|
* is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be |
|
* thrown if the index is negative or if it is greater than or equal to |
|
* the length of the array. |
|
* |
|
* @apiNote |
|
* Bitwise comparison of {@code float} values or {@code double} values, |
|
* as performed by the numeric and atomic update access modes, differ |
|
* from the primitive {@code ==} operator and the {@link Float#equals} |
|
* and {@link Double#equals} methods, specifically with respect to |
|
* comparing NaN values or comparing {@code -0.0} with {@code +0.0}. |
|
* Care should be taken when performing a compare and set or a compare |
|
* and exchange operation with such values since the operation may |
|
* unexpectedly fail. |
|
* There are many possible NaN values that are considered to be |
|
* {@code NaN} in Java, although no IEEE 754 floating-point operation |
|
* provided by Java can distinguish between them. Operation failure can |
|
* occur if the expected or witness value is a NaN value and it is |
|
* transformed (perhaps in a platform specific manner) into another NaN |
|
* value, and thus has a different bitwise representation (see |
|
* {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more |
|
* details). |
|
* The values {@code -0.0} and {@code +0.0} have different bitwise |
|
* representations but are considered equal when using the primitive |
|
* {@code ==} operator. Operation failure can occur if, for example, a |
|
* numeric algorithm computes an expected value to be say {@code -0.0} |
|
* and previously computed the witness value to be say {@code +0.0}. |
|
* @param arrayClass the class of an array, of type {@code T[]} |
|
* @return a VarHandle giving access to elements of an array |
|
* @throws NullPointerException if the arrayClass is null |
|
* @throws IllegalArgumentException if arrayClass is not an array type |
|
* @since 9 |
|
*/ |
|
public static |
|
VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException { |
|
return VarHandles.makeArrayElementHandle(arrayClass); |
|
} |
|
/** |
|
* Produces a VarHandle giving access to elements of a {@code byte[]} array |
|
* viewed as if it were a different primitive array type, such as |
|
* {@code int[]} or {@code long[]}. |
|
* The VarHandle's variable type is the component type of |
|
* {@code viewArrayClass} and the list of coordinate types is |
|
* {@code (byte[], int)}, where the {@code int} coordinate type |
|
* corresponds to an argument that is an index into a {@code byte[]} array. |
|
* The returned VarHandle accesses bytes at an index in a {@code byte[]} |
|
* array, composing bytes to or from a value of the component type of |
|
* {@code viewArrayClass} according to the given endianness. |
|
* <p> |
|
* The supported component types (variables types) are {@code short}, |
|
* {@code char}, {@code int}, {@code long}, {@code float} and |
|
* {@code double}. |
|
* <p> |
|
* Access of bytes at a given index will result in an |
|
* {@code IndexOutOfBoundsException} if the index is less than {@code 0} |
|
* or greater than the {@code byte[]} array length minus the size (in bytes) |
|
* of {@code T}. |
|
* <p> |
|
* Access of bytes at an index may be aligned or misaligned for {@code T}, |
|
* with respect to the underlying memory address, {@code A} say, associated |
|
* with the array and index. |
|
* If access is misaligned then access for anything other than the |
|
* {@code get} and {@code set} access modes will result in an |
|
* {@code IllegalStateException}. In such cases atomic access is only |
|
* guaranteed with respect to the largest power of two that divides the GCD |
|
* of {@code A} and the size (in bytes) of {@code T}. |
|
* If access is aligned then following access modes are supported and are |
|
* guaranteed to support atomic access: |
|
* <ul> |
|
* <li>read write access modes for all {@code T}, with the exception of |
|
* access modes {@code get} and {@code set} for {@code long} and |
|
* {@code double} on 32-bit platforms. |
|
* <li>atomic update access modes for {@code int}, {@code long}, |
|
* {@code float} or {@code double}. |
|
* (Future major platform releases of the JDK may support additional |
|
* types for certain currently unsupported access modes.) |
|
* <li>numeric atomic update access modes for {@code int} and {@code long}. |
|
* (Future major platform releases of the JDK may support additional |
|
* numeric types for certain currently unsupported access modes.) |
|
* <li>bitwise atomic update access modes for {@code int} and {@code long}. |
|
* (Future major platform releases of the JDK may support additional |
|
* numeric types for certain currently unsupported access modes.) |
|
* </ul> |
|
* <p> |
|
* Misaligned access, and therefore atomicity guarantees, may be determined |
|
* for {@code byte[]} arrays without operating on a specific array. Given |
|
* an {@code index}, {@code T} and it's corresponding boxed type, |
|
* {@code T_BOX}, misalignment may be determined as follows: |
|
* <pre>{@code |
|
* int sizeOfT = T_BOX.BYTES; // size in bytes of T |
|
* int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]). |
|
* alignmentOffset(0, sizeOfT); |
|
* int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT; |
|
* boolean isMisaligned = misalignedAtIndex != 0; |
|
* }</pre> |
|
* <p> |
|
* If the variable type is {@code float} or {@code double} then atomic |
|
* update access modes compare values using their bitwise representation |
|
* (see {@link Float#floatToRawIntBits} and |
|
* {@link Double#doubleToRawLongBits}, respectively). |
|
* @param viewArrayClass the view array class, with a component type of |
|
* type {@code T} |
|
* @param byteOrder the endianness of the view array elements, as |
|
* stored in the underlying {@code byte} array |
|
* @return a VarHandle giving access to elements of a {@code byte[]} array |
|
* viewed as if elements corresponding to the components type of the view |
|
* array class |
|
* @throws NullPointerException if viewArrayClass or byteOrder is null |
|
* @throws IllegalArgumentException if viewArrayClass is not an array type |
|
* @throws UnsupportedOperationException if the component type of |
|
* viewArrayClass is not supported as a variable type |
|
* @since 9 |
|
*/ |
|
public static |
|
VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass, |
|
ByteOrder byteOrder) throws IllegalArgumentException { |
|
Objects.requireNonNull(byteOrder); |
|
return VarHandles.byteArrayViewHandle(viewArrayClass, |
|
byteOrder == ByteOrder.BIG_ENDIAN); |
|
} |
|
/** |
|
* Produces a VarHandle giving access to elements of a {@code ByteBuffer} |
|
* viewed as if it were an array of elements of a different primitive |
|
* component type to that of {@code byte}, such as {@code int[]} or |
|
* {@code long[]}. |
|
* The VarHandle's variable type is the component type of |
|
* {@code viewArrayClass} and the list of coordinate types is |
|
* {@code (ByteBuffer, int)}, where the {@code int} coordinate type |
|
* corresponds to an argument that is an index into a {@code byte[]} array. |
|
* The returned VarHandle accesses bytes at an index in a |
|
* {@code ByteBuffer}, composing bytes to or from a value of the component |
|
* type of {@code viewArrayClass} according to the given endianness. |
|
* <p> |
|
* The supported component types (variables types) are {@code short}, |
|
* {@code char}, {@code int}, {@code long}, {@code float} and |
|
* {@code double}. |
|
* <p> |
|
* Access will result in a {@code ReadOnlyBufferException} for anything |
|
* other than the read access modes if the {@code ByteBuffer} is read-only. |
|
* <p> |
|
* Access of bytes at a given index will result in an |
|
* {@code IndexOutOfBoundsException} if the index is less than {@code 0} |
|
* or greater than the {@code ByteBuffer} limit minus the size (in bytes) of |
|
* {@code T}. |
|
* <p> |
|
* Access of bytes at an index may be aligned or misaligned for {@code T}, |
|
* with respect to the underlying memory address, {@code A} say, associated |
|
* with the {@code ByteBuffer} and index. |
|
* If access is misaligned then access for anything other than the |
|
* {@code get} and {@code set} access modes will result in an |
|
* {@code IllegalStateException}. In such cases atomic access is only |
|
* guaranteed with respect to the largest power of two that divides the GCD |
|
* of {@code A} and the size (in bytes) of {@code T}. |
|
* If access is aligned then following access modes are supported and are |
|
* guaranteed to support atomic access: |
|
* <ul> |
|
* <li>read write access modes for all {@code T}, with the exception of |
|
* access modes {@code get} and {@code set} for {@code long} and |
|
* {@code double} on 32-bit platforms. |
|
* <li>atomic update access modes for {@code int}, {@code long}, |
|
* {@code float} or {@code double}. |
|
* (Future major platform releases of the JDK may support additional |
|
* types for certain currently unsupported access modes.) |
|
* <li>numeric atomic update access modes for {@code int} and {@code long}. |
|
* (Future major platform releases of the JDK may support additional |
|
* numeric types for certain currently unsupported access modes.) |
|
* <li>bitwise atomic update access modes for {@code int} and {@code long}. |
|
* (Future major platform releases of the JDK may support additional |
|
* numeric types for certain currently unsupported access modes.) |
|
* </ul> |
|
* <p> |
|
* Misaligned access, and therefore atomicity guarantees, may be determined |
|
* for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an |
|
* {@code index}, {@code T} and it's corresponding boxed type, |
|
* {@code T_BOX}, as follows: |
|
* <pre>{@code |
|
* int sizeOfT = T_BOX.BYTES; // size in bytes of T |
|
* ByteBuffer bb = ... |
|
* int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT); |
|
* boolean isMisaligned = misalignedAtIndex != 0; |
|
* }</pre> |
|
* <p> |
|
* If the variable type is {@code float} or {@code double} then atomic |
|
* update access modes compare values using their bitwise representation |
|
* (see {@link Float#floatToRawIntBits} and |
|
* {@link Double#doubleToRawLongBits}, respectively). |
|
* @param viewArrayClass the view array class, with a component type of |
|
* type {@code T} |
|
* @param byteOrder the endianness of the view array elements, as |
|
* stored in the underlying {@code ByteBuffer} (Note this overrides the |
|
* endianness of a {@code ByteBuffer}) |
|
* @return a VarHandle giving access to elements of a {@code ByteBuffer} |
|
* viewed as if elements corresponding to the components type of the view |
|
* array class |
|
* @throws NullPointerException if viewArrayClass or byteOrder is null |
|
* @throws IllegalArgumentException if viewArrayClass is not an array type |
|
* @throws UnsupportedOperationException if the component type of |
|
* viewArrayClass is not supported as a variable type |
|
* @since 9 |
|
*/ |
|
public static |
|
VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass, |
|
ByteOrder byteOrder) throws IllegalArgumentException { |
|
Objects.requireNonNull(byteOrder); |
|
return VarHandles.makeByteBufferViewHandle(viewArrayClass, |
|
byteOrder == ByteOrder.BIG_ENDIAN); |
|
} |
|
/// method handle invocation (reflective style) |
|
/** |
|
* Produces a method handle which will invoke any method handle of the |
|
* given {@code type}, with a given number of trailing arguments replaced by |
|
* a single trailing {@code Object[]} array. |
|
* The resulting invoker will be a method handle with the following |
|
* arguments: |
|
* <ul> |
|
* <li>a single {@code MethodHandle} target |
|
* <li>zero or more leading values (counted by {@code leadingArgCount}) |
|
* <li>an {@code Object[]} array containing trailing arguments |
|
* </ul> |
|
* <p> |
|
* The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with |
|
* the indicated {@code type}. |
|
* That is, if the target is exactly of the given {@code type}, it will behave |
|
* like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType} |
|
* is used to convert the target to the required {@code type}. |
|
* <p> |
|
* The type of the returned invoker will not be the given {@code type}, but rather |
|
* will have all parameters except the first {@code leadingArgCount} |
|
* replaced by a single array of type {@code Object[]}, which will be |
|
* the final parameter. |
|
* <p> |
|
* Before invoking its target, the invoker will spread the final array, apply |
|
* reference casts as necessary, and unbox and widen primitive arguments. |
|
* If, when the invoker is called, the supplied array argument does |
|
* not have the correct number of elements, the invoker will throw |
|
* an {@link IllegalArgumentException} instead of invoking the target. |
|
* <p> |
|
* This method is equivalent to the following code (though it may be more efficient): |
|
* <blockquote><pre>{@code |
|
MethodHandle invoker = MethodHandles.invoker(type); |
|
int spreadArgCount = type.parameterCount() - leadingArgCount; |
|
invoker = invoker.asSpreader(Object[].class, spreadArgCount); |
|
return invoker; |
|
* }</pre></blockquote> |
|
* This method throws no reflective or security exceptions. |
|
* @param type the desired target type |
|
* @param leadingArgCount number of fixed arguments, to be passed unchanged to the target |
|
* @return a method handle suitable for invoking any method handle of the given type |
|
* @throws NullPointerException if {@code type} is null |
|
* @throws IllegalArgumentException if {@code leadingArgCount} is not in |
|
* the range from 0 to {@code type.parameterCount()} inclusive, |
|
* or if the resulting method handle's type would have |
|
* <a href="MethodHandle.html#maxarity">too many parameters</a> |
|
*/ |
|
public static |
|
MethodHandle spreadInvoker(MethodType type, int leadingArgCount) { |
|
if (leadingArgCount < 0 || leadingArgCount > type.parameterCount()) |
|
throw newIllegalArgumentException("bad argument count", leadingArgCount); |
|
type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount); |
|
return type.invokers().spreadInvoker(leadingArgCount); |
|
} |
|
/** |
|
* Produces a special <em>invoker method handle</em> which can be used to |
|
* invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}. |
|
* The resulting invoker will have a type which is |
|
* exactly equal to the desired type, except that it will accept |
|
* an additional leading argument of type {@code MethodHandle}. |
|
* <p> |
|
* This method is equivalent to the following code (though it may be more efficient): |
|
* {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)} |
|
* |
|
* <p style="font-size:smaller;"> |
|
* <em>Discussion:</em> |
|
* Invoker method handles can be useful when working with variable method handles |
|
* of unknown types. |
|
* For example, to emulate an {@code invokeExact} call to a variable method |
|
* handle {@code M}, extract its type {@code T}, |
|
* look up the invoker method {@code X} for {@code T}, |
|
* and call the invoker method, as {@code X.invoke(T, A...)}. |
|
* (It would not work to call {@code X.invokeExact}, since the type {@code T} |
|
* is unknown.) |
|
* If spreading, collecting, or other argument transformations are required, |
|
* they can be applied once to the invoker {@code X} and reused on many {@code M} |
|
* method handle values, as long as they are compatible with the type of {@code X}. |
|
* <p style="font-size:smaller;"> |
|
* <em>(Note: The invoker method is not available via the Core Reflection API. |
|
* An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} |
|
* on the declared {@code invokeExact} or {@code invoke} method will raise an |
|
* {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em> |
|
* <p> |
|
* This method throws no reflective or security exceptions. |
|
* @param type the desired target type |
|
* @return a method handle suitable for invoking any method handle of the given type |
|
* @throws IllegalArgumentException if the resulting method handle's type would have |
|
* <a href="MethodHandle.html#maxarity">too many parameters</a> |
|
*/ |
|
public static |
|
MethodHandle exactInvoker(MethodType type) { |
|
return type.invokers().exactInvoker(); |
|
} |
|
/** |
|
* Produces a special <em>invoker method handle</em> which can be used to |
|
* invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}. |
|
* The resulting invoker will have a type which is |
|
* exactly equal to the desired type, except that it will accept |
|
* an additional leading argument of type {@code MethodHandle}. |
|
* <p> |
|
* Before invoking its target, if the target differs from the expected type, |
|
* the invoker will apply reference casts as |
|
* necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}. |
|
* Similarly, the return value will be converted as necessary. |
|
* If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle}, |
|
* the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}. |
|
* <p> |
|
* This method is equivalent to the following code (though it may be more efficient): |
|
* {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)} |
|
* <p style="font-size:smaller;"> |
|
* <em>Discussion:</em> |
|
* A {@linkplain MethodType#genericMethodType general method type} is one which |
|
* mentions only {@code Object} arguments and return values. |
|
* An invoker for such a type is capable of calling any method handle |
|
* of the same arity as the general type. |
|
* <p style="font-size:smaller;"> |
|
* <em>(Note: The invoker method is not available via the Core Reflection API. |
|
* An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} |
|
* on the declared {@code invokeExact} or {@code invoke} method will raise an |
|
* {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em> |
|
* <p> |
|
* This method throws no reflective or security exceptions. |
|
* @param type the desired target type |
|
* @return a method handle suitable for invoking any method handle convertible to the given type |
|
* @throws IllegalArgumentException if the resulting method handle's type would have |
|
* <a href="MethodHandle.html#maxarity">too many parameters</a> |
|
*/ |
|
public static |
|
MethodHandle invoker(MethodType type) { |
|
return type.invokers().genericInvoker(); |
|
} |
|
/** |
|
* Produces a special <em>invoker method handle</em> which can be used to |
|
* invoke a signature-polymorphic access mode method on any VarHandle whose |
|
* associated access mode type is compatible with the given type. |
|
* The resulting invoker will have a type which is exactly equal to the |
|
* desired given type, except that it will accept an additional leading |
|
* argument of type {@code VarHandle}. |
|
* |
|
* @param accessMode the VarHandle access mode |
|
* @param type the desired target type |
|
* @return a method handle suitable for invoking an access mode method of |
|
* any VarHandle whose access mode type is of the given type. |
|
* @since 9 |
|
*/ |
|
static public |
|
MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) { |
|
return type.invokers().varHandleMethodExactInvoker(accessMode); |
|
} |
|
/** |
|
* Produces a special <em>invoker method handle</em> which can be used to |
|
* invoke a signature-polymorphic access mode method on any VarHandle whose |
|
* associated access mode type is compatible with the given type. |
|
* The resulting invoker will have a type which is exactly equal to the |
|
* desired given type, except that it will accept an additional leading |
|
* argument of type {@code VarHandle}. |
|
* <p> |
|
* Before invoking its target, if the access mode type differs from the |
|
* desired given type, the invoker will apply reference casts as necessary |
|
* and box, unbox, or widen primitive values, as if by |
|
* {@link MethodHandle#asType asType}. Similarly, the return value will be |
|
* converted as necessary. |
|
* <p> |
|
* This method is equivalent to the following code (though it may be more |
|
* efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)} |
|
* |
|
* @param accessMode the VarHandle access mode |
|
* @param type the desired target type |
|
* @return a method handle suitable for invoking an access mode method of |
|
* any VarHandle whose access mode type is convertible to the given |
|
* type. |
|
* @since 9 |
|
*/ |
|
static public |
|
MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) { |
|
return type.invokers().varHandleMethodInvoker(accessMode); |
|
} |
|
static /*non-public*/ |
|
MethodHandle basicInvoker(MethodType type) { |
|
return type.invokers().basicInvoker(); |
|
} |
|
/// method handle modification (creation from other method handles) |
|
/** |
|
* Produces a method handle which adapts the type of the |
|
* given method handle to a new type by pairwise argument and return type conversion. |
|
* The original type and new type must have the same number of arguments. |
|
* The resulting method handle is guaranteed to report a type |
|
* which is equal to the desired new type. |
|
* <p> |
|
* If the original type and new type are equal, returns target. |
|
* <p> |
|
* The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType}, |
|
* and some additional conversions are also applied if those conversions fail. |
|
* Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied |
|
* if possible, before or instead of any conversions done by {@code asType}: |
|
* <ul> |
|
* <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type, |
|
* then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast. |
|
* (This treatment of interfaces follows the usage of the bytecode verifier.) |
|
* <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive, |
|
* the boolean is converted to a byte value, 1 for true, 0 for false. |
|
* (This treatment follows the usage of the bytecode verifier.) |
|
* <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive, |
|
* <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5), |
|
* and the low order bit of the result is tested, as if by {@code (x & 1) != 0}. |
|
* <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean, |
|
* then a Java casting conversion (JLS 5.5) is applied. |
|
* (Specifically, <em>T0</em> will convert to <em>T1</em> by |
|
* widening and/or narrowing.) |
|
* <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing |
|
* conversion will be applied at runtime, possibly followed |
|
* by a Java casting conversion (JLS 5.5) on the primitive value, |
|
* possibly followed by a conversion from byte to boolean by testing |
|
* the low-order bit. |
|
* <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, |
|
* and if the reference is null at runtime, a zero value is introduced. |
|
* </ul> |
|
* @param target the method handle to invoke after arguments are retyped |
|
* @param newType the expected type of the new method handle |
|
* @return a method handle which delegates to the target after performing |
|
* any necessary argument conversions, and arranges for any |
|
* necessary return value conversions |
|
* @throws NullPointerException if either argument is null |
|
* @throws WrongMethodTypeException if the conversion cannot be made |
|
* @see MethodHandle#asType |
|
*/ |
|
public static |
|
MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) { |
|
explicitCastArgumentsChecks(target, newType); |
|
// use the asTypeCache when possible: |
|
MethodType oldType = target.type(); |
|
if (oldType == newType) return target; |
|
if (oldType.explicitCastEquivalentToAsType(newType)) { |
|
return target.asFixedArity().asType(newType); |
|
} |
|
return MethodHandleImpl.makePairwiseConvert(target, newType, false); |
|
} |
|
private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) { |
|
if (target.type().parameterCount() != newType.parameterCount()) { |
|
throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType); |
|
} |
|
} |
|
/** |
|
* Produces a method handle which adapts the calling sequence of the |
|
* given method handle to a new type, by reordering the arguments. |
|
* The resulting method handle is guaranteed to report a type |
|
* which is equal to the desired new type. |
|
* <p> |
|
* The given array controls the reordering. |
|
* Call {@code #I} the number of incoming parameters (the value |
|
* {@code newType.parameterCount()}, and call {@code #O} the number |
|
* of outgoing parameters (the value {@code target.type().parameterCount()}). |
|
* Then the length of the reordering array must be {@code #O}, |
|
* and each element must be a non-negative number less than {@code #I}. |
|
* For every {@code N} less than {@code #O}, the {@code N}-th |
|
* outgoing argument will be taken from the {@code I}-th incoming |
|
* argument, where {@code I} is {@code reorder[N]}. |
|
* <p> |
|
* No argument or return value conversions are applied. |
|
* The type of each incoming argument, as determined by {@code newType}, |
|
* must be identical to the type of the corresponding outgoing parameter |
|
* or parameters in the target method handle. |
|
* The return type of {@code newType} must be identical to the return |
|
* type of the original target. |
|
* <p> |
|
* The reordering array need not specify an actual permutation. |
|
* An incoming argument will be duplicated if its index appears |
|
* more than once in the array, and an incoming argument will be dropped |
|
* if its index does not appear in the array. |
|
* As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments}, |
|
* incoming arguments which are not mentioned in the reordering array |
|
* may be of any type, as determined only by {@code newType}. |
|
* <blockquote><pre>{@code |
|
import static java.lang.invoke.MethodHandles.*; |
|
import static java.lang.invoke.MethodType.*; |
|
... |
|
MethodType intfn1 = methodType(int.class, int.class); |
|
MethodType intfn2 = methodType(int.class, int.class, int.class); |
|
MethodHandle sub = ... (int x, int y) -> (x-y) ...; |
|
assert(sub.type().equals(intfn2)); |
|
MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1); |
|
MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0); |
|
assert((int)rsub.invokeExact(1, 100) == 99); |
|
MethodHandle add = ... (int x, int y) -> (x+y) ...; |
|
assert(add.type().equals(intfn2)); |
|
MethodHandle twice = permuteArguments(add, intfn1, 0, 0); |
|
assert(twice.type().equals(intfn1)); |
|
assert((int)twice.invokeExact(21) == 42); |
|
* }</pre></blockquote> |
|
* <p> |
|
* <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector |
|
* variable-arity method handle}, even if the original target method handle was. |
|
* @param target the method handle to invoke after arguments are reordered |
|
* @param newType the expected type of the new method handle |
|
* @param reorder an index array which controls the reordering |
|
* @return a method handle which delegates to the target after it |
|
* drops unused arguments and moves and/or duplicates the other arguments |
|
* @throws NullPointerException if any argument is null |
|
* @throws IllegalArgumentException if the index array length is not equal to |
|
* the arity of the target, or if any index array element |
|
* not a valid index for a parameter of {@code newType}, |
|
* or if two corresponding parameter types in |
|
* {@code target.type()} and {@code newType} are not identical, |
|
*/ |
|
public static |
|
MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) { |
|
reorder = reorder.clone(); // get a private copy |
|
MethodType oldType = target.type(); |
|
permuteArgumentChecks(reorder, newType, oldType); |
|
// first detect dropped arguments and handle them separately |
|
int[] originalReorder = reorder; |
|
BoundMethodHandle result = target.rebind(); |
|
LambdaForm form = result.form; |
|
int newArity = newType.parameterCount(); |
|
// Normalize the reordering into a real permutation, |
|
// by removing duplicates and adding dropped elements. |
|
// This somewhat improves lambda form caching, as well |
|
// as simplifying the transform by breaking it up into steps. |
|
for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) { |
|
if (ddIdx > 0) { |
|
// We found a duplicated entry at reorder[ddIdx]. |
|
// Example: (x,y,z)->asList(x,y,z) |
|
// permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1) |
|
// permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0) |
|
// The starred element corresponds to the argument |
|
// deleted by the dupArgumentForm transform. |
|
int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos]; |
|
boolean killFirst = false; |
|
for (int val; (val = reorder[--dstPos]) != dupVal; ) { |
|
// Set killFirst if the dup is larger than an intervening position. |
|
// This will remove at least one inversion from the permutation. |
|
if (dupVal > val) killFirst = true; |
|
} |
|
if (!killFirst) { |
|
srcPos = dstPos; |
|
dstPos = ddIdx; |
|
} |
|
form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos); |
|
assert (reorder[srcPos] == reorder[dstPos]); |
|
oldType = oldType.dropParameterTypes(dstPos, dstPos + 1); |
|
// contract the reordering by removing the element at dstPos |
|
int tailPos = dstPos + 1; |
|
System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos); |
|
reorder = Arrays.copyOf(reorder, reorder.length - 1); |
|
} else { |
|
int dropVal = ~ddIdx, insPos = 0; |
|
while (insPos < reorder.length && reorder[insPos] < dropVal) { |
|
// Find first element of reorder larger than dropVal. |
|
// This is where we will insert the dropVal. |
|
insPos += 1; |
|
} |
|
Class<?> ptype = newType.parameterType(dropVal); |
|
form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype)); |
|
oldType = oldType.insertParameterTypes(insPos, ptype); |
|
// expand the reordering by inserting an element at insPos |
|
int tailPos = insPos + 1; |
|
reorder = Arrays.copyOf(reorder, reorder.length + 1); |
|
System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos); |
|
reorder[insPos] = dropVal; |
|
} |
|
assert (permuteArgumentChecks(reorder, newType, oldType)); |
|
} |
|
assert (reorder.length == newArity); // a perfect permutation |
|
// Note: This may cache too many distinct LFs. Consider backing off to varargs code. |
|
form = form.editor().permuteArgumentsForm(1, reorder); |
|
if (newType == result.type() && form == result.internalForm()) |
|
return result; |
|
return result.copyWith(newType, form); |
|
} |
|
/** |
|
* Return an indication of any duplicate or omission in reorder. |
|
* If the reorder contains a duplicate entry, return the index of the second occurrence. |
|
* Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder. |
|
* Otherwise, return zero. |
|
* If an element not in [0..newArity-1] is encountered, return reorder.length. |
|
*/ |
|
private static int findFirstDupOrDrop(int[] reorder, int newArity) { |
|
final int BIT_LIMIT = 63; // max number of bits in bit mask |
|
if (newArity < BIT_LIMIT) { |
|
long mask = 0; |
|
for (int i = 0; i < reorder.length; i++) { |
|
int arg = reorder[i]; |
|
if (arg >= newArity) { |
|
return reorder.length; |
|
} |
|
long bit = 1L << arg; |
|
if ((mask & bit) != 0) { |
|
return i; // >0 indicates a dup |
|
} |
|
mask |= bit; |
|
} |
|
if (mask == (1L << newArity) - 1) { |
|
assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity); |
|
return 0; |
|
} |
|
// find first zero |
|
long zeroBit = Long.lowestOneBit(~mask); |
|
int zeroPos = Long.numberOfTrailingZeros(zeroBit); |
|
assert(zeroPos <= newArity); |
|
if (zeroPos == newArity) { |
|
return 0; |
|
} |
|
return ~zeroPos; |
|
} else { |
|
// same algorithm, different bit set |
|
BitSet mask = new BitSet(newArity); |
|
for (int i = 0; i < reorder.length; i++) { |
|
int arg = reorder[i]; |
|
if (arg >= newArity) { |
|
return reorder.length; |
|
} |
|
if (mask.get(arg)) { |
|
return i; // >0 indicates a dup |
|
} |
|
mask.set(arg); |
|
} |
|
int zeroPos = mask.nextClearBit(0); |
|
assert(zeroPos <= newArity); |
|
if (zeroPos == newArity) { |
|
return 0; |
|
} |
|
return ~zeroPos; |
|
} |
|
} |
|
private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) { |
|
if (newType.returnType() != oldType.returnType()) |
|
throw newIllegalArgumentException("return types do not match", |
|
oldType, newType); |
|
if (reorder.length == oldType.parameterCount()) { |
|
int limit = newType.parameterCount(); |
|
boolean bad = false; |
|
for (int j = 0; j < reorder.length; j++) { |
|
int i = reorder[j]; |
|
if (i < 0 || i >= limit) { |
|
bad = true; break; |
|
} |
|
Class<?> src = newType.parameterType(i); |
|
Class<?> dst = oldType.parameterType(j); |
|
if (src != dst) |
|
throw newIllegalArgumentException("parameter types do not match after reorder", |
|
oldType, newType); |
|
} |
|
if (!bad) return true; |
|
} |
|
throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder)); |
|
} |
|
/** |
|
* Produces a method handle of the requested return type which returns the given |
|
* constant value every time it is invoked. |
|
* <p> |
|
* Before the method handle is returned, the passed-in value is converted to the requested type. |
|
* If the requested type is primitive, widening primitive conversions are attempted, |
|
* else reference conversions are attempted. |
|
* <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}. |
|
* @param type the return type of the desired method handle |
|
* @param value the value to return |
|
* @return a method handle of the given return type and no arguments, which always returns the given value |
|
* @throws NullPointerException if the {@code type} argument is null |
|
* @throws ClassCastException if the value cannot be converted to the required return type |
|
* @throws IllegalArgumentException if the given type is {@code void.class} |
|
*/ |
|
public static |
|
MethodHandle constant(Class<?> type, Object value) { |
|
if (type.isPrimitive()) { |
|
if (type == void.class) |
|
throw newIllegalArgumentException("void type"); |
|
Wrapper w = Wrapper.forPrimitiveType(type); |
|
value = w.convert(value, type); |
|
if (w.zero().equals(value)) |
|
return zero(w, type); |
|
return insertArguments(identity(type), 0, value); |
|
} else { |
|
if (value == null) |
|
return zero(Wrapper.OBJECT, type); |
|
return identity(type).bindTo(value); |
|
} |
|
} |
|
/** |
|
* Produces a method handle which returns its sole argument when invoked. |
|
* @param type the type of the sole parameter and return value of the desired method handle |
|
* @return a unary method handle which accepts and returns the given type |
|
* @throws NullPointerException if the argument is null |
|
* @throws IllegalArgumentException if the given type is {@code void.class} |
|
*/ |
|
public static |
|
MethodHandle identity(Class<?> type) { |
|
Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT); |
|
int pos = btw.ordinal(); |
|
MethodHandle ident = IDENTITY_MHS[pos]; |
|
if (ident == null) { |
|
ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType())); |
|
} |
|
if (ident.type().returnType() == type) |
|
return ident; |
|
// something like identity(Foo.class); do not bother to intern these |
|
assert (btw == Wrapper.OBJECT); |
|
return makeIdentity(type); |
|
} |
|
/** |
|
* Produces a constant method handle of the requested return type which |
|
* returns the default value for that type every time it is invoked. |
|
* The resulting constant method handle will have no side effects. |
|
* <p>The returned method handle is equivalent to {@code empty(methodType(type))}. |
|
* It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))}, |
|
* since {@code explicitCastArguments} converts {@code null} to default values. |
|
* @param type the expected return type of the desired method handle |
|
* @return a constant method handle that takes no arguments |
|
* and returns the default value of the given type (or void, if the type is void) |
|
* @throws NullPointerException if the argument is null |
|
* @see MethodHandles#constant |
|
* @see MethodHandles#empty |
|
* @see MethodHandles#explicitCastArguments |
|
* @since 9 |
|
*/ |
|
public static MethodHandle zero(Class<?> type) { |
|
Objects.requireNonNull(type); |
|
return type.isPrimitive() ? zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type); |
|
} |
|
private static MethodHandle identityOrVoid(Class<?> type) { |
|
return type == void.class ? zero(type) : identity(type); |
|
} |
|
/** |
|
* Produces a method handle of the requested type which ignores any arguments, does nothing, |
|
* and returns a suitable default depending on the return type. |
|
* That is, it returns a zero primitive value, a {@code null}, or {@code void}. |
|
* <p>The returned method handle is equivalent to |
|
* {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}. |
|
* |
|
* @apiNote Given a predicate and target, a useful "if-then" construct can be produced as |
|
* {@code guardWithTest(pred, target, empty(target.type())}. |
|
* @param type the type of the desired method handle |
|
* @return a constant method handle of the given type, which returns a default value of the given return type |
|
* @throws NullPointerException if the argument is null |
|
* @see MethodHandles#zero |
|
* @see MethodHandles#constant |
|
* @since 9 |
|
*/ |
|
public static MethodHandle empty(MethodType type) { |
|
Objects.requireNonNull(type); |
|
return dropArguments(zero(type.returnType()), 0, type.parameterList()); |
|
} |
|
private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT]; |
|
private static MethodHandle makeIdentity(Class<?> ptype) { |
|
MethodType mtype = methodType(ptype, ptype); |
|
LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype)); |
|
return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY); |
|
} |
|
private static MethodHandle zero(Wrapper btw, Class<?> rtype) { |
|
int pos = btw.ordinal(); |
|
MethodHandle zero = ZERO_MHS[pos]; |
|
if (zero == null) { |
|
zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType())); |
|
} |
|
if (zero.type().returnType() == rtype) |
|
return zero; |
|
assert(btw == Wrapper.OBJECT); |
|
return makeZero(rtype); |
|
} |
|
private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT]; |
|
private static MethodHandle makeZero(Class<?> rtype) { |
|
MethodType mtype = methodType(rtype); |
|
LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype)); |
|
return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO); |
|
} |
|
private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) { |
|
// Simulate a CAS, to avoid racy duplication of results. |
|
MethodHandle prev = cache[pos]; |
|
if (prev != null) return prev; |
|
return cache[pos] = value; |
|
} |
|
/** |
|
* Provides a target method handle with one or more <em>bound arguments</em> |
|
* in advance of the method handle's invocation. |
|
* The formal parameters to the target corresponding to the bound |
|
* arguments are called <em>bound parameters</em>. |
|
* Returns a new method handle which saves away the bound arguments. |
|
* When it is invoked, it receives arguments for any non-bound parameters, |
|
* binds the saved arguments to their corresponding parameters, |
|
* and calls the original target. |
|
* <p> |
|
* The type of the new method handle will drop the types for the bound |
|
* parameters from the original target type, since the new method handle |
|
* will no longer require those arguments to be supplied by its callers. |
|
* <p> |
|
* Each given argument object must match the corresponding bound parameter type. |
|
* If a bound parameter type is a primitive, the argument object |
|
* must be a wrapper, and will be unboxed to produce the primitive value. |
|
* <p> |
|
* The {@code pos} argument selects which parameters are to be bound. |
|
* It may range between zero and <i>N-L</i> (inclusively), |
|
* where <i>N</i> is the arity of the target method handle |
|
* and <i>L</i> is the length of the values array. |
|
* <p> |
|
* <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector |
|
* variable-arity method handle}, even if the original target method handle was. |
|
* @param target the method handle to invoke after the argument is inserted |
|
* @param pos where to insert the argument (zero for the first) |
|
* @param values the series of arguments to insert |
|
* @return a method handle which inserts an additional argument, |
|
* before calling the original method handle |
|
* @throws NullPointerException if the target or the {@code values} array is null |
|
* @throws IllegalArgumentException if (@code pos) is less than {@code 0} or greater than |
|
* {@code N - L} where {@code N} is the arity of the target method handle and {@code L} |
|
* is the length of the values array. |
|
* @throws ClassCastException if an argument does not match the corresponding bound parameter |
|
* type. |
|
* @see MethodHandle#bindTo |
|
*/ |
|
public static |
|
MethodHandle insertArguments(MethodHandle target, int pos, Object... values) { |
|
int insCount = values.length; |
|
Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos); |
|
if (insCount == 0) return target; |
|
BoundMethodHandle result = target.rebind(); |
|
for (int i = 0; i < insCount; i++) { |
|
Object value = values[i]; |
|
Class<?> ptype = ptypes[pos+i]; |
|
if (ptype.isPrimitive()) { |
|
result = insertArgumentPrimitive(result, pos, ptype, value); |
|
} else { |
|
value = ptype.cast(value); // throw CCE if needed |
|
result = result.bindArgumentL(pos, value); |
|
} |
|
} |
|
return result; |
|
} |
|
private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos, |
|
Class<?> ptype, Object value) { |
|
Wrapper w = Wrapper.forPrimitiveType(ptype); |
|
// perform unboxing and/or primitive conversion |
|
value = w.convert(value, ptype); |
|
switch (w) { |
|
case INT: return result.bindArgumentI(pos, (int)value); |
|
case LONG: return result.bindArgumentJ(pos, (long)value); |
|
case FLOAT: return result.bindArgumentF(pos, (float)value); |
|
case DOUBLE: return result.bindArgumentD(pos, (double)value); |
|
default: return result.bindArgumentI(pos, ValueConversions.widenSubword(value)); |
|
} |
|
} |
|
private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException { |
|
MethodType oldType = target.type(); |
|
int outargs = oldType.parameterCount(); |
|
int inargs = outargs - insCount; |
|
if (inargs < 0) |
|
throw newIllegalArgumentException("too many values to insert"); |
|
if (pos < 0 || pos > inargs) |
|
throw newIllegalArgumentException("no argument type to append"); |
|
return oldType.ptypes(); |
|
} |
|
/** |
|
* Produces a method handle which will discard some dummy arguments |
|
* before calling some other specified <i>target</i> method handle. |
|
* The type of the new method handle will be the same as the target's type, |
|
* except it will also include the dummy argument types, |
|
* at some given position. |
|
* <p> |
|
* The {@code pos} argument may range between zero and <i>N</i>, |
|
* where <i>N</i> is the arity of the target. |
|
* If {@code pos} is zero, the dummy arguments will precede |
|
* the target's real arguments; if {@code pos} is <i>N</i> |
|
* they will come after. |
|
* <p> |
|
* <b>Example:</b> |
|
* <blockquote><pre>{@code |
|
import static java.lang.invoke.MethodHandles.*; |
|
import static java.lang.invoke.MethodType.*; |
|
... |
|
MethodHandle cat = lookup().findVirtual(String.class, |
|
"concat", methodType(String.class, String.class)); |
|
assertEquals("xy", (String) cat.invokeExact("x", "y")); |
|
MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class); |
|
MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2)); |
|
assertEquals(bigType, d0.type()); |
|
assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z")); |
|
* }</pre></blockquote> |
|
* <p> |
|
* This method is also equivalent to the following code: |
|
* <blockquote><pre> |
|
* {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))} |
|
* </pre></blockquote> |
|
* @param target the method handle to invoke after the arguments are dropped |
|
* @param valueTypes the type(s) of the argument(s) to drop |
|
* @param pos position of first argument to drop (zero for the leftmost) |
|
* @return a method handle which drops arguments of the given types, |
|
* before calling the original method handle |
|
* @throws NullPointerException if the target is null, |
|
* or if the {@code valueTypes} list or any of its elements is null |
|
* @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, |
|
* or if {@code pos} is negative or greater than the arity of the target, |
|
* or if the new method handle's type would have too many parameters |
|
*/ |
|
public static |
|
MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) { |
|
return dropArguments0(target, pos, copyTypes(valueTypes.toArray())); |
|
} |
|
private static List<Class<?>> copyTypes(Object[] array) { |
|
return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class)); |
|
} |
|
private static |
|
MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) { |
|
MethodType oldType = target.type(); // get NPE |
|
int dropped = dropArgumentChecks(oldType, pos, valueTypes); |
|
MethodType newType = oldType.insertParameterTypes(pos, valueTypes); |
|
if (dropped == 0) return target; |
|
BoundMethodHandle result = target.rebind(); |
|
LambdaForm lform = result.form; |
|
int insertFormArg = 1 + pos; |
|
for (Class<?> ptype : valueTypes) { |
|
lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype)); |
|
} |
|
result = result.copyWith(newType, lform); |
|
return result; |
|
} |
|
private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) { |
|
int dropped = valueTypes.size(); |
|
MethodType.checkSlotCount(dropped); |
|
int outargs = oldType.parameterCount(); |
|
int inargs = outargs + dropped; |
|
if (pos < 0 || pos > outargs) |
|
throw newIllegalArgumentException("no argument type to remove" |
|
+ Arrays.asList(oldType, pos, valueTypes, inargs, outargs) |
|
); |
|
return dropped; |
|
} |
|
/** |
|
* Produces a method handle which will discard some dummy arguments |
|
* before calling some other specified <i>target</i> method handle. |
|
* The type of the new method handle will be the same as the target's type, |
|
* except it will also include the dummy argument types, |
|
* at some given position. |
|
* <p> |
|
* The {@code pos} argument may range between zero and <i>N</i>, |
|
* where <i>N</i> is the arity of the target. |
|
* If {@code pos} is zero, the dummy arguments will precede |
|
* the target's real arguments; if {@code pos} is <i>N</i> |
|
* they will come after. |
|
* @apiNote |
|
* <blockquote><pre>{@code |
|
import static java.lang.invoke.MethodHandles.*; |
|
import static java.lang.invoke.MethodType.*; |
|
... |
|
MethodHandle cat = lookup().findVirtual(String.class, |
|
"concat", methodType(String.class, String.class)); |
|
assertEquals("xy", (String) cat.invokeExact("x", "y")); |
|
MethodHandle d0 = dropArguments(cat, 0, String.class); |
|
assertEquals("yz", (String) d0.invokeExact("x", "y", "z")); |
|
MethodHandle d1 = dropArguments(cat, 1, String.class); |
|
assertEquals("xz", (String) d1.invokeExact("x", "y", "z")); |
|
MethodHandle d2 = dropArguments(cat, 2, String.class); |
|
assertEquals("xy", (String) d2.invokeExact("x", "y", "z")); |
|
MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class); |
|
assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z")); |
|
* }</pre></blockquote> |
|
* <p> |
|
* This method is also equivalent to the following code: |
|
* <blockquote><pre> |
|
* {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))} |
|
* </pre></blockquote> |
|
* @param target the method handle to invoke after the arguments are dropped |
|
* @param valueTypes the type(s) of the argument(s) to drop |
|
* @param pos position of first argument to drop (zero for the leftmost) |
|
* @return a method handle which drops arguments of the given types, |
|
* before calling the original method handle |
|
* @throws NullPointerException if the target is null, |
|
* or if the {@code valueTypes} array or any of its elements is null |
|
* @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, |
|
* or if {@code pos} is negative or greater than the arity of the target, |
|
* or if the new method handle's type would have |
|
* <a href="MethodHandle.html#maxarity">too many parameters</a> |
|
*/ |
|
public static |
|
MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) { |
|
return dropArguments0(target, pos, copyTypes(valueTypes)); |
|
} |
|
// private version which allows caller some freedom with error handling |
|
private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos, |
|
boolean nullOnFailure) { |
|
newTypes = copyTypes(newTypes.toArray()); |
|
List<Class<?>> oldTypes = target.type().parameterList(); |
|
int match = oldTypes.size(); |
|
if (skip != 0) { |
|
if (skip < 0 || skip > match) { |
|
throw newIllegalArgumentException("illegal skip", skip, target); |
|
} |
|
oldTypes = oldTypes.subList(skip, match); |
|
match -= skip; |
|
} |
|
List<Class<?>> addTypes = newTypes; |
|
int add = addTypes.size(); |
|
if (pos != 0) { |
|
if (pos < 0 || pos > add) { |
|
throw newIllegalArgumentException("illegal pos", pos, newTypes); |
|
} |
|
addTypes = addTypes.subList(pos, add); |
|
add -= pos; |
|
assert(addTypes.size() == add); |
|
} |
|
// Do not add types which already match the existing arguments. |
|
if (match > add || !oldTypes.equals(addTypes.subList(0, match))) { |
|
if (nullOnFailure) { |
|
return null; |
|
} |
|
throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes); |
|
} |
|
addTypes = addTypes.subList(match, add); |
|
add -= match; |
|
assert(addTypes.size() == add); |
|
// newTypes: ( P*[pos], M*[match], A*[add] ) |
|
// target: ( S*[skip], M*[match] ) |
|
MethodHandle adapter = target; |
|
if (add > 0) { |
|
adapter = dropArguments0(adapter, skip+ match, addTypes); |
|
} |
|
// adapter: (S*[skip], M*[match], A*[add] ) |
|
if (pos > 0) { |
|
adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos)); |
|
} |
|
// adapter: (S*[skip], P*[pos], M*[match], A*[add] ) |
|
return adapter; |
|
} |
|
/** |
|
* Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some |
|
* leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter |
|
* type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The |
|
* resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before |
|
* or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by |
|
* {@link #dropArguments(MethodHandle, int, Class[])}. |
|
* <p> |
|
* The resulting handle will have the same return type as the target handle. |
|
* <p> |
|
* In more formal terms, assume these two type lists:<ul> |
|
* <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as |
|
* indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list, |
|
* {@code newTypes}. |
|
* <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as |
|
* indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's |
|
* parameter type list are supposed to match. The types in {@code A} are additional types found after the matching |
|
* sub-list. |
|
* </ul> |
|
* Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type |
|
* list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by |
|
* {@link #dropArguments(MethodHandle, int, Class[])}. |
|
* |
|
* @apiNote |
|
* Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be |
|
* mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows: |
|
* <blockquote><pre>{@code |
|
import static java.lang.invoke.MethodHandles.*; |
|
import static java.lang.invoke.MethodType.*; |
|
... |
|
... |
|
MethodHandle h0 = constant(boolean.class, true); |
|
MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class)); |
|
MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class); |
|
MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList()); |
|
if (h1.type().parameterCount() < h2.type().parameterCount()) |
|
h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0); // lengthen h1 |
|
else |
|
h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0); // lengthen h2 |
|
MethodHandle h3 = guardWithTest(h0, h1, h2); |
|
assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c")); |
|
* }</pre></blockquote> |
|
* @param target the method handle to adapt |
|
* @param skip number of targets parameters to disregard (they will be unchanged) |
|
* @param newTypes the list of types to match {@code target}'s parameter type list to |
|
* @param pos place in {@code newTypes} where the non-skipped target parameters must occur |
|
* @return a possibly adapted method handle |
|
* @throws NullPointerException if either argument is null |
|
* @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class}, |
|
* or if {@code skip} is negative or greater than the arity of the target, |
|
* or if {@code pos} is negative or greater than the newTypes list size, |
|
* or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position |
|
* {@code pos}. |
|
* @since 9 |
|
*/ |
|
public static |
|
MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) { |
|
Objects.requireNonNull(target); |
|
Objects.requireNonNull(newTypes); |
|
return dropArgumentsToMatch(target, skip, newTypes, pos, false); |
|
} |
|
/** |
|
* Adapts a target method handle by pre-processing |
|
* one or more of its arguments, each with its own unary filter function, |
|
* and then calling the target with each pre-processed argument |
|
* replaced by the result of its corresponding filter function. |
|
* <p> |
|
* The pre-processing is performed by one or more method handles, |
|
* specified in the elements of the {@code filters} array. |
|
* The first element of the filter array corresponds to the {@code pos} |
|
* argument of the target, and so on in sequence. |
|
* The filter functions are invoked in left to right order. |
|
* <p> |
|
* Null arguments in the array are treated as identity functions, |
|
* and the corresponding arguments left unchanged. |
|
* (If there are no non-null elements in the array, the original target is returned.) |
|
* Each filter is applied to the corresponding argument of the adapter. |
|
* <p> |
|
* If a filter {@code F} applies to the {@code N}th argument of |
|
* the target, then {@code F} must be a method handle which |
|
* takes exactly one argument. The type of {@code F}'s sole argument |
|
* replaces the corresponding argument type of the target |
|
* in the resulting adapted method handle. |
|
* The return type of {@code F} must be identical to the corresponding |
|
* parameter type of the target. |
|
* <p> |
|
* It is an error if there are elements of {@code filters} |
|
* (null or not) |
|
* which do not correspond to argument positions in the target. |
|
* <p><b>Example:</b> |
|
* <blockquote><pre>{@code |
|
import static java.lang.invoke.MethodHandles.*; |
|
import static java.lang.invoke.MethodType.*; |
|
... |
|
MethodHandle cat = lookup().findVirtual(String.class, |
|
"concat", methodType(String.class, String.class)); |
|
MethodHandle upcase = lookup().findVirtual(String.class, |
|
"toUpperCase", methodType(String.class)); |
|
assertEquals("xy", (String) cat.invokeExact("x", "y")); |
|
MethodHandle f0 = filterArguments(cat, 0, upcase); |
|
assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy |
|
MethodHandle f1 = filterArguments(cat, 1, upcase); |
|
assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY |
|
MethodHandle f2 = filterArguments(cat, 0, upcase, upcase); |
|
assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY |
|
* }</pre></blockquote> |
|
* <p>Here is pseudocode for the resulting adapter. In the code, {@code T} |
|
* denotes the return type of both the {@code target} and resulting adapter. |
|
* {@code P}/{@code p} and {@code B}/{@code b} represent the types and values |
|
* of the parameters and arguments that precede and follow the filter position |
|
* {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and |
|
* values of the filtered parameters and arguments; they also represent the |
|
* return types of the {@code filter[i]} handles. The latter accept arguments |
|
* {@code v[i]} of type {@code V[i]}, which also appear in the signature of |
|
* the resulting adapter. |
|
* <blockquote><pre>{@code |
|
* T target(P... p, A[i]... a[i], B... b); |
|
* A[i] filter[i](V[i]); |
|
* T adapter(P... p, V[i]... v[i], B... b) { |
|
* return target(p..., filter[i](v[i])..., b...); |
|
* } |
|
* }</pre></blockquote> |
|
* <p> |
|
* <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector |
|
* variable-arity method handle}, even if the original target method handle was. |
|
* |
|
* @param target the method handle to invoke after arguments are filtered |
|
* @param pos the position of the first argument to filter |
|
* @param filters method handles to call initially on filtered arguments |
|
* @return method handle which incorporates the specified argument filtering logic |
|
* @throws NullPointerException if the target is null |
|
* or if the {@code filters} array is null |
|
* @throws IllegalArgumentException if a non-null element of {@code filters} |
|
* does not match a corresponding argument type of target as described above, |
|
* or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()}, |
|
* or if the resulting method handle's type would have |
|
* <a href="MethodHandle.html#maxarity">too many parameters</a> |
|
*/ |
|
public static |
|
MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) { |
|
filterArgumentsCheckArity(target, pos, filters); |
|
MethodHandle adapter = target; |
|
// process filters in reverse order so that the invocation of |
|
// the resulting adapter will invoke the filters in left-to-right order |
|
for (int i = filters.length - 1; i >= 0; --i) { |
|
MethodHandle filter = filters[i]; |
|
if (filter == null) continue; // ignore null elements of filters |
|
adapter = filterArgument(adapter, pos + i, filter); |
|
} |
|
return adapter; |
|
} |
|
/*non-public*/ static |
|
MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) { |
|
filterArgumentChecks(target, pos, filter); |
|
MethodType targetType = target.type(); |
|
MethodType filterType = filter.type(); |
|
BoundMethodHandle result = target.rebind(); |
|
Class<?> newParamType = filterType.parameterType(0); |
|
LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType)); |
|
MethodType newType = targetType.changeParameterType(pos, newParamType); |
|
result = result.copyWithExtendL(newType, lform, filter); |
|
return result; |
|
} |
|
private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) { |
|
MethodType targetType = target.type(); |
|
int maxPos = targetType.parameterCount(); |
|
if (pos + filters.length > maxPos) |
|
throw newIllegalArgumentException("too many filters"); |
|
} |
|
private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException { |
|
MethodType targetType = target.type(); |
|
MethodType filterType = filter.type(); |
|
if (filterType.parameterCount() != 1 |
|
|| filterType.returnType() != targetType.parameterType(pos)) |
|
throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); |
|
} |
|
/** |
|
* Adapts a target method handle by pre-processing |
|
* a sub-sequence of its arguments with a filter (another method handle). |
|
* The pre-processed arguments are replaced by the result (if any) of the |
|
* filter function. |
|
* The target is then called on the modified (usually shortened) argument list. |
|
* <p> |
|
* If the filter returns a value, the target must accept that value as |
|
* its argument in position {@code pos}, preceded and/or followed by |
|
* any arguments not passed to the filter. |
|
* If the filter returns void, the target must accept all arguments |
|
* not passed to the filter. |
|
* No arguments are reordered, and a result returned from the filter |
|
* replaces (in order) the whole subsequence of arguments originally |
|
* passed to the adapter. |
|
* <p> |
|
* The argument types (if any) of the filter |
|
* replace zero or one argument types of the target, at position {@code pos}, |
|
* in the resulting adapted method handle. |
|
* The return type of the filter (if any) must be identical to the |
|
* argument type of the target at position {@code pos}, and that target argument |
|
* is supplied by the return value of the filter. |
|
* <p> |
|
* In all cases, {@code pos} must be greater than or equal to zero, and |
|
* {@code pos} must also be less than or equal to the target's arity. |
|
* <p><b>Example:</b> |
|
* <blockquote><pre>{@code |
|
import static java.lang.invoke.MethodHandles.*; |
|
import static java.lang.invoke.MethodType.*; |
|
... |
|
MethodHandle deepToString = publicLookup() |
|
.findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class)); |
|
|
|
MethodHandle ts1 = deepToString.asCollector(String[].class, 1); |
|
assertEquals("[strange]", (String) ts1.invokeExact("strange")); |
|
|
|
MethodHandle ts2 = deepToString.asCollector(String[].class, 2); |
|
assertEquals("[up, down]", (String) ts2.invokeExact("up", "down")); |
|
|
|
MethodHandle ts3 = deepToString.asCollector(String[].class, 3); |
|
MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2); |
|
assertEquals("[top, [up, down], strange]", |
|
(String) ts3_ts2.invokeExact("top", "up", "down", "strange")); |
|
|
|
MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1); |
|
assertEquals("[top, [up, down], [strange]]", |
|
(String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange")); |
|
|
|
MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3); |
|
assertEquals("[top, [[up, down, strange], charm], bottom]", |
|
(String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom")); |
|
* }</pre></blockquote> |
|
* <p>Here is pseudocode for the resulting adapter. In the code, {@code T} |
|
* represents the return type of the {@code target} and resulting adapter. |
|
* {@code V}/{@code v} stand for the return type and value of the |
|
* {@code filter}, which are also found in the signature and arguments of |
|
* the {@code target}, respectively, unless {@code V} is {@code void}. |
|
* {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types |
|
* and values preceding and following the collection position, {@code pos}, |
|
* in the {@code target}'s signature. They also turn up in the resulting |
|
* adapter's signature and arguments, where they surround |
|
* {@code B}/{@code b}, which represent the parameter types and arguments |
|
* to the {@code filter} (if any). |
|
* <blockquote><pre>{@code |
|
* T target(A...,V,C...); |
|
* V filter(B...); |
|
* T adapter(A... a,B... b,C... c) { |
|
* V v = filter(b...); |
|
* return target(a...,v,c...); |
|
* } |
|
* // and if the filter has no arguments: |
|
* T target2(A...,V,C...); |
|
* V filter2(); |
|
* T adapter2(A... a,C... c) { |
|
* V v = filter2(); |
|
* return target2(a...,v,c...); |
|
* } |
|
* // and if the filter has a void return: |
|
* T target3(A...,C...); |
|
* void filter3(B...); |
|
* T adapter3(A... a,B... b,C... c) { |
|
* filter3(b...); |
|
* return target3(a...,c...); |
|
* } |
|
* }</pre></blockquote> |
|
* <p> |
|
* A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to |
|
* one which first "folds" the affected arguments, and then drops them, in separate |
|
* steps as follows: |
|
* <blockquote><pre>{@code |
|
* mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2 |
|
* mh = MethodHandles.foldArguments(mh, coll); //step 1 |
|
* }</pre></blockquote> |
|
* If the target method handle consumes no arguments besides than the result |
|
* (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)} |
|
* is equivalent to {@code filterReturnValue(coll, mh)}. |
|
* If the filter method handle {@code coll} consumes one argument and produces |
|
* a non-void result, then {@code collectArguments(mh, N, coll)} |
|
* is equivalent to {@code filterArguments(mh, N, coll)}. |
|
* Other equivalences are possible but would require argument permutation. |
|
* <p> |
|
* <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector |
|
* variable-arity method handle}, even if the original target method handle was. |
|
* |
|
* @param target the method handle to invoke after filtering the subsequence of arguments |
|
* @param pos the position of the first adapter argument to pass to the filter, |
|
* and/or the target argument which receives the result of the filter |
|
* @param filter method handle to call on the subsequence of arguments |
|
* @return method handle which incorporates the specified argument subsequence filtering logic |
|
* @throws NullPointerException if either argument is null |
|
* @throws IllegalArgumentException if the return type of {@code filter} |
|
* is non-void and is not the same as the {@code pos} argument of the target, |
|
* or if {@code pos} is not between 0 and the target's arity, inclusive, |
|
* or if the resulting method handle's type would have |
|
* <a href="MethodHandle.html#maxarity">too many parameters</a> |
|
* @see MethodHandles#foldArguments |
|
* @see MethodHandles#filterArguments |
|
* @see MethodHandles#filterReturnValue |
|
*/ |
|
public static |
|
MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) { |
|
MethodType newType = collectArgumentsChecks(target, pos, filter); |
|
MethodType collectorType = filter.type(); |
|
BoundMethodHandle result = target.rebind(); |
|
LambdaForm lform; |
|
if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) { |
|
lform = result.editor().collectArgumentArrayForm(1 + pos, filter); |
|
if (lform != null) { |
|
return result.copyWith(newType, lform); |
|
} |
|
} |
|
lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType()); |
|
return result.copyWithExtendL(newType, lform, filter); |
|
} |
|
private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException { |
|
MethodType targetType = target.type(); |
|
MethodType filterType = filter.type(); |
|
Class<?> rtype = filterType.returnType(); |
|
List<Class<?>> filterArgs = filterType.parameterList(); |
|
if (rtype == void.class) { |
|
return targetType.insertParameterTypes(pos, filterArgs); |
|
} |
|
if (rtype != targetType.parameterType(pos)) { |
|
throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); |
|
} |
|
return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs); |
|
} |
|
/** |
|
* Adapts a target method handle by post-processing |
|
* its return value (if any) with a filter (another method handle). |
|
* The result of the filter is returned from the adapter. |
|
* <p> |
|
* If the target returns a value, the filter must accept that value as |
|
* its only argument. |
|
* If the target returns void, the filter must accept no arguments. |
|
* <p> |
|
* The return type of the filter |
|
* replaces the return type of the target |
|
* in the resulting adapted method handle. |
|
* The argument type of the filter (if any) must be identical to the |
|
* return type of the target. |
|
* <p><b>Example:</b> |
|
* <blockquote><pre>{@code |
|
import static java.lang.invoke.MethodHandles.*; |
|
import static java.lang.invoke.MethodType.*; |
|
... |
|
MethodHandle cat = lookup().findVirtual(String.class, |
|
"concat", methodType(String.class, String.class)); |
|
MethodHandle length = lookup().findVirtual(String.class, |
|
"length", methodType(int.class)); |
|
System.out.println((String) cat.invokeExact("x", "y")); // xy |
|
MethodHandle f0 = filterReturnValue(cat, length); |
|
System.out.println((int) f0.invokeExact("x", "y")); // 2 |
|
* }</pre></blockquote> |
|
* <p>Here is pseudocode for the resulting adapter. In the code, |
|
* {@code T}/{@code t} represent the result type and value of the |
|
* {@code target}; {@code V}, the result type of the {@code filter}; and |
|
* {@code A}/{@code a}, the types and values of the parameters and arguments |
|
* of the {@code target} as well as the resulting adapter. |
|
* <blockquote><pre>{@code |
|
* T target(A...); |
|
* V filter(T); |
|
* V adapter(A... a) { |
|
* T t = target(a...); |
|
* return filter(t); |
|
* } |
|
* // and if the target has a void return: |
|
* void target2(A...); |
|
* V filter2(); |
|
* V adapter2(A... a) { |
|
* target2(a...); |
|
* return filter2(); |
|
* } |
|
* // and if the filter has a void return: |
|
* T target3(A...); |
|
* void filter3(V); |
|
* void adapter3(A... a) { |
|
* T t = target3(a...); |
|
* filter3(t); |
|
* } |
|
* }</pre></blockquote> |
|
* <p> |
|
* <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector |
|
* variable-arity method handle}, even if the original target method handle was. |
|
* @param target the method handle to invoke before filtering the return value |
|
* @param filter method handle to call on the return value |
|
* @return method handle which incorporates the specified return value filtering logic |
|
* @throws NullPointerException if either argument is null |
|
* @throws IllegalArgumentException if the argument list of {@code filter} |
|
* does not match the return type of target as described above |
|
*/ |
|
public static |
|
MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) { |
|
MethodType targetType = target.type(); |
|
MethodType filterType = filter.type(); |
|
filterReturnValueChecks(targetType, filterType); |
|
BoundMethodHandle result = target.rebind(); |
|
BasicType rtype = BasicType.basicType(filterType.returnType()); |
|
LambdaForm lform = result.editor().filterReturnForm(rtype, false); |
|
MethodType newType = targetType.changeReturnType(filterType.returnType()); |
|
result = result.copyWithExtendL(newType, lform, filter); |
|
return result; |
|
} |
|
private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException { |
|
Class<?> rtype = targetType.returnType(); |
|
int filterValues = filterType.parameterCount(); |
|
if (filterValues == 0 |
|
? (rtype != void.class) |
|
: (rtype != filterType.parameterType(0) || filterValues != 1)) |
|
throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); |
|
} |
|
/** |
|
* Adapts a target method handle by pre-processing |
|
* some of its arguments, and then calling the target with |
|
* the result of the pre-processing, inserted into the original |
|
* sequence of arguments. |
|
* <p> |
|
* The pre-processing is performed by {@code combiner}, a second method handle. |
|
* Of the arguments passed to the adapter, the first {@code N} arguments |
|
* are copied to the combiner, which is then called. |
|
* (Here, {@code N} is defined as the parameter count of the combiner.) |
|
* After this, control passes to the target, with any result |
|
* from the combiner inserted before the original {@code N} incoming |
|
* arguments. |
|
* <p> |
|
* If the combiner returns a value, the first parameter type of the target |
|
* must be identical with the return type of the combiner, and the next |
|
* {@code N} parameter types of the target must exactly match the parameters |
|
* of the combiner. |
|
* <p> |
|
* If the combiner has a void return, no result will be inserted, |
|
* and the first {@code N} parameter types of the target |
|
* must exactly match the parameters of the combiner. |
|
* <p> |
|
* The resulting adapter is the same type as the target, except that the |
|
* first parameter type is dropped, |
|
* if it corresponds to the result of the combiner. |
|
* <p> |
|
* (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments |
|
* that either the combiner or the target does not wish to receive. |
|
* If some of the incoming arguments are destined only for the combiner, |
|
* consider using {@link MethodHandle#asCollector asCollector} instead, since those |
|
* arguments will not need to be live on the stack on entry to the |
|
* target.) |
|
* <p><b>Example:</b> |
|
* <blockquote><pre>{@code |
|
import static java.lang.invoke.MethodHandles.*; |
|
import static java.lang.invoke.MethodType.*; |
|
... |
|
MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class, |
|
"println", methodType(void.class, String.class)) |
|
.bindTo(System.out); |
|
MethodHandle cat = lookup().findVirtual(String.class, |
|
"concat", methodType(String.class, String.class)); |
|
assertEquals("boojum", (String) cat.invokeExact("boo", "jum")); |
|
MethodHandle catTrace = foldArguments(cat, trace); |
|
// also prints "boo": |
|
assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum")); |
|
* }</pre></blockquote> |
|
* <p>Here is pseudocode for the resulting adapter. In the code, {@code T} |
|
* represents the result type of the {@code target} and resulting adapter. |
|
* {@code V}/{@code v} represent the type and value of the parameter and argument |
|
* of {@code target} that precedes the folding position; {@code V} also is |
|
* the result type of the {@code combiner}. {@code A}/{@code a} denote the |
|
* types and values of the {@code N} parameters and arguments at the folding |
|
* position. {@code B}/{@code b} represent the types and values of the |
|
* {@code target} parameters and arguments that follow the folded parameters |
|
* and arguments. |
|
* <blockquote><pre>{@code |
|
* // there are N arguments in A... |
|
* T target(V, A[N]..., B...); |
|
* V combiner(A...); |
|
* T adapter(A... a, B... b) { |
|
* V v = combiner(a...); |
|
* return target(v, a..., b...); |
|
* } |
|
* // and if the combiner has a void return: |
|
* T target2(A[N]..., B...); |
|
* void combiner2(A...); |
|
* T adapter2(A... a, B... b) { |
|
* combiner2(a...); |
|
* return target2(a..., b...); |
|
* } |
|
* }</pre></blockquote> |
|
* <p> |
|
* <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector |
|
* variable-arity method handle}, even if the original target method handle was. |
|
* @param target the method handle to invoke after arguments are combined |
|
* @param combiner method handle to call initially on the incoming arguments |
|
* @return method handle which incorporates the specified argument folding logic |
|
* @throws NullPointerException if either argument is null |
|
* @throws IllegalArgumentException if {@code combiner}'s return type |
|
* is non-void and not the same as the first argument type of |
|
* the target, or if the initial {@code N} argument types |
|
* of the target |
|
* (skipping one matching the {@code combiner}'s return type) |
|
* are not identical with the argument types of {@code combiner} |
|
*/ |
|
public static |
|
MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) { |
|
return foldArguments(target, 0, combiner); |
|
} |
|
/** |
|
* Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then |
|
* calling the target with the result of the pre-processing, inserted into the original sequence of arguments just |
|
* before the folded arguments. |
|
* <p> |
|
* This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the |
|
* position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a |
|
* zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position |
|
* 0. |
|
* |
|
* @apiNote Example: |
|
* <blockquote><pre>{@code |
|
import static java.lang.invoke.MethodHandles.*; |
|
import static java.lang.invoke.MethodType.*; |
|
... |
|
MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class, |
|
"println", methodType(void.class, String.class)) |
|
.bindTo(System.out); |
|
MethodHandle cat = lookup().findVirtual(String.class, |
|
"concat", methodType(String.class, String.class)); |
|
assertEquals("boojum", (String) cat.invokeExact("boo", "jum")); |
|
MethodHandle catTrace = foldArguments(cat, 1, trace); |
|
// also prints "jum": |
|
assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum")); |
|
* }</pre></blockquote> |
|
* <p>Here is pseudocode for the resulting adapter. In the code, {@code T} |
|
* represents the result type of the {@code target} and resulting adapter. |
|
* {@code V}/{@code v} represent the type and value of the parameter and argument |
|
* of {@code target} that precedes the folding position; {@code V} also is |
|
* the result type of the {@code combiner}. {@code A}/{@code a} denote the |
|
* types and values of the {@code N} parameters and arguments at the folding |
|
* position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types |
|
* and values of the {@code target} parameters and arguments that precede and |
|
* follow the folded parameters and arguments starting at {@code pos}, |
|
* respectively. |
|
* <blockquote><pre>{@code |
|
* // there are N arguments in A... |
|
* T target(Z..., V, A[N]..., B...); |
|
* V combiner(A...); |
|
* T adapter(Z... z, A... a, B... b) { |
|
* V v = combiner(a...); |
|
* return target(z..., v, a..., b...); |
|
* } |
|
* // and if the combiner has a void return: |
|
* T target2(Z..., A[N]..., B...); |
|
* void combiner2(A...); |
|
* T adapter2(Z... z, A... a, B... b) { |
|
* combiner2(a...); |
|
* return target2(z..., a..., b...); |
|
* } |
|
* }</pre></blockquote> |
|
* <p> |
|
* <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector |
|
* variable-arity method handle}, even if the original target method handle was. |
|
* |
|
* @param target the method handle to invoke after arguments are combined |
|
* @param pos the position at which to start folding and at which to insert the folding result; if this is {@code |
|
* 0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}. |
|
* @param combiner method handle to call initially on the incoming arguments |
|
* @return method handle which incorporates the specified argument folding logic |
|
* @throws NullPointerException if either argument is null |
|
* @throws IllegalArgumentException if either of the following two conditions holds: |
|
* (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position |
|
* {@code pos} of the target signature; |
|
* (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching |
|
* the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}. |
|
* |
|
* @see #foldArguments(MethodHandle, MethodHandle) |
|
* @since 9 |
|
*/ |
|
public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) { |
|
MethodType targetType = target.type(); |
|
MethodType combinerType = combiner.type(); |
|
Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType); |
|
BoundMethodHandle result = target.rebind(); |
|
boolean dropResult = rtype == void.class; |
|
LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType()); |
|
MethodType newType = targetType; |
|
if (!dropResult) { |
|
newType = newType.dropParameterTypes(pos, pos + 1); |
|
} |
|
result = result.copyWithExtendL(newType, lform, combiner); |
|
return result; |
|
} |
|
/** |
|
* As {@see foldArguments(MethodHandle, int, MethodHandle)}, but with the |
|
* added capability of selecting the arguments from the targets parameters |
|
* to call the combiner with. This allows us to avoid some simple cases of |
|
* permutations and padding the combiner with dropArguments to select the |
|
* right argument, which may ultimately produce fewer intermediaries. |
|
*/ |
|
static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner, int ... argPositions) { |
|
MethodType targetType = target.type(); |
|
MethodType combinerType = combiner.type(); |
|
Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType, argPositions); |
|
BoundMethodHandle result = target.rebind(); |
|
boolean dropResult = rtype == void.class; |
|
LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType(), argPositions); |
|
MethodType newType = targetType; |
|
if (!dropResult) { |
|
newType = newType.dropParameterTypes(pos, pos + 1); |
|
} |
|
result = result.copyWithExtendL(newType, lform, combiner); |
|
return result; |
|
} |
|
private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) { |
|
int foldArgs = combinerType.parameterCount(); |
|
Class<?> rtype = combinerType.returnType(); |
|
int foldVals = rtype == void.class ? 0 : 1; |
|
int afterInsertPos = foldPos + foldVals; |
|
boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs); |
|
if (ok) { |
|
for (int i = 0; i < foldArgs; i++) { |
|
if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) { |
|
ok = false; |
|
break; |
|
} |
|
} |
|
} |
|
if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) |
|
ok = false; |
|
if (!ok) |
|
throw misMatchedTypes("target and combiner types", targetType, combinerType); |
|
return rtype; |
|
} |
|
private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType, int ... argPos) { |
|
int foldArgs = combinerType.parameterCount(); |
|
if (argPos.length != foldArgs) { |
|
throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length); |
|
} |
|
Class<?> rtype = combinerType.returnType(); |
|
int foldVals = rtype == void.class ? 0 : 1; |
|
boolean ok = true; |
|
for (int i = 0; i < foldArgs; i++) { |
|
int arg = argPos[i]; |
|
if (arg < 0 || arg > targetType.parameterCount()) { |
|
throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg); |
|
} |
|
if (combinerType.parameterType(i) != targetType.parameterType(arg)) { |
|
throw newIllegalArgumentException("target argument type at position " + arg |
|
+ " must match combiner argument type at index " + i + ": " + targetType |
|
+ " -> " + combinerType + ", map: " + Arrays.toString(argPos)); |
|
} |
|
} |
|
if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) { |
|
ok = false; |
|
} |
|
if (!ok) |
|
throw misMatchedTypes("target and combiner types", targetType, combinerType); |
|
return rtype; |
|
} |
|
/** |
|
* Makes a method handle which adapts a target method handle, |
|
* by guarding it with a test, a boolean-valued method handle. |
|
* If the guard fails, a fallback handle is called instead. |
|
* All three method handles must have the same corresponding |
|
* argument and return types, except that the return type |
|
* of the test must be boolean, and the test is allowed |
|
* to have fewer arguments than the other two method handles. |
|
* <p> |
|
* Here is pseudocode for the resulting adapter. In the code, {@code T} |
|
* represents the uniform result type of the three involved handles; |
|
* {@code A}/{@code a}, the types and values of the {@code target} |
|
* parameters and arguments that are consumed by the {@code test}; and |
|
* {@code B}/{@code b}, those types and values of the {@code target} |
|
* parameters and arguments that are not consumed by the {@code test}. |
|
* <blockquote><pre>{@code |
|
* boolean test(A...); |
|
* T target(A...,B...); |
|
* T fallback(A...,B...); |
|
* T adapter(A... a,B... b) { |
|
* if (test(a...)) |
|
* return target(a..., b...); |
|
* else |
|
* return fallback(a..., b...); |
|
* } |
|
* }</pre></blockquote> |
|
* Note that the test arguments ({@code a...} in the pseudocode) cannot |
|
* be modified by execution of the test, and so are passed unchanged |
|
* from the caller to the target or fallback as appropriate. |
|
* @param test method handle used for test, must return boolean |
|
* @param target method handle to call if test passes |
|
* @param fallback method handle to call if test fails |
|
* @return method handle which incorporates the specified if/then/else logic |
|
* @throws NullPointerException if any argument is null |
|
* @throws IllegalArgumentException if {@code test} does not return boolean, |
|
* or if all three method types do not match (with the return |
|
* type of {@code test} changed to match that of the target). |
|
*/ |
|
public static |
|
MethodHandle guardWithTest(MethodHandle test, |
|
MethodHandle target, |
|
MethodHandle fallback) { |
|
MethodType gtype = test.type(); |
|
MethodType ttype = target.type(); |
|
MethodType ftype = fallback.type(); |
|
if (!ttype.equals(ftype)) |
|
throw misMatchedTypes("target and fallback types", ttype, ftype); |
|
if (gtype.returnType() != boolean.class) |
|
throw newIllegalArgumentException("guard type is not a predicate "+gtype); |
|
List<Class<?>> targs = ttype.parameterList(); |
|
test = dropArgumentsToMatch(test, 0, targs, 0, true); |
|
if (test == null) { |
|
throw misMatchedTypes("target and test types", ttype, gtype); |
|
} |
|
return MethodHandleImpl.makeGuardWithTest(test, target, fallback); |
|
} |
|
static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) { |
|
return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2); |
|
} |
|
/** |
|
* Makes a method handle which adapts a target method handle, |
|
* by running it inside an exception handler. |
|
* If the target returns normally, the adapter returns that value. |
|
* If an exception matching the specified type is thrown, the fallback |
|
* handle is called instead on the exception, plus the original arguments. |
|
* <p> |
|
* The target and handler must have the same corresponding |
|
* argument and return types, except that handler may omit trailing arguments |
|
* (similarly to the predicate in {@link #guardWithTest guardWithTest}). |
|
* Also, the handler must have an extra leading parameter of {@code exType} or a supertype. |
|
* <p> |
|
* Here is pseudocode for the resulting adapter. In the code, {@code T} |
|
* represents the return type of the {@code target} and {@code handler}, |
|
* and correspondingly that of the resulting adapter; {@code A}/{@code a}, |
|
* the types and values of arguments to the resulting handle consumed by |
|
* {@code handler}; and {@code B}/{@code b}, those of arguments to the |
|
* resulting handle discarded by {@code handler}. |
|
* <blockquote><pre>{@code |
|
* T target(A..., B...); |
|
* T handler(ExType, A...); |
|
* T adapter(A... a, B... b) { |
|
* try { |
|
* return target(a..., b...); |
|
* } catch (ExType ex) { |
|
* return handler(ex, a...); |
|
* } |
|
* } |
|
* }</pre></blockquote> |
|
* Note that the saved arguments ({@code a...} in the pseudocode) cannot |
|
* be modified by execution of the target, and so are passed unchanged |
|
* from the caller to the handler, if the handler is invoked. |
|
* <p> |
|
* The target and handler must return the same type, even if the handler |
|
* always throws. (This might happen, for instance, because the handler |
|
* is simulating a {@code finally} clause). |
|
* To create such a throwing handler, compose the handler creation logic |
|
* with {@link #throwException throwException}, |
|
* in order to create a method handle of the correct return type. |
|
* @param target method handle to call |
|
* @param exType the type of exception which the handler will catch |
|
* @param handler method handle to call if a matching exception is thrown |
|
* @return method handle which incorporates the specified try/catch logic |
|
* @throws NullPointerException if any argument is null |
|
* @throws IllegalArgumentException if {@code handler} does not accept |
|
* the given exception type, or if the method handle types do |
|
* not match in their return types and their |
|
* corresponding parameters |
|
* @see MethodHandles#tryFinally(MethodHandle, MethodHandle) |
|
*/ |
|
public static |
|
MethodHandle catchException(MethodHandle target, |
|
Class<? extends Throwable> exType, |
|
MethodHandle handler) { |
|
MethodType ttype = target.type(); |
|
MethodType htype = handler.type(); |
|
if (!Throwable.class.isAssignableFrom(exType)) |
|
throw new ClassCastException(exType.getName()); |
|
if (htype.parameterCount() < 1 || |
|
!htype.parameterType(0).isAssignableFrom(exType)) |
|
throw newIllegalArgumentException("handler does not accept exception type "+exType); |
|
if (htype.returnType() != ttype.returnType()) |
|
throw misMatchedTypes("target and handler return types", ttype, htype); |
|
handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true); |
|
if (handler == null) { |
|
throw misMatchedTypes("target and handler types", ttype, htype); |
|
} |
|
return MethodHandleImpl.makeGuardWithCatch(target, exType, handler); |
|
} |
|
/** |
|
* Produces a method handle which will throw exceptions of the given {@code exType}. |
|
* The method handle will accept a single argument of {@code exType}, |
|
* and immediately throw it as an exception. |
|
* The method type will nominally specify a return of {@code returnType}. |
|
* The return type may be anything convenient: It doesn't matter to the |
|
* method handle's behavior, since it will never return normally. |
|
* @param returnType the return type of the desired method handle |
|
* @param exType the parameter type of the desired method handle |
|
* @return method handle which can throw the given exceptions |
|
* @throws NullPointerException if either argument is null |
|
*/ |
|
public static |
|
MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) { |
|
if (!Throwable.class.isAssignableFrom(exType)) |
|
throw new ClassCastException(exType.getName()); |
|
return MethodHandleImpl.throwException(methodType(returnType, exType)); |
|
} |
|
/** |
|
* Constructs a method handle representing a loop with several loop variables that are updated and checked upon each |
|
* iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and |
|
* delivers the loop's result, which is the return value of the resulting handle. |
|
* <p> |
|
* Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop |
|
* exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration |
|
* variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in |
|
* terms of method handles, each clause will specify up to four independent actions:<ul> |
|
* <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}. |
|
* <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}. |
|
* <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit. |
|
* <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value. |
|
* </ul> |
|
* The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}. |
|
* The values themselves will be {@code (v...)}. When we speak of "parameter lists", we will usually |
|
* be referring to types, but in some contexts (describing execution) the lists will be of actual values. |
|
* <p> |
|
* Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in |
|
* this case. See below for a detailed description. |
|
* <p> |
|
* <em>Parameters optional everywhere:</em> |
|
* Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}. |
|
* As an exception, the init functions cannot take any {@code v} parameters, |
|
* because those values are not yet computed when the init functions are executed. |
|
* Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take. |
|
* In fact, any clause function may take no arguments at all. |
|
* <p> |
|
* <em>Loop parameters:</em> |
|
* A clause function may take all the iteration variable values it is entitled to, in which case |
|
* it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>, |
|
* with their types and values notated as {@code (A...)} and {@code (a...)}. |
|
* These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed. |
|
* (Since init functions do not accept iteration variables {@code v}, any parameter to an |
|
* init function is automatically a loop parameter {@code a}.) |
|
* As with iteration variables, clause functions are allowed but not required to accept loop parameters. |
|
* These loop parameters act as loop-invariant values visible across the whole loop. |
|
* <p> |
|
* <em>Parameters visible everywhere:</em> |
|
* Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full |
|
* list {@code (v... a...)} of current iteration variable values and incoming loop parameters. |
|
* The init functions can observe initial pre-loop state, in the form {@code (a...)}. |
|
* Most clause functions will not need all of this information, but they will be formally connected to it |
|
* as if by {@link #dropArguments}. |
|
* <a id="astar"></a> |
|
* More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full |
|
* sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}). |
|
* In that notation, the general form of an init function parameter list |
|
* is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}. |
|
* <p> |
|
* <em>Checking clause structure:</em> |
|
* Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the |
|
* loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must" |
|
* corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not |
|
* met by the inputs to the loop combinator. |
|
* <p> |
|
* <em>Effectively identical sequences:</em> |
|
* <a id="effid"></a> |
|
* A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B} |
|
* if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}. |
|
* When speaking of an unordered set of parameter lists, we say they the set is "effectively identical" |
|
* as a whole if the set contains a longest list, and all members of the set are effectively identical to |
|
* that longest list. |
|
* For example, any set of type sequences of the form {@code (V*)} is effectively identical, |
|
* and the same is true if more sequences of the form {@code (V... A*)} are added. |
|
* <p> |
|
* <em>Step 0: Determine clause structure.</em><ol type="a"> |
|
* <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element. |
|
* <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements. |
|
* <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length |
|
* four. Padding takes place by appending elements to the array. |
|
* <li>Clauses with all {@code null}s are disregarded. |
|
* <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini". |
|
* </ol> |
|
* <p> |
|
* <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a"> |
|
* <li>The iteration variable type for each clause is determined using the clause's init and step return types. |
|
* <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is |
|
* used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's |
|
* iteration variable type. If both are given, the common return type (they must be identical) defines the clause's |
|
* iteration variable type. |
|
* <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}. |
|
* <li>This list of types is called the "iteration variable types" ({@code (V...)}). |
|
* </ol> |
|
* <p> |
|
* <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul> |
|
* <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}). |
|
* <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types. |
|
* (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.) |
|
* <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types. |
|
* (These types will checked in step 2, along with all the clause function types.) |
|
* <li>Omitted clause functions are ignored. (Equivalently, they are deemed to have empty parameter lists.) |
|
* <li>All of the collected parameter lists must be effectively identical. |
|
* <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}). |
|
* <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence. |
|
* <li>The combined list consisting of iteration variable types followed by the external parameter types is called |
|
* the "internal parameter list". |
|
* </ul> |
|
* <p> |
|
* <em>Step 1C: Determine loop return type.</em><ol type="a"> |
|
* <li>Examine fini function return types, disregarding omitted fini functions. |
|
* <li>If there are no fini functions, the loop return type is {@code void}. |
|
* <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return |
|
* type. |
|
* </ol> |
|
* <p> |
|
* <em>Step 1D: Check other types.</em><ol type="a"> |
|
* <li>There must be at least one non-omitted pred function. |
|
* <li>Every non-omitted pred function must have a {@code boolean} return type. |
|
* </ol> |
|
* <p> |
|
* <em>Step 2: Determine parameter lists.</em><ol type="a"> |
|
* <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}. |
|
* <li>The parameter list for init functions will be adjusted to the external parameter list. |
|
* (Note that their parameter lists are already effectively identical to this list.) |
|
* <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be |
|
* effectively identical to the internal parameter list {@code (V... A...)}. |
|
* </ol> |
|
* <p> |
|
* <em>Step 3: Fill in omitted functions.</em><ol type="a"> |
|
* <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable |
|
* type. |
|
* <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration |
|
* variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void} |
|
* iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.) |
|
* <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far |
|
* as this clause is concerned. Note that in such cases the corresponding fini function is unreachable.) |
|
* <li>If a fini function is omitted, use a {@linkplain #empty default value} for the |
|
* loop return type. |
|
* </ol> |
|
* <p> |
|
* <em>Step 4: Fill in missing parameter types.</em><ol type="a"> |
|
* <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)}, |
|
* but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list. |
|
* <li>At this point, every non-init function parameter list is effectively identical to the internal parameter |
|
* list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list, |
|
* pad out the end of the list. |
|
* <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}. |
|
* </ol> |
|
* <p> |
|
* <em>Final observations.</em><ol type="a"> |
|
* <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments. |
|
* <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have. |
|
* <li>All fini functions have a common return type {@code R}, which the final loop handle will also have. |
|
* <li>All non-init functions have a common parameter type list {@code (V... A...)}, of |
|
* (non-{@code void}) iteration variables {@code V} followed by loop parameters. |
|
* <li>Each pair of init and step functions agrees in their return type {@code V}. |
|
* <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables. |
|
* <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters. |
|
* </ol> |
|
* <p> |
|
* <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property: |
|
* <ul> |
|
* <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}. |
|
* <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters. |
|
* (Only one {@code Pn} has to be non-{@code null}.) |
|
* <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}. |
|
* <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types. |
|
* <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}. |
|
* <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}. |
|
* <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine |
|
* the resulting loop handle's parameter types {@code (A...)}. |
|
* </ul> |
|
* In this example, the loop handle parameters {@code (A...)} were derived from the step functions, |
|
* which is natural if most of the loop computation happens in the steps. For some loops, |
|
* the burden of computation might be heaviest in the pred functions, and so the pred functions |
|
* might need to accept the loop parameter values. For loops with complex exit logic, the fini |
|
* functions might need to accept loop parameters, and likewise for loops with complex entry logic, |
|
* where the init functions will need the extra parameters. For such reasons, the rules for |
|
* determining these parameters are as symmetric as possible, across all clause parts. |
|
* In general, the loop parameters function as common invariant values across the whole |
|
* loop, while the iteration variables function as common variant values, or (if there is |
|
* no step function) as internal loop invariant temporaries. |
|
* <p> |
|
* <em>Loop execution.</em><ol type="a"> |
|
* <li>When the loop is called, the loop input values are saved in locals, to be passed to |
|
* every clause function. These locals are loop invariant. |
|
* <li>Each init function is executed in clause order (passing the external arguments {@code (a...)}) |
|
* and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals. |
|
* These locals will be loop varying (unless their steps behave as identity functions, as noted above). |
|
* <li>All function executions (except init functions) will be passed the internal parameter list, consisting of |
|
* the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)} |
|
* (in argument order). |
|
* <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function |
|
* returns {@code false}. |
|
* <li>The non-{@code void} result from a step function call is used to update the corresponding value in the |
|
* sequence {@code (v...)} of loop variables. |
|
* The updated value is immediately visible to all subsequent function calls. |
|
* <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value |
|
* (of type {@code R}) is returned from the loop as a whole. |
|
* <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit |
|
* except by throwing an exception. |
|
* </ol> |
|
* <p> |
|
* <em>Usage tips.</em> |
|
* <ul> |
|
* <li>Although each step function will receive the current values of <em>all</em> the loop variables, |
|
* sometimes a step function only needs to observe the current value of its own variable. |
|
* In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}. |
|
* This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}. |
|
* <li>Loop variables are not required to vary; they can be loop invariant. A clause can create |
|
* a loop invariant by a suitable init function with no step, pred, or fini function. This may be |
|
* useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable. |
|
* <li>If some of the clause functions are virtual methods on an instance, the instance |
|
* itself can be conveniently placed in an initial invariant loop "variable", using an initial clause |
|
* like {@code new MethodHandle[]{identity(ObjType.class)}}. In that case, the instance reference |
|
* will be the first iteration variable value, and it will be easy to use virtual |
|
* methods as clause parts, since all of them will take a leading instance reference matching that value. |
|
* </ul> |
|
* <p> |
|
* Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types |
|
* and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop; |
|
* and {@code R} is the common result type of all finalizers as well as of the resulting loop. |
|
* <blockquote><pre>{@code |
|
* V... init...(A...); |
|
* boolean pred...(V..., A...); |
|
* V... step...(V..., A...); |
|
* R fini...(V..., A...); |
|
* R loop(A... a) { |
|
* V... v... = init...(a...); |
|
* for (;;) { |
|
* for ((v, p, s, f) in (v..., pred..., step..., fini...)) { |
|
* v = s(v..., a...); |
|
* if (!p(v..., a...)) { |
|
* return f(v..., a...); |
|
* } |
|
* } |
|
* } |
|
* } |
|
* }</pre></blockquote> |
|
* Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded |
|
* to their full length, even though individual clause functions may neglect to take them all. |
|
* As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}. |
|
* |
|
* @apiNote Example: |
|
* <blockquote><pre>{@code |
|
* // iterative implementation of the factorial function as a loop handle |
|
* static int one(int k) { return 1; } |
|
* static int inc(int i, int acc, int k) { return i + 1; } |
|
* static int mult(int i, int acc, int k) { return i * acc; } |
|
* static boolean pred(int i, int acc, int k) { return i < k; } |
|
* static int fin(int i, int acc, int k) { return acc; } |
|
* // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods |
|
* // null initializer for counter, should initialize to 0 |
|
* MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; |
|
* MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; |
|
* MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause); |
|
* assertEquals(120, loop.invoke(5)); |
|
* }</pre></blockquote> |
|
* The same example, dropping arguments and using combinators: |
|
* <blockquote><pre>{@code |
|
* // simplified implementation of the factorial function as a loop handle |
|
* static int inc(int i) { return i + 1; } // drop acc, k |
|
* static int mult(int i, int acc) { return i * acc; } //drop k |
|
* static boolean cmp(int i, int k) { return i < k; } |
|
* // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods |
|
* // null initializer for counter, should initialize to 0 |
|
* MethodHandle MH_one = MethodHandles.constant(int.class, 1); |
|
* MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc |
|
* MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i |
|
* MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; |
|
* MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; |
|
* MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause); |
|
* assertEquals(720, loop.invoke(6)); |
|
* }</pre></blockquote> |
|
* A similar example, using a helper object to hold a loop parameter: |
|
* <blockquote><pre>{@code |
|
* // instance-based implementation of the factorial function as a loop handle |
|
* static class FacLoop { |
|
* final int k; |
|
* FacLoop(int k) { this.k = k; } |
|
* int inc(int i) { return i + 1; } |
|
* int mult(int i, int acc) { return i * acc; } |
|
* boolean pred(int i) { return i < k; } |
|
* int fin(int i, int acc) { return acc; } |
|
* } |
|
* // assume MH_FacLoop is a handle to the constructor |
|
* // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods |
|
* // null initializer for counter, should initialize to 0 |
|
* MethodHandle MH_one = MethodHandles.constant(int.class, 1); |
|
* MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop}; |
|
* MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; |
|
* MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; |
|
* MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause); |
|
* assertEquals(5040, loop.invoke(7)); |
|
* }</pre></blockquote> |
|
* |
|
* @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above. |
|
* |
|
* @return a method handle embodying the looping behavior as defined by the arguments. |
|
* |
|
* @throws IllegalArgumentException in case any of the constraints described above is violated. |
|
* |
|
* @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle) |
|
* @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle) |
|
* @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle) |
|
* @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle) |
|
* @since 9 |
|
*/ |
|
public static MethodHandle loop(MethodHandle[]... clauses) { |
|
// Step 0: determine clause structure. |
|
loopChecks0(clauses); |
|
List<MethodHandle> init = new ArrayList<>(); |
|
List<MethodHandle> step = new ArrayList<>(); |
|
List<MethodHandle> pred = new ArrayList<>(); |
|
List<MethodHandle> fini = new ArrayList<>(); |
|
Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> { |
|
init.add(clause[0]); // all clauses have at least length 1 |
|
step.add(clause.length <= 1 ? null : clause[1]); |
|
pred.add(clause.length <= 2 ? null : clause[2]); |
|
fini.add(clause.length <= 3 ? null : clause[3]); |
|
}); |
|
assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1; |
|
final int nclauses = init.size(); |
|
// Step 1A: determine iteration variables (V...). |
|
final List<Class<?>> iterationVariableTypes = new ArrayList<>(); |
|
for (int i = 0; i < nclauses; ++i) { |
|
MethodHandle in = init.get(i); |
|
MethodHandle st = step.get(i); |
|
if (in == null && st == null) { |
|
iterationVariableTypes.add(void.class); |
|
} else if (in != null && st != null) { |
|
loopChecks1a(i, in, st); |
|
iterationVariableTypes.add(in.type().returnType()); |
|
} else { |
|
iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType()); |
|
} |
|
} |
|
final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class). |
|
collect(Collectors.toList()); |
|
// Step 1B: determine loop parameters (A...). |
|
final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size()); |
|
loopChecks1b(init, commonSuffix); |
|
// Step 1C: determine loop return type. |
|
// Step 1D: check other types. |
|
final Class<?> loopReturnType = fini.stream().filter(Objects::nonNull).map(MethodHandle::type). |
|
map(MethodType::returnType).findFirst().orElse(void.class); |
|
loopChecks1cd(pred, fini, loopReturnType); |
|
// Step 2: determine parameter lists. |
|
final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix); |
|
commonParameterSequence.addAll(commonSuffix); |
|
loopChecks2(step, pred, fini, commonParameterSequence); |
|
// Step 3: fill in omitted functions. |
|
for (int i = 0; i < nclauses; ++i) { |
|
Class<?> t = iterationVariableTypes.get(i); |
|
if (init.get(i) == null) { |
|
init.set(i, empty(methodType(t, commonSuffix))); |
|
} |
|
if (step.get(i) == null) { |
|
step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i)); |
|
} |
|
if (pred.get(i) == null) { |
|
pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence)); |
|
} |
|
if (fini.get(i) == null) { |
|
fini.set(i, empty(methodType(t, commonParameterSequence))); |
|
} |
|
} |
|
// Step 4: fill in missing parameter types. |
|
// Also convert all handles to fixed-arity handles. |
|
List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix)); |
|
List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence)); |
|
List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence)); |
|
List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence)); |
|
assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList). |
|
allMatch(pl -> pl.equals(commonSuffix)); |
|
assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList). |
|
allMatch(pl -> pl.equals(commonParameterSequence)); |
|
return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini); |
|
} |
|
private static void loopChecks0(MethodHandle[][] clauses) { |
|
if (clauses == null || clauses.length == 0) { |
|
throw newIllegalArgumentException("null or no clauses passed"); |
|
} |
|
if (Stream.of(clauses).anyMatch(Objects::isNull)) { |
|
throw newIllegalArgumentException("null clauses are not allowed"); |
|
} |
|
if (Stream.of(clauses).anyMatch(c -> c.length > 4)) { |
|
throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements."); |
|
} |
|
} |
|
private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) { |
|
if (in.type().returnType() != st.type().returnType()) { |
|
throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(), |
|
st.type().returnType()); |
|
} |
|
} |
|
private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) { |
|
final List<Class<?>> empty = List.of(); |
|
final List<Class<?>> longest = mhs.filter(Objects::nonNull). |
|
// take only those that can contribute to a common suffix because they are longer than the prefix |
|
map(MethodHandle::type). |
|
filter(t -> t.parameterCount() > skipSize). |
|
map(MethodType::parameterList). |
|
reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty); |
|
return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size()); |
|
} |
|
private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) { |
|
final List<Class<?>> empty = List.of(); |
|
return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty); |
|
} |
|
private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) { |
|
final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize); |
|
final List<Class<?>> longest2 = longestParameterList(init.stream(), 0); |
|
return longestParameterList(Arrays.asList(longest1, longest2)); |
|
} |
|
private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) { |
|
if (init.stream().filter(Objects::nonNull).map(MethodHandle::type). |
|
anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) { |
|
throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init + |
|
" (common suffix: " + commonSuffix + ")"); |
|
} |
|
} |
|
private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) { |
|
if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType). |
|
anyMatch(t -> t != loopReturnType)) { |
|
throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " + |
|
loopReturnType + ")"); |
|
} |
|
if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) { |
|
throw newIllegalArgumentException("no predicate found", pred); |
|
} |
|
if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType). |
|
anyMatch(t -> t != boolean.class)) { |
|
throw newIllegalArgumentException("predicates must have boolean return type", pred); |
|
} |
|
} |
|
private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) { |
|
if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type). |
|
anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) { |
|
throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step + |
|
"\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")"); |
|
} |
|
} |
|
private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) { |
|
return hs.stream().map(h -> { |
|
int pc = h.type().parameterCount(); |
|
int tpsize = targetParams.size(); |
|
return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h; |
|
}).collect(Collectors.toList()); |
|
} |
|
private static List<MethodHandle> fixArities(List<MethodHandle> hs) { |
|
return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList()); |
|
} |
|
/** |
|
* Constructs a {@code while} loop from an initializer, a body, and a predicate. |
|
* This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. |
|
* <p> |
|
* The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this |
|
* method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate |
|
* evaluates to {@code true}). |
|
* The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case). |
|
* <p> |
|
* The {@code init} handle describes the initial value of an additional optional loop-local variable. |
|
* In each iteration, this loop-local variable, if present, will be passed to the {@code body} |
|
* and updated with the value returned from its invocation. The result of loop execution will be |
|
* the final value of the additional loop-local variable (if present). |
|
* <p> |
|
* The following rules hold for these argument handles:<ul> |
|
* <li>The {@code body} handle must not be {@code null}; its type must be of the form |
|
* {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}. |
|
* (In the {@code void} case, we assign the type {@code void} to the name {@code V}, |
|
* and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V} |
|
* is quietly dropped from the parameter list, leaving {@code (A...)V}.) |
|
* <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>. |
|
* It will constrain the parameter lists of the other loop parts. |
|
* <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter |
|
* list {@code (A...)} is called the <em>external parameter list</em>. |
|
* <li>The body return type {@code V}, if non-{@code void}, determines the type of an |
|
* additional state variable of the loop. |
|
* The body must both accept and return a value of this type {@code V}. |
|
* <li>If {@code init} is non-{@code null}, it must have return type {@code V}. |
|
* Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be |
|
* <a href="MethodHandles.html#effid">effectively identical</a> |
|
* to the external parameter list {@code (A...)}. |
|
* <li>If {@code init} is {@code null}, the loop variable will be initialized to its |
|
* {@linkplain #empty default value}. |
|
* <li>The {@code pred} handle must not be {@code null}. It must have {@code boolean} as its return type. |
|
* Its parameter list (either empty or of the form {@code (V A*)}) must be |
|
* effectively identical to the internal parameter list. |
|
* </ul> |
|
* <p> |
|
* The resulting loop handle's result type and parameter signature are determined as follows:<ul> |
|
* <li>The loop handle's result type is the result type {@code V} of the body. |
|
* <li>The loop handle's parameter types are the types {@code (A...)}, |
|
* from the external parameter list. |
|
* </ul> |
|
* <p> |
|
* Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of |
|
* the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument |
|
* passed to the loop. |
|
* <blockquote><pre>{@code |
|
* V init(A...); |
|
* boolean pred(V, A...); |
|
* V body(V, A...); |
|
* V whileLoop(A... a...) { |
|
* V v = init(a...); |
|
* while (pred(v, a...)) { |
|
* v = body(v, a...); |
|
* } |
|
* return v; |
|
* } |
|
* }</pre></blockquote> |
|
* |
|
* @apiNote Example: |
|
* <blockquote><pre>{@code |
|
* // implement the zip function for lists as a loop handle |
|
* static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); } |
|
* static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); } |
|
* static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) { |
|
* zip.add(a.next()); |
|
* zip.add(b.next()); |
|
* return zip; |
|
* } |
|
* // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods |
|
* MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep); |
|
* List<String> a = Arrays.asList("a", "b", "c", "d"); |
|
* List<String> b = Arrays.asList("e", "f", "g", "h"); |
|
* List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h"); |
|
* assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator())); |
|
* }</pre></blockquote> |
|
* |
|
* |
|
* @apiNote The implementation of this method can be expressed as follows: |
|
* <blockquote><pre>{@code |
|
* MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) { |
|
* MethodHandle fini = (body.type().returnType() == void.class |
|
* ? null : identity(body.type().returnType())); |
|
* MethodHandle[] |
|
* checkExit = { null, null, pred, fini }, |
|
* varBody = { init, body }; |
|
* return loop(checkExit, varBody); |
|
* } |
|
* }</pre></blockquote> |
|
* |
|
* @param init optional initializer, providing the initial value of the loop variable. |
|
* May be {@code null}, implying a default initial value. See above for other constraints. |
|
* @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See |
|
* above for other constraints. |
|
* @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type. |
|
* See above for other constraints. |
|
* |
|
* @return a method handle implementing the {@code while} loop as described by the arguments. |
|
* @throws IllegalArgumentException if the rules for the arguments are violated. |
|
* @throws NullPointerException if {@code pred} or {@code body} are {@code null}. |
|
* |
|
* @see #loop(MethodHandle[][]) |
|
* @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle) |
|
* @since 9 |
|
*/ |
|
public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) { |
|
whileLoopChecks(init, pred, body); |
|
MethodHandle fini = identityOrVoid(body.type().returnType()); |
|
MethodHandle[] checkExit = { null, null, pred, fini }; |
|
MethodHandle[] varBody = { init, body }; |
|
return loop(checkExit, varBody); |
|
} |
|
/** |
|
* Constructs a {@code do-while} loop from an initializer, a body, and a predicate. |
|
* This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. |
|
* <p> |
|
* The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this |
|
* method will, in each iteration, first execute its body and then evaluate the predicate. |
|
* The loop will terminate once the predicate evaluates to {@code false} after an execution of the body. |
|
* <p> |
|
* The {@code init} handle describes the initial value of an additional optional loop-local variable. |
|
* In each iteration, this loop-local variable, if present, will be passed to the {@code body} |
|
* and updated with the value returned from its invocation. The result of loop execution will be |
|
* the final value of the additional loop-local variable (if present). |
|
* <p> |
|
* The following rules hold for these argument handles:<ul> |
|
* <li>The {@code body} handle must not be {@code null}; its type must be of the form |
|
* {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}. |
|
* (In the {@code void} case, we assign the type {@code void} to the name {@code V}, |
|
* and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V} |
|
* is quietly dropped from the parameter list, leaving {@code (A...)V}.) |
|
* <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>. |
|
* It will constrain the parameter lists of the other loop parts. |
|
* <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter |
|
* list {@code (A...)} is called the <em>external parameter list</em>. |
|
* <li>The body return type {@code V}, if non-{@code void}, determines the type of an |
|
* additional state variable of the loop. |
|
* The body must both accept and return a value of this type {@code V}. |
|
* <li>If {@code init} is non-{@code null}, it must have return type {@code V}. |
|
* Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be |
|
* <a href="MethodHandles.html#effid">effectively identical</a> |
|
* to the external parameter list {@code (A...)}. |
|
* <li>If {@code init} is {@code null}, the loop variable will be initialized to its |
|
* {@linkplain #empty default value}. |
|
* <li>The {@code pred} handle must not be {@code null}. It must have {@code boolean} as its return type. |
|
* Its parameter list (either empty or of the form {@code (V A*)}) must be |
|
* effectively identical to the internal parameter list. |
|
* </ul> |
|
* <p> |
|
* The resulting loop handle's result type and parameter signature are determined as follows:<ul> |
|
* <li>The loop handle's result type is the result type {@code V} of the body. |
|
* <li>The loop handle's parameter types are the types {@code (A...)}, |
|
* from the external parameter list. |
|
* </ul> |
|
* <p> |
|
* Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of |
|
* the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument |
|
* passed to the loop. |
|
* <blockquote><pre>{@code |
|
* V init(A...); |
|
* boolean pred(V, A...); |
|
* V body(V, A...); |
|
* V doWhileLoop(A... a...) { |
|
* V v = init(a...); |
|
* do { |
|
* v = body(v, a...); |
|
* } while (pred(v, a...)); |
|
* return v; |
|
* } |
|
* }</pre></blockquote> |
|
* |
|
* @apiNote Example: |
|
* <blockquote><pre>{@code |
|
* // int i = 0; while (i < limit) { ++i; } return i; => limit |
|
* static int zero(int limit) { return 0; } |
|
* static int step(int i, int limit) { return i + 1; } |
|
* static boolean pred(int i, int limit) { return i < limit; } |
|
* // assume MH_zero, MH_step, and MH_pred are handles to the above methods |
|
* MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred); |
|
* assertEquals(23, loop.invoke(23)); |
|
* }</pre></blockquote> |
|
* |
|
* |
|
* @apiNote The implementation of this method can be expressed as follows: |
|
* <blockquote><pre>{@code |
|
* MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) { |
|
* MethodHandle fini = (body.type().returnType() == void.class |
|
* ? null : identity(body.type().returnType())); |
|
* MethodHandle[] clause = { init, body, pred, fini }; |
|
* return loop(clause); |
|
* } |
|
* }</pre></blockquote> |
|
* |
|
* @param init optional initializer, providing the initial value of the loop variable. |
|
* May be {@code null}, implying a default initial value. See above for other constraints. |
|
* @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type. |
|
* See above for other constraints. |
|
* @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See |
|
* above for other constraints. |
|
* |
|
* @return a method handle implementing the {@code while} loop as described by the arguments. |
|
* @throws IllegalArgumentException if the rules for the arguments are violated. |
|
* @throws NullPointerException if {@code pred} or {@code body} are {@code null}. |
|
* |
|
* @see #loop(MethodHandle[][]) |
|
* @see #whileLoop(MethodHandle, MethodHandle, MethodHandle) |
|
* @since 9 |
|
*/ |
|
public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) { |
|
whileLoopChecks(init, pred, body); |
|
MethodHandle fini = identityOrVoid(body.type().returnType()); |
|
MethodHandle[] clause = {init, body, pred, fini }; |
|
return loop(clause); |
|
} |
|
private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) { |
|
Objects.requireNonNull(pred); |
|
Objects.requireNonNull(body); |
|
MethodType bodyType = body.type(); |
|
Class<?> returnType = bodyType.returnType(); |
|
List<Class<?>> innerList = bodyType.parameterList(); |
|
List<Class<?>> outerList = innerList; |
|
if (returnType == void.class) { |
|
// OK |
|
} else if (innerList.size() == 0 || innerList.get(0) != returnType) { |
|
// leading V argument missing => error |
|
MethodType expected = bodyType.insertParameterTypes(0, returnType); |
|
throw misMatchedTypes("body function", bodyType, expected); |
|
} else { |
|
outerList = innerList.subList(1, innerList.size()); |
|
} |
|
MethodType predType = pred.type(); |
|
if (predType.returnType() != boolean.class || |
|
!predType.effectivelyIdenticalParameters(0, innerList)) { |
|
throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList)); |
|
} |
|
if (init != null) { |
|
MethodType initType = init.type(); |
|
if (initType.returnType() != returnType || |
|
!initType.effectivelyIdenticalParameters(0, outerList)) { |
|
throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList)); |
|
} |
|
} |
|
} |
|
/** |
|
* Constructs a loop that runs a given number of iterations. |
|
* This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. |
|
* <p> |
|
* The number of iterations is determined by the {@code iterations} handle evaluation result. |
|
* The loop counter {@code i} is an extra loop iteration variable of type {@code int}. |
|
* It will be initialized to 0 and incremented by 1 in each iteration. |
|
* <p> |
|
* If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable |
|
* of that type is also present. This variable is initialized using the optional {@code init} handle, |
|
* or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. |
|
* <p> |
|
* In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. |
|
* A non-{@code void} value returned from the body (of type {@code V}) updates the leading |
|
* iteration variable. |
|
* The result of the loop handle execution will be the final {@code V} value of that variable |
|
* (or {@code void} if there is no {@code V} variable). |
|
* <p> |
|
* The following rules hold for the argument handles:<ul> |
|
* <li>The {@code iterations} handle must not be {@code null}, and must return |
|
* the type {@code int}, referred to here as {@code I} in parameter type lists. |
|
* <li>The {@code body} handle must not be {@code null}; its type must be of the form |
|
* {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}. |
|
* (In the {@code void} case, we assign the type {@code void} to the name {@code V}, |
|
* and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V} |
|
* is quietly dropped from the parameter list, leaving {@code (I A...)V}.) |
|
* <li>The parameter list {@code (V I A...)} of the body contributes to a list |
|
* of types called the <em>internal parameter list</em>. |
|
* It will constrain the parameter lists of the other loop parts. |
|
* <li>As a special case, if the body contributes only {@code V} and {@code I} types, |
|
* with no additional {@code A} types, then the internal parameter list is extended by |
|
* the argument types {@code A...} of the {@code iterations} handle. |
|
* <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter |
|
* list {@code (A...)} is called the <em>external parameter list</em>. |
|
* <li>The body return type {@code V}, if non-{@code void}, determines the type of an |
|
* additional state variable of the loop. |
|
* The body must both accept a leading parameter and return a value of this type {@code V}. |
|
* <li>If {@code init} is non-{@code null}, it must have return type {@code V}. |
|
* Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be |
|
* <a href="MethodHandles.html#effid">effectively identical</a> |
|
* to the external parameter list {@code (A...)}. |
|
* <li>If {@code init} is {@code null}, the loop variable will be initialized to its |
|
* {@linkplain #empty default value}. |
|
* <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be |
|
* effectively identical to the external parameter list {@code (A...)}. |
|
* </ul> |
|
* <p> |
|
* The resulting loop handle's result type and parameter signature are determined as follows:<ul> |
|
* <li>The loop handle's result type is the result type {@code V} of the body. |
|
* <li>The loop handle's parameter types are the types {@code (A...)}, |
|
* from the external parameter list. |
|
* </ul> |
|
* <p> |
|
* Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of |
|
* the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent |
|
* arguments passed to the loop. |
|
* <blockquote><pre>{@code |
|
* int iterations(A...); |
|
* V init(A...); |
|
* V body(V, int, A...); |
|
* V countedLoop(A... a...) { |
|
* int end = iterations(a...); |
|
* V v = init(a...); |
|
* for (int i = 0; i < end; ++i) { |
|
* v = body(v, i, a...); |
|
* } |
|
* return v; |
|
* } |
|
* }</pre></blockquote> |
|
* |
|
* @apiNote Example with a fully conformant body method: |
|
* <blockquote><pre>{@code |
|
* // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s; |
|
* // => a variation on a well known theme |
|
* static String step(String v, int counter, String init) { return "na " + v; } |
|
* // assume MH_step is a handle to the method above |
|
* MethodHandle fit13 = MethodHandles.constant(int.class, 13); |
|
* MethodHandle start = MethodHandles.identity(String.class); |
|
* MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step); |
|
* assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!")); |
|
* }</pre></blockquote> |
|
* |
|
* @apiNote Example with the simplest possible body method type, |
|
* and passing the number of iterations to the loop invocation: |
|
* <blockquote><pre>{@code |
|
* // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s; |
|
* // => a variation on a well known theme |
|
* static String step(String v, int counter ) { return "na " + v; } |
|
* // assume MH_step is a handle to the method above |
|
* MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class); |
|
* MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class); |
|
* MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step); // (v, i) -> "na " + v |
|
* assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!")); |
|
* }</pre></blockquote> |
|
* |
|
* @apiNote Example that treats the number of iterations, string to append to, and string to append |
|
* as loop parameters: |
|
* <blockquote><pre>{@code |
|
* // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s; |
|
* // => a variation on a well known theme |
|
* static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; } |
|
* // assume MH_step is a handle to the method above |
|
* MethodHandle count = MethodHandles.identity(int.class); |
|
* MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class); |
|
* MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step); // (v, i, _, pre, _) -> pre + " " + v |
|
* assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!")); |
|
* }</pre></blockquote> |
|
* |
|
* @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)} |
|
* to enforce a loop type: |
|
* <blockquote><pre>{@code |
|
* // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s; |
|
* // => a variation on a well known theme |
|
* static String step(String v, int counter, String pre) { return pre + " " + v; } |
|
* // assume MH_step is a handle to the method above |
|
* MethodType loopType = methodType(String.class, String.class, int.class, String.class); |
|
* MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class), 0, loopType.parameterList(), 1); |
|
* MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2); |
|
* MethodHandle body = MethodHandles.dropArgumentsToMatch(MH_step, 2, loopType.parameterList(), 0); |
|
* MethodHandle loop = MethodHandles.countedLoop(count, start, body); // (v, i, pre, _, _) -> pre + " " + v |
|
* assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!")); |
|
* }</pre></blockquote> |
|
* |
|
* @apiNote The implementation of this method can be expressed as follows: |
|
* <blockquote><pre>{@code |
|
* MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) { |
|
* return countedLoop(empty(iterations.type()), iterations, init, body); |
|
* } |
|
* }</pre></blockquote> |
|
* |
|
* @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's |
|
* result type must be {@code int}. See above for other constraints. |
|
* @param init optional initializer, providing the initial value of the loop variable. |
|
* May be {@code null}, implying a default initial value. See above for other constraints. |
|
* @param body body of the loop, which may not be {@code null}. |
|
* It controls the loop parameters and result type in the standard case (see above for details). |
|
* It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter), |
|
* and may accept any number of additional types. |
|
* See above for other constraints. |
|
* |
|
* @return a method handle representing the loop. |
|
* @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}. |
|
* @throws IllegalArgumentException if any argument violates the rules formulated above. |
|
* |
|
* @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle) |
|
* @since 9 |
|
*/ |
|
public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) { |
|
return countedLoop(empty(iterations.type()), iterations, init, body); |
|
} |
|
/** |
|
* Constructs a loop that counts over a range of numbers. |
|
* This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. |
|
* <p> |
|
* The loop counter {@code i} is a loop iteration variable of type {@code int}. |
|
* The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive) |
|
* values of the loop counter. |
|
* The loop counter will be initialized to the {@code int} value returned from the evaluation of the |
|
* {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1. |
|
* <p> |
|
* If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable |
|
* of that type is also present. This variable is initialized using the optional {@code init} handle, |
|
* or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. |
|
* <p> |
|
* In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. |
|
* A non-{@code void} value returned from the body (of type {@code V}) updates the leading |
|
* iteration variable. |
|
* The result of the loop handle execution will be the final {@code V} value of that variable |
|
* (or {@code void} if there is no {@code V} variable). |
|
* <p> |
|
* The following rules hold for the argument handles:<ul> |
|
* <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return |
|
* the common type {@code int}, referred to here as {@code I} in parameter type lists. |
|
* <li>The {@code body} handle must not be {@code null}; its type must be of the form |
|
* {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}. |
|
* (In the {@code void} case, we assign the type {@code void} to the name {@code V}, |
|
* and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V} |
|
* is quietly dropped from the parameter list, leaving {@code (I A...)V}.) |
|
* <li>The parameter list {@code (V I A...)} of the body contributes to a list |
|
* of types called the <em>internal parameter list</em>. |
|
* It will constrain the parameter lists of the other loop parts. |
|
* <li>As a special case, if the body contributes only {@code V} and {@code I} types, |
|
* with no additional {@code A} types, then the internal parameter list is extended by |
|
* the argument types {@code A...} of the {@code end} handle. |
|
* <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter |
|
* list {@code (A...)} is called the <em>external parameter list</em>. |
|
* <li>The body return type {@code V}, if non-{@code void}, determines the type of an |
|
* additional state variable of the loop. |
|
* The body must both accept a leading parameter and return a value of this type {@code V}. |
|
* <li>If {@code init} is non-{@code null}, it must have return type {@code V}. |
|
* Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be |
|
* <a href="MethodHandles.html#effid">effectively identical</a> |
|
* to the external parameter list {@code (A...)}. |
|
* <li>If {@code init} is {@code null}, the loop variable will be initialized to its |
|
* {@linkplain #empty default value}. |
|
* <li>The parameter list of {@code start} (of some form {@code (A*)}) must be |
|
* effectively identical to the external parameter list {@code (A...)}. |
|
* <li>Likewise, the parameter list of {@code end} must be effectively identical |
|
* to the external parameter list. |
|
* </ul> |
|
* <p> |
|
* The resulting loop handle's result type and parameter signature are determined as follows:<ul> |
|
* <li>The loop handle's result type is the result type {@code V} of the body. |
|
* <li>The loop handle's parameter types are the types {@code (A...)}, |
|
* from the external parameter list. |
|
* </ul> |
|
* <p> |
|
* Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of |
|
* the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent |
|
* arguments passed to the loop. |
|
* <blockquote><pre>{@code |
|
* int start(A...); |
|
* int end(A...); |
|
* V init(A...); |
|
* V body(V, int, A...); |
|
* V countedLoop(A... a...) { |
|
* int e = end(a...); |
|
* int s = start(a...); |
|
* V v = init(a...); |
|
* for (int i = s; i < e; ++i) { |
|
* v = body(v, i, a...); |
|
* } |
|
* return v; |
|
* } |
|
* }</pre></blockquote> |
|
* |
|
* @apiNote The implementation of this method can be expressed as follows: |
|
* <blockquote><pre>{@code |
|
* MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { |
|
* MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class); |
|
* // assume MH_increment and MH_predicate are handles to implementation-internal methods with |
|
* // the following semantics: |
|
* // MH_increment: (int limit, int counter) -> counter + 1 |
|
* // MH_predicate: (int limit, int counter) -> counter < limit |
|
* Class<?> counterType = start.type().returnType(); // int |
|
* Class<?> returnType = body.type().returnType(); |
|
* MethodHandle incr = MH_increment, pred = MH_predicate, retv = null; |
|
* if (returnType != void.class) { // ignore the V variable |
|
* incr = dropArguments(incr, 1, returnType); // (limit, v, i) => (limit, i) |
|
* pred = dropArguments(pred, 1, returnType); // ditto |
|
* retv = dropArguments(identity(returnType), 0, counterType); // ignore limit |
|
* } |
|
* body = dropArguments(body, 0, counterType); // ignore the limit variable |
|
* MethodHandle[] |
|
* loopLimit = { end, null, pred, retv }, // limit = end(); i < limit || return v |
|
* bodyClause = { init, body }, // v = init(); v = body(v, i) |
|
* indexVar = { start, incr }; // i = start(); i = i + 1 |
|
* return loop(loopLimit, bodyClause, indexVar); |
|
* } |
|
* }</pre></blockquote> |
|
* |
|
* @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}. |
|
* See above for other constraints. |
|
* @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to |
|
* {@code end-1}). The result type must be {@code int}. See above for other constraints. |
|
* @param init optional initializer, providing the initial value of the loop variable. |
|
* May be {@code null}, implying a default initial value. See above for other constraints. |
|
* @param body body of the loop, which may not be {@code null}. |
|
* It controls the loop parameters and result type in the standard case (see above for details). |
|
* It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter), |
|
* and may accept any number of additional types. |
|
* See above for other constraints. |
|
* |
|
* @return a method handle representing the loop. |
|
* @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}. |
|
* @throws IllegalArgumentException if any argument violates the rules formulated above. |
|
* |
|
* @see #countedLoop(MethodHandle, MethodHandle, MethodHandle) |
|
* @since 9 |
|
*/ |
|
public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { |
|
countedLoopChecks(start, end, init, body); |
|
Class<?> counterType = start.type().returnType(); // int, but who's counting? |
|
Class<?> limitType = end.type().returnType(); // yes, int again |
|
Class<?> returnType = body.type().returnType(); |
|
MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep); |
|
MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred); |
|
MethodHandle retv = null; |
|
if (returnType != void.class) { |
|
incr = dropArguments(incr, 1, returnType); // (limit, v, i) => (limit, i) |
|
pred = dropArguments(pred, 1, returnType); // ditto |
|
retv = dropArguments(identity(returnType), 0, counterType); |
|
} |
|
body = dropArguments(body, 0, counterType); // ignore the limit variable |
|
MethodHandle[] |
|
loopLimit = { end, null, pred, retv }, // limit = end(); i < limit || return v |
|
bodyClause = { init, body }, // v = init(); v = body(v, i) |
|
indexVar = { start, incr }; // i = start(); i = i + 1 |
|
return loop(loopLimit, bodyClause, indexVar); |
|
} |
|
private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { |
|
Objects.requireNonNull(start); |
|
Objects.requireNonNull(end); |
|
Objects.requireNonNull(body); |
|
Class<?> counterType = start.type().returnType(); |
|
if (counterType != int.class) { |
|
MethodType expected = start.type().changeReturnType(int.class); |
|
throw misMatchedTypes("start function", start.type(), expected); |
|
} else if (end.type().returnType() != counterType) { |
|
MethodType expected = end.type().changeReturnType(counterType); |
|
throw misMatchedTypes("end function", end.type(), expected); |
|
} |
|
MethodType bodyType = body.type(); |
|
Class<?> returnType = bodyType.returnType(); |
|
List<Class<?>> innerList = bodyType.parameterList(); |
|
// strip leading V value if present |
|
int vsize = (returnType == void.class ? 0 : 1); |
|
if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) { |
|
// argument list has no "V" => error |
|
MethodType expected = bodyType.insertParameterTypes(0, returnType); |
|
throw misMatchedTypes("body function", bodyType, expected); |
|
} else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) { |
|
// missing I type => error |
|
MethodType expected = bodyType.insertParameterTypes(vsize, counterType); |
|
throw misMatchedTypes("body function", bodyType, expected); |
|
} |
|
List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size()); |
|
if (outerList.isEmpty()) { |
|
// special case; take lists from end handle |
|
outerList = end.type().parameterList(); |
|
innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList(); |
|
} |
|
MethodType expected = methodType(counterType, outerList); |
|
if (!start.type().effectivelyIdenticalParameters(0, outerList)) { |
|
throw misMatchedTypes("start parameter types", start.type(), expected); |
|
} |
|
if (end.type() != start.type() && |
|
!end.type().effectivelyIdenticalParameters(0, outerList)) { |
|
throw misMatchedTypes("end parameter types", end.type(), expected); |
|
} |
|
if (init != null) { |
|
MethodType initType = init.type(); |
|
if (initType.returnType() != returnType || |
|
!initType.effectivelyIdenticalParameters(0, outerList)) { |
|
throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList)); |
|
} |
|
} |
|
} |
|
/** |
|
* Constructs a loop that ranges over the values produced by an {@code Iterator<T>}. |
|
* This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. |
|
* <p> |
|
* The iterator itself will be determined by the evaluation of the {@code iterator} handle. |
|
* Each value it produces will be stored in a loop iteration variable of type {@code T}. |
|
* <p> |
|
* If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable |
|
* of that type is also present. This variable is initialized using the optional {@code init} handle, |
|
* or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. |
|
* <p> |
|
* In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. |
|
* A non-{@code void} value returned from the body (of type {@code V}) updates the leading |
|
* iteration variable. |
|
* The result of the loop handle execution will be the final {@code V} value of that variable |
|
* (or {@code void} if there is no {@code V} variable). |
|
* <p> |
|
* The following rules hold for the argument handles:<ul> |
|
* <li>The {@code body} handle must not be {@code null}; its type must be of the form |
|
* {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}. |
|
* (In the {@code void} case, we assign the type {@code void} to the name {@code V}, |
|
* and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V} |
|
* is quietly dropped from the parameter list, leaving {@code (T A...)V}.) |
|
* <li>The parameter list {@code (V T A...)} of the body contributes to a list |
|
* of types called the <em>internal parameter list</em>. |
|
* It will constrain the parameter lists of the other loop parts. |
|
* <li>As a special case, if the body contributes only {@code V} and {@code T} types, |
|
* with no additional {@code A} types, then the internal parameter list is extended by |
|
* the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the |
|
* single type {@code Iterable} is added and constitutes the {@code A...} list. |
|
* <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter |
|
* list {@code (A...)} is called the <em>external parameter list</em>. |
|
* <li>The body return type {@code V}, if non-{@code void}, determines the type of an |
|
* additional state variable of the loop. |
|
* The body must both accept a leading parameter and return a value of this type {@code V}. |
|
* <li>If {@code init} is non-{@code null}, it must have return type {@code V}. |
|
* Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be |
|
* <a href="MethodHandles.html#effid">effectively identical</a> |
|
* to the external parameter list {@code (A...)}. |
|
* <li>If {@code init} is {@code null}, the loop variable will be initialized to its |
|
* {@linkplain #empty default value}. |
|
* <li>If the {@code iterator} handle is non-{@code null}, it must have the return |
|
* type {@code java.util.Iterator} or a subtype thereof. |
|
* The iterator it produces when the loop is executed will be assumed |
|
* to yield values which can be converted to type {@code T}. |
|
* <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be |
|
* effectively identical to the external parameter list {@code (A...)}. |
|
* <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves |
|
* like {@link java.lang.Iterable#iterator()}. In that case, the internal parameter list |
|
* {@code (V T A...)} must have at least one {@code A} type, and the default iterator |
|
* handle parameter is adjusted to accept the leading {@code A} type, as if by |
|
* the {@link MethodHandle#asType asType} conversion method. |
|
* The leading {@code A} type must be {@code Iterable} or a subtype thereof. |
|
* This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}. |
|
* </ul> |
|
* <p> |
|
* The type {@code T} may be either a primitive or reference. |
|
* Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator}, |
|
* the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object} |
|
* as if by the {@link MethodHandle#asType asType} conversion method. |
|
* Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur |
|
* as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}. |
|
* <p> |
|
* The resulting loop handle's result type and parameter signature are determined as follows:<ul> |
|
* <li>The loop handle's result type is the result type {@code V} of the body. |
|
* <li>The loop handle's parameter types are the types {@code (A...)}, |
|
* from the external parameter list. |
|
* </ul> |
|
* <p> |
|
* Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of |
|
* the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the |
|
* structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop. |
|
* <blockquote><pre>{@code |
|
* Iterator<T> iterator(A...); // defaults to Iterable::iterator |
|
* V init(A...); |
|
* V body(V,T,A...); |
|
* V iteratedLoop(A... a...) { |
|
* Iterator<T> it = iterator(a...); |
|
* V v = init(a...); |
|
* while (it.hasNext()) { |
|
* T t = it.next(); |
|
* v = body(v, t, a...); |
|
* } |
|
* return v; |
|
* } |
|
* }</pre></blockquote> |
|
* |
|
* @apiNote Example: |
|
* <blockquote><pre>{@code |
|
* // get an iterator from a list |
|
* static List<String> reverseStep(List<String> r, String e) { |
|
* r.add(0, e); |
|
* return r; |
|
* } |
|
* static List<String> newArrayList() { return new ArrayList<>(); } |
|
* // assume MH_reverseStep and MH_newArrayList are handles to the above methods |
|
* MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep); |
|
* List<String> list = Arrays.asList("a", "b", "c", "d", "e"); |
|
* List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a"); |
|
* assertEquals(reversedList, (List<String>) loop.invoke(list)); |
|
* }</pre></blockquote> |
|
* |
|
* @apiNote The implementation of this method can be expressed approximately as follows: |
|
* <blockquote><pre>{@code |
|
* MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) { |
|
* // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable |
|
* Class<?> returnType = body.type().returnType(); |
|
* Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1); |
|
* MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype)); |
|
* MethodHandle retv = null, step = body, startIter = iterator; |
|
* if (returnType != void.class) { |
|
* // the simple thing first: in (I V A...), drop the I to get V |
|
* retv = dropArguments(identity(returnType), 0, Iterator.class); |
|
* // body type signature (V T A...), internal loop types (I V A...) |
|
* step = swapArguments(body, 0, 1); // swap V <-> T |
|
* } |
|
* if (startIter == null) startIter = MH_getIter; |
|
* MethodHandle[] |
|
* iterVar = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext()) |
|
* bodyClause = { init, filterArguments(step, 0, nextVal) }; // v = body(v, t, a) |
|
* return loop(iterVar, bodyClause); |
|
* } |
|
* }</pre></blockquote> |
|
* |
|
* @param iterator an optional handle to return the iterator to start the loop. |
|
* If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype. |
|
* See above for other constraints. |
|
* @param init optional initializer, providing the initial value of the loop variable. |
|
* May be {@code null}, implying a default initial value. See above for other constraints. |
|
* @param body body of the loop, which may not be {@code null}. |
|
* It controls the loop parameters and result type in the standard case (see above for details). |
|
* It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values), |
|
* and may accept any number of additional types. |
|
* See above for other constraints. |
|
* |
|
* @return a method handle embodying the iteration loop functionality. |
|
* @throws NullPointerException if the {@code body} handle is {@code null}. |
|
* @throws IllegalArgumentException if any argument violates the above requirements. |
|
* |
|
* @since 9 |
|
*/ |
|
public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) { |
|
Class<?> iterableType = iteratedLoopChecks(iterator, init, body); |
|
Class<?> returnType = body.type().returnType(); |
|
MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred); |
|
MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext); |
|
MethodHandle startIter; |
|
MethodHandle nextVal; |
|
{ |
|
MethodType iteratorType; |
|
if (iterator == null) { |
|
// derive argument type from body, if available, else use Iterable |
|
startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator); |
|
iteratorType = startIter.type().changeParameterType(0, iterableType); |
|
} else { |
|
// force return type to the internal iterator class |
|
iteratorType = iterator.type().changeReturnType(Iterator.class); |
|
startIter = iterator; |
|
} |
|
Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1); |
|
MethodType nextValType = nextRaw.type().changeReturnType(ttype); |
|
// perform the asType transforms under an exception transformer, as per spec.: |
|
try { |
|
startIter = startIter.asType(iteratorType); |
|
nextVal = nextRaw.asType(nextValType); |
|
} catch (WrongMethodTypeException ex) { |
|
throw new IllegalArgumentException(ex); |
|
} |
|
} |
|
MethodHandle retv = null, step = body; |
|
if (returnType != void.class) { |
|
// the simple thing first: in (I V A...), drop the I to get V |
|
retv = dropArguments(identity(returnType), 0, Iterator.class); |
|
// body type signature (V T A...), internal loop types (I V A...) |
|
step = swapArguments(body, 0, 1); // swap V <-> T |
|
} |
|
MethodHandle[] |
|
iterVar = { startIter, null, hasNext, retv }, |
|
bodyClause = { init, filterArgument(step, 0, nextVal) }; |
|
return loop(iterVar, bodyClause); |
|
} |
|
private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) { |
|
Objects.requireNonNull(body); |
|
MethodType bodyType = body.type(); |
|
Class<?> returnType = bodyType.returnType(); |
|
List<Class<?>> internalParamList = bodyType.parameterList(); |
|
// strip leading V value if present |
|
int vsize = (returnType == void.class ? 0 : 1); |
|
if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) { |
|
// argument list has no "V" => error |
|
MethodType expected = bodyType.insertParameterTypes(0, returnType); |
|
throw misMatchedTypes("body function", bodyType, expected); |
|
} else if (internalParamList.size() <= vsize) { |
|
// missing T type => error |
|
MethodType expected = bodyType.insertParameterTypes(vsize, Object.class); |
|
throw misMatchedTypes("body function", bodyType, expected); |
|
} |
|
List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size()); |
|
Class<?> iterableType = null; |
|
if (iterator != null) { |
|
// special case; if the body handle only declares V and T then |
|
// the external parameter list is obtained from iterator handle |
|
if (externalParamList.isEmpty()) { |
|
externalParamList = iterator.type().parameterList(); |
|
} |
|
MethodType itype = iterator.type(); |
|
if (!Iterator.class.isAssignableFrom(itype.returnType())) { |
|
throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type"); |
|
} |
|
if (!itype.effectivelyIdenticalParameters(0, externalParamList)) { |
|
MethodType expected = methodType(itype.returnType(), externalParamList); |
|
throw misMatchedTypes("iterator parameters", itype, expected); |
|
} |
|
} else { |
|
if (externalParamList.isEmpty()) { |
|
// special case; if the iterator handle is null and the body handle |
|
// only declares V and T then the external parameter list consists |
|
// of Iterable |
|
externalParamList = Arrays.asList(Iterable.class); |
|
iterableType = Iterable.class; |
|
} else { |
|
// special case; if the iterator handle is null and the external |
|
// parameter list is not empty then the first parameter must be |
|
// assignable to Iterable |
|
iterableType = externalParamList.get(0); |
|
if (!Iterable.class.isAssignableFrom(iterableType)) { |
|
throw newIllegalArgumentException( |
|
"inferred first loop argument must inherit from Iterable: " + iterableType); |
|
} |
|
} |
|
} |
|
if (init != null) { |
|
MethodType initType = init.type(); |
|
if (initType.returnType() != returnType || |
|
!initType.effectivelyIdenticalParameters(0, externalParamList)) { |
|
throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList)); |
|
} |
|
} |
|
return iterableType; // help the caller a bit |
|
} |
|
/*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) { |
|
// there should be a better way to uncross my wires |
|
int arity = mh.type().parameterCount(); |
|
int[] order = new int[arity]; |
|
for (int k = 0; k < arity; k++) order[k] = k; |
|
order[i] = j; order[j] = i; |
|
Class<?>[] types = mh.type().parameterArray(); |
|
Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti; |
|
MethodType swapType = methodType(mh.type().returnType(), types); |
|
return permuteArguments(mh, swapType, order); |
|
} |
|
/** |
|
* Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block. |
|
* Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception |
|
* thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The |
|
* exception will be rethrown, unless {@code cleanup} handle throws an exception first. The |
|
* value returned from the {@code cleanup} handle's execution will be the result of the execution of the |
|
* {@code try-finally} handle. |
|
* <p> |
|
* The {@code cleanup} handle will be passed one or two additional leading arguments. |
|
* The first is the exception thrown during the |
|
* execution of the {@code target} handle, or {@code null} if no exception was thrown. |
|
* The second is the result of the execution of the {@code target} handle, or, if it throws an exception, |
|
* a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder. |
|
* The second argument is not present if the {@code target} handle has a {@code void} return type. |
|
* (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists |
|
* by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.) |
|
* <p> |
|
* The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except |
|
* that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or |
|
* two extra leading parameters:<ul> |
|
* <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and |
|
* <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry |
|
* the result from the execution of the {@code target} handle. |
|
* This parameter is not present if the {@code target} returns {@code void}. |
|
* </ul> |
|
* <p> |
|
* The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of |
|
* the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting |
|
* handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by |
|
* the cleanup. |
|
* <blockquote><pre>{@code |
|
* V target(A..., B...); |
|
* V cleanup(Throwable, V, A...); |
|
* V adapter(A... a, B... b) { |
|
* V result = (zero value for V); |
|
* Throwable throwable = null; |
|
* try { |
|
* result = target(a..., b...); |
|
* } catch (Throwable t) { |
|
* throwable = t; |
|
* throw t; |
|
* } finally { |
|
* result = cleanup(throwable, result, a...); |
|
* } |
|
* return result; |
|
* } |
|
* }</pre></blockquote> |
|
* <p> |
|
* Note that the saved arguments ({@code a...} in the pseudocode) cannot |
|
* be modified by execution of the target, and so are passed unchanged |
|
* from the caller to the cleanup, if it is invoked. |
|
* <p> |
|
* The target and cleanup must return the same type, even if the cleanup |
|
* always throws. |
|
* To create such a throwing cleanup, compose the cleanup logic |
|
* with {@link #throwException throwException}, |
|
* in order to create a method handle of the correct return type. |
|
* <p> |
|
* Note that {@code tryFinally} never converts exceptions into normal returns. |
|
* In rare cases where exceptions must be converted in that way, first wrap |
|
* the target with {@link #catchException(MethodHandle, Class, MethodHandle)} |
|
* to capture an outgoing exception, and then wrap with {@code tryFinally}. |
|
* <p> |
|
* It is recommended that the first parameter type of {@code cleanup} be |
|
* declared {@code Throwable} rather than a narrower subtype. This ensures |
|
* {@code cleanup} will always be invoked with whatever exception that |
|
* {@code target} throws. Declaring a narrower type may result in a |
|
* {@code ClassCastException} being thrown by the {@code try-finally} |
|
* handle if the type of the exception thrown by {@code target} is not |
|
* assignable to the first parameter type of {@code cleanup}. Note that |
|
* various exception types of {@code VirtualMachineError}, |
|
* {@code LinkageError}, and {@code RuntimeException} can in principle be |
|
* thrown by almost any kind of Java code, and a finally clause that |
|
* catches (say) only {@code IOException} would mask any of the others |
|
* behind a {@code ClassCastException}. |
|
* |
|
* @param target the handle whose execution is to be wrapped in a {@code try} block. |
|
* @param cleanup the handle that is invoked in the finally block. |
|
* |
|
* @return a method handle embodying the {@code try-finally} block composed of the two arguments. |
|
* @throws NullPointerException if any argument is null |
|
* @throws IllegalArgumentException if {@code cleanup} does not accept |
|
* the required leading arguments, or if the method handle types do |
|
* not match in their return types and their |
|
* corresponding trailing parameters |
|
* |
|
* @see MethodHandles#catchException(MethodHandle, Class, MethodHandle) |
|
* @since 9 |
|
*/ |
|
public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) { |
|
List<Class<?>> targetParamTypes = target.type().parameterList(); |
|
Class<?> rtype = target.type().returnType(); |
|
tryFinallyChecks(target, cleanup); |
|
// Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments. |
|
// The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the |
|
// target parameter list. |
|
cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0); |
|
// Ensure that the intrinsic type checks the instance thrown by the |
|
// target against the first parameter of cleanup |
|
cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class)); |
|
// Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case. |
|
return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes); |
|
} |
|
private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) { |
|
Class<?> rtype = target.type().returnType(); |
|
if (rtype != cleanup.type().returnType()) { |
|
throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype); |
|
} |
|
MethodType cleanupType = cleanup.type(); |
|
if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) { |
|
throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class); |
|
} |
|
if (rtype != void.class && cleanupType.parameterType(1) != rtype) { |
|
throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype); |
|
} |
|
// The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the |
|
// target parameter list. |
|
int cleanupArgIndex = rtype == void.class ? 1 : 2; |
|
if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) { |
|
throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix", |
|
cleanup.type(), target.type()); |
|
} |
|
} |
|
} |