/* |
|
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
package java.util; |
|
import java.util.function.Consumer; |
|
import java.util.function.Predicate; |
|
import java.util.function.UnaryOperator; |
|
import jdk.internal.misc.SharedSecrets; |
|
/** |
|
* Resizable-array implementation of the {@code List} interface. Implements |
|
* all optional list operations, and permits all elements, including |
|
* {@code null}. In addition to implementing the {@code List} interface, |
|
* this class provides methods to manipulate the size of the array that is |
|
* used internally to store the list. (This class is roughly equivalent to |
|
* {@code Vector}, except that it is unsynchronized.) |
|
* |
|
* <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set}, |
|
* {@code iterator}, and {@code listIterator} operations run in constant |
|
* time. The {@code add} operation runs in <i>amortized constant time</i>, |
|
* that is, adding n elements requires O(n) time. All of the other operations |
|
* run in linear time (roughly speaking). The constant factor is low compared |
|
* to that for the {@code LinkedList} implementation. |
|
* |
|
* <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is |
|
* the size of the array used to store the elements in the list. It is always |
|
* at least as large as the list size. As elements are added to an ArrayList, |
|
* its capacity grows automatically. The details of the growth policy are not |
|
* specified beyond the fact that adding an element has constant amortized |
|
* time cost. |
|
* |
|
* <p>An application can increase the capacity of an {@code ArrayList} instance |
|
* before adding a large number of elements using the {@code ensureCapacity} |
|
* operation. This may reduce the amount of incremental reallocation. |
|
* |
|
* <p><strong>Note that this implementation is not synchronized.</strong> |
|
* If multiple threads access an {@code ArrayList} instance concurrently, |
|
* and at least one of the threads modifies the list structurally, it |
|
* <i>must</i> be synchronized externally. (A structural modification is |
|
* any operation that adds or deletes one or more elements, or explicitly |
|
* resizes the backing array; merely setting the value of an element is not |
|
* a structural modification.) This is typically accomplished by |
|
* synchronizing on some object that naturally encapsulates the list. |
|
* |
|
* If no such object exists, the list should be "wrapped" using the |
|
* {@link Collections#synchronizedList Collections.synchronizedList} |
|
* method. This is best done at creation time, to prevent accidental |
|
* unsynchronized access to the list:<pre> |
|
* List list = Collections.synchronizedList(new ArrayList(...));</pre> |
|
* |
|
* <p id="fail-fast"> |
|
* The iterators returned by this class's {@link #iterator() iterator} and |
|
* {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>: |
|
* if the list is structurally modified at any time after the iterator is |
|
* created, in any way except through the iterator's own |
|
* {@link ListIterator#remove() remove} or |
|
* {@link ListIterator#add(Object) add} methods, the iterator will throw a |
|
* {@link ConcurrentModificationException}. Thus, in the face of |
|
* concurrent modification, the iterator fails quickly and cleanly, rather |
|
* than risking arbitrary, non-deterministic behavior at an undetermined |
|
* time in the future. |
|
* |
|
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed |
|
* as it is, generally speaking, impossible to make any hard guarantees in the |
|
* presence of unsynchronized concurrent modification. Fail-fast iterators |
|
* throw {@code ConcurrentModificationException} on a best-effort basis. |
|
* Therefore, it would be wrong to write a program that depended on this |
|
* exception for its correctness: <i>the fail-fast behavior of iterators |
|
* should be used only to detect bugs.</i> |
|
* |
|
* <p>This class is a member of the |
|
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework"> |
|
* Java Collections Framework</a>. |
|
* |
|
* @param <E> the type of elements in this list |
|
* |
|
* @author Josh Bloch |
|
* @author Neal Gafter |
|
* @see Collection |
|
* @see List |
|
* @see LinkedList |
|
* @see Vector |
|
* @since 1.2 |
|
*/ |
|
public class ArrayList<E> extends AbstractList<E> |
|
implements List<E>, RandomAccess, Cloneable, java.io.Serializable |
|
{ |
|
private static final long serialVersionUID = 8683452581122892189L; |
|
/** |
|
* Default initial capacity. |
|
*/ |
|
private static final int DEFAULT_CAPACITY = 10; |
|
/** |
|
* Shared empty array instance used for empty instances. |
|
*/ |
|
private static final Object[] EMPTY_ELEMENTDATA = {}; |
|
/** |
|
* Shared empty array instance used for default sized empty instances. We |
|
* distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when |
|
* first element is added. |
|
*/ |
|
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; |
|
/** |
|
* The array buffer into which the elements of the ArrayList are stored. |
|
* The capacity of the ArrayList is the length of this array buffer. Any |
|
* empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA |
|
* will be expanded to DEFAULT_CAPACITY when the first element is added. |
|
*/ |
|
transient Object[] elementData; // non-private to simplify nested class access |
|
/** |
|
* The size of the ArrayList (the number of elements it contains). |
|
* |
|
* @serial |
|
*/ |
|
private int size; |
|
/** |
|
* Constructs an empty list with the specified initial capacity. |
|
* |
|
* @param initialCapacity the initial capacity of the list |
|
* @throws IllegalArgumentException if the specified initial capacity |
|
* is negative |
|
*/ |
|
public ArrayList(int initialCapacity) { |
|
if (initialCapacity > 0) { |
|
this.elementData = new Object[initialCapacity]; |
|
} else if (initialCapacity == 0) { |
|
this.elementData = EMPTY_ELEMENTDATA; |
|
} else { |
|
throw new IllegalArgumentException("Illegal Capacity: "+ |
|
initialCapacity); |
|
} |
|
} |
|
/** |
|
* Constructs an empty list with an initial capacity of ten. |
|
*/ |
|
public ArrayList() { |
|
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; |
|
} |
|
/** |
|
* Constructs a list containing the elements of the specified |
|
* collection, in the order they are returned by the collection's |
|
* iterator. |
|
* |
|
* @param c the collection whose elements are to be placed into this list |
|
* @throws NullPointerException if the specified collection is null |
|
*/ |
|
public ArrayList(Collection<? extends E> c) { |
|
elementData = c.toArray(); |
|
if ((size = elementData.length) != 0) { |
|
// defend against c.toArray (incorrectly) not returning Object[] |
|
// (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652) |
|
if (elementData.getClass() != Object[].class) |
|
elementData = Arrays.copyOf(elementData, size, Object[].class); |
|
} else { |
|
// replace with empty array. |
|
this.elementData = EMPTY_ELEMENTDATA; |
|
} |
|
} |
|
/** |
|
* Trims the capacity of this {@code ArrayList} instance to be the |
|
* list's current size. An application can use this operation to minimize |
|
* the storage of an {@code ArrayList} instance. |
|
*/ |
|
public void trimToSize() { |
|
modCount++; |
|
if (size < elementData.length) { |
|
elementData = (size == 0) |
|
? EMPTY_ELEMENTDATA |
|
: Arrays.copyOf(elementData, size); |
|
} |
|
} |
|
/** |
|
* Increases the capacity of this {@code ArrayList} instance, if |
|
* necessary, to ensure that it can hold at least the number of elements |
|
* specified by the minimum capacity argument. |
|
* |
|
* @param minCapacity the desired minimum capacity |
|
*/ |
|
public void ensureCapacity(int minCapacity) { |
|
if (minCapacity > elementData.length |
|
&& !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA |
|
&& minCapacity <= DEFAULT_CAPACITY)) { |
|
modCount++; |
|
grow(minCapacity); |
|
} |
|
} |
|
/** |
|
* The maximum size of array to allocate (unless necessary). |
|
* Some VMs reserve some header words in an array. |
|
* Attempts to allocate larger arrays may result in |
|
* OutOfMemoryError: Requested array size exceeds VM limit |
|
*/ |
|
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; |
|
/** |
|
* Increases the capacity to ensure that it can hold at least the |
|
* number of elements specified by the minimum capacity argument. |
|
* |
|
* @param minCapacity the desired minimum capacity |
|
* @throws OutOfMemoryError if minCapacity is less than zero |
|
*/ |
|
private Object[] grow(int minCapacity) { |
|
return elementData = Arrays.copyOf(elementData, |
|
newCapacity(minCapacity)); |
|
} |
|
private Object[] grow() { |
|
return grow(size + 1); |
|
} |
|
/** |
|
* Returns a capacity at least as large as the given minimum capacity. |
|
* Returns the current capacity increased by 50% if that suffices. |
|
* Will not return a capacity greater than MAX_ARRAY_SIZE unless |
|
* the given minimum capacity is greater than MAX_ARRAY_SIZE. |
|
* |
|
* @param minCapacity the desired minimum capacity |
|
* @throws OutOfMemoryError if minCapacity is less than zero |
|
*/ |
|
private int newCapacity(int minCapacity) { |
|
// overflow-conscious code |
|
int oldCapacity = elementData.length; |
|
int newCapacity = oldCapacity + (oldCapacity >> 1); |
|
if (newCapacity - minCapacity <= 0) { |
|
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) |
|
return Math.max(DEFAULT_CAPACITY, minCapacity); |
|
if (minCapacity < 0) // overflow |
|
throw new OutOfMemoryError(); |
|
return minCapacity; |
|
} |
|
return (newCapacity - MAX_ARRAY_SIZE <= 0) |
|
? newCapacity |
|
: hugeCapacity(minCapacity); |
|
} |
|
private static int hugeCapacity(int minCapacity) { |
|
if (minCapacity < 0) // overflow |
|
throw new OutOfMemoryError(); |
|
return (minCapacity > MAX_ARRAY_SIZE) |
|
? Integer.MAX_VALUE |
|
: MAX_ARRAY_SIZE; |
|
} |
|
/** |
|
* Returns the number of elements in this list. |
|
* |
|
* @return the number of elements in this list |
|
*/ |
|
public int size() { |
|
return size; |
|
} |
|
/** |
|
* Returns {@code true} if this list contains no elements. |
|
* |
|
* @return {@code true} if this list contains no elements |
|
*/ |
|
public boolean isEmpty() { |
|
return size == 0; |
|
} |
|
/** |
|
* Returns {@code true} if this list contains the specified element. |
|
* More formally, returns {@code true} if and only if this list contains |
|
* at least one element {@code e} such that |
|
* {@code Objects.equals(o, e)}. |
|
* |
|
* @param o element whose presence in this list is to be tested |
|
* @return {@code true} if this list contains the specified element |
|
*/ |
|
public boolean contains(Object o) { |
|
return indexOf(o) >= 0; |
|
} |
|
/** |
|
* Returns the index of the first occurrence of the specified element |
|
* in this list, or -1 if this list does not contain the element. |
|
* More formally, returns the lowest index {@code i} such that |
|
* {@code Objects.equals(o, get(i))}, |
|
* or -1 if there is no such index. |
|
*/ |
|
public int indexOf(Object o) { |
|
return indexOfRange(o, 0, size); |
|
} |
|
int indexOfRange(Object o, int start, int end) { |
|
Object[] es = elementData; |
|
if (o == null) { |
|
for (int i = start; i < end; i++) { |
|
if (es[i] == null) { |
|
return i; |
|
} |
|
} |
|
} else { |
|
for (int i = start; i < end; i++) { |
|
if (o.equals(es[i])) { |
|
return i; |
|
} |
|
} |
|
} |
|
return -1; |
|
} |
|
/** |
|
* Returns the index of the last occurrence of the specified element |
|
* in this list, or -1 if this list does not contain the element. |
|
* More formally, returns the highest index {@code i} such that |
|
* {@code Objects.equals(o, get(i))}, |
|
* or -1 if there is no such index. |
|
*/ |
|
public int lastIndexOf(Object o) { |
|
return lastIndexOfRange(o, 0, size); |
|
} |
|
int lastIndexOfRange(Object o, int start, int end) { |
|
Object[] es = elementData; |
|
if (o == null) { |
|
for (int i = end - 1; i >= start; i--) { |
|
if (es[i] == null) { |
|
return i; |
|
} |
|
} |
|
} else { |
|
for (int i = end - 1; i >= start; i--) { |
|
if (o.equals(es[i])) { |
|
return i; |
|
} |
|
} |
|
} |
|
return -1; |
|
} |
|
/** |
|
* Returns a shallow copy of this {@code ArrayList} instance. (The |
|
* elements themselves are not copied.) |
|
* |
|
* @return a clone of this {@code ArrayList} instance |
|
*/ |
|
public Object clone() { |
|
try { |
|
ArrayList<?> v = (ArrayList<?>) super.clone(); |
|
v.elementData = Arrays.copyOf(elementData, size); |
|
v.modCount = 0; |
|
return v; |
|
} catch (CloneNotSupportedException e) { |
|
// this shouldn't happen, since we are Cloneable |
|
throw new InternalError(e); |
|
} |
|
} |
|
/** |
|
* Returns an array containing all of the elements in this list |
|
* in proper sequence (from first to last element). |
|
* |
|
* <p>The returned array will be "safe" in that no references to it are |
|
* maintained by this list. (In other words, this method must allocate |
|
* a new array). The caller is thus free to modify the returned array. |
|
* |
|
* <p>This method acts as bridge between array-based and collection-based |
|
* APIs. |
|
* |
|
* @return an array containing all of the elements in this list in |
|
* proper sequence |
|
*/ |
|
public Object[] toArray() { |
|
return Arrays.copyOf(elementData, size); |
|
} |
|
/** |
|
* Returns an array containing all of the elements in this list in proper |
|
* sequence (from first to last element); the runtime type of the returned |
|
* array is that of the specified array. If the list fits in the |
|
* specified array, it is returned therein. Otherwise, a new array is |
|
* allocated with the runtime type of the specified array and the size of |
|
* this list. |
|
* |
|
* <p>If the list fits in the specified array with room to spare |
|
* (i.e., the array has more elements than the list), the element in |
|
* the array immediately following the end of the collection is set to |
|
* {@code null}. (This is useful in determining the length of the |
|
* list <i>only</i> if the caller knows that the list does not contain |
|
* any null elements.) |
|
* |
|
* @param a the array into which the elements of the list are to |
|
* be stored, if it is big enough; otherwise, a new array of the |
|
* same runtime type is allocated for this purpose. |
|
* @return an array containing the elements of the list |
|
* @throws ArrayStoreException if the runtime type of the specified array |
|
* is not a supertype of the runtime type of every element in |
|
* this list |
|
* @throws NullPointerException if the specified array is null |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public <T> T[] toArray(T[] a) { |
|
if (a.length < size) |
|
// Make a new array of a's runtime type, but my contents: |
|
return (T[]) Arrays.copyOf(elementData, size, a.getClass()); |
|
System.arraycopy(elementData, 0, a, 0, size); |
|
if (a.length > size) |
|
a[size] = null; |
|
return a; |
|
} |
|
// Positional Access Operations |
|
@SuppressWarnings("unchecked") |
|
E elementData(int index) { |
|
return (E) elementData[index]; |
|
} |
|
@SuppressWarnings("unchecked") |
|
static <E> E elementAt(Object[] es, int index) { |
|
return (E) es[index]; |
|
} |
|
/** |
|
* Returns the element at the specified position in this list. |
|
* |
|
* @param index index of the element to return |
|
* @return the element at the specified position in this list |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
*/ |
|
public E get(int index) { |
|
Objects.checkIndex(index, size); |
|
return elementData(index); |
|
} |
|
/** |
|
* Replaces the element at the specified position in this list with |
|
* the specified element. |
|
* |
|
* @param index index of the element to replace |
|
* @param element element to be stored at the specified position |
|
* @return the element previously at the specified position |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
*/ |
|
public E set(int index, E element) { |
|
Objects.checkIndex(index, size); |
|
E oldValue = elementData(index); |
|
elementData[index] = element; |
|
return oldValue; |
|
} |
|
/** |
|
* This helper method split out from add(E) to keep method |
|
* bytecode size under 35 (the -XX:MaxInlineSize default value), |
|
* which helps when add(E) is called in a C1-compiled loop. |
|
*/ |
|
private void add(E e, Object[] elementData, int s) { |
|
if (s == elementData.length) |
|
elementData = grow(); |
|
elementData[s] = e; |
|
size = s + 1; |
|
} |
|
/** |
|
* Appends the specified element to the end of this list. |
|
* |
|
* @param e element to be appended to this list |
|
* @return {@code true} (as specified by {@link Collection#add}) |
|
*/ |
|
public boolean add(E e) { |
|
modCount++; |
|
add(e, elementData, size); |
|
return true; |
|
} |
|
/** |
|
* Inserts the specified element at the specified position in this |
|
* list. Shifts the element currently at that position (if any) and |
|
* any subsequent elements to the right (adds one to their indices). |
|
* |
|
* @param index index at which the specified element is to be inserted |
|
* @param element element to be inserted |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
*/ |
|
public void add(int index, E element) { |
|
rangeCheckForAdd(index); |
|
modCount++; |
|
final int s; |
|
Object[] elementData; |
|
if ((s = size) == (elementData = this.elementData).length) |
|
elementData = grow(); |
|
System.arraycopy(elementData, index, |
|
elementData, index + 1, |
|
s - index); |
|
elementData[index] = element; |
|
size = s + 1; |
|
} |
|
/** |
|
* Removes the element at the specified position in this list. |
|
* Shifts any subsequent elements to the left (subtracts one from their |
|
* indices). |
|
* |
|
* @param index the index of the element to be removed |
|
* @return the element that was removed from the list |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
*/ |
|
public E remove(int index) { |
|
Objects.checkIndex(index, size); |
|
final Object[] es = elementData; |
|
@SuppressWarnings("unchecked") E oldValue = (E) es[index]; |
|
fastRemove(es, index); |
|
return oldValue; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
*/ |
|
public boolean equals(Object o) { |
|
if (o == this) { |
|
return true; |
|
} |
|
if (!(o instanceof List)) { |
|
return false; |
|
} |
|
final int expectedModCount = modCount; |
|
// ArrayList can be subclassed and given arbitrary behavior, but we can |
|
// still deal with the common case where o is ArrayList precisely |
|
boolean equal = (o.getClass() == ArrayList.class) |
|
? equalsArrayList((ArrayList<?>) o) |
|
: equalsRange((List<?>) o, 0, size); |
|
checkForComodification(expectedModCount); |
|
return equal; |
|
} |
|
boolean equalsRange(List<?> other, int from, int to) { |
|
final Object[] es = elementData; |
|
if (to > es.length) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
var oit = other.iterator(); |
|
for (; from < to; from++) { |
|
if (!oit.hasNext() || !Objects.equals(es[from], oit.next())) { |
|
return false; |
|
} |
|
} |
|
return !oit.hasNext(); |
|
} |
|
private boolean equalsArrayList(ArrayList<?> other) { |
|
final int otherModCount = other.modCount; |
|
final int s = size; |
|
boolean equal; |
|
if (equal = (s == other.size)) { |
|
final Object[] otherEs = other.elementData; |
|
final Object[] es = elementData; |
|
if (s > es.length || s > otherEs.length) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
for (int i = 0; i < s; i++) { |
|
if (!Objects.equals(es[i], otherEs[i])) { |
|
equal = false; |
|
break; |
|
} |
|
} |
|
} |
|
other.checkForComodification(otherModCount); |
|
return equal; |
|
} |
|
private void checkForComodification(final int expectedModCount) { |
|
if (modCount != expectedModCount) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
/** |
|
* {@inheritDoc} |
|
*/ |
|
public int hashCode() { |
|
int expectedModCount = modCount; |
|
int hash = hashCodeRange(0, size); |
|
checkForComodification(expectedModCount); |
|
return hash; |
|
} |
|
int hashCodeRange(int from, int to) { |
|
final Object[] es = elementData; |
|
if (to > es.length) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
int hashCode = 1; |
|
for (int i = from; i < to; i++) { |
|
Object e = es[i]; |
|
hashCode = 31 * hashCode + (e == null ? 0 : e.hashCode()); |
|
} |
|
return hashCode; |
|
} |
|
/** |
|
* Removes the first occurrence of the specified element from this list, |
|
* if it is present. If the list does not contain the element, it is |
|
* unchanged. More formally, removes the element with the lowest index |
|
* {@code i} such that |
|
* {@code Objects.equals(o, get(i))} |
|
* (if such an element exists). Returns {@code true} if this list |
|
* contained the specified element (or equivalently, if this list |
|
* changed as a result of the call). |
|
* |
|
* @param o element to be removed from this list, if present |
|
* @return {@code true} if this list contained the specified element |
|
*/ |
|
public boolean remove(Object o) { |
|
final Object[] es = elementData; |
|
final int size = this.size; |
|
int i = 0; |
|
found: { |
|
if (o == null) { |
|
for (; i < size; i++) |
|
if (es[i] == null) |
|
break found; |
|
} else { |
|
for (; i < size; i++) |
|
if (o.equals(es[i])) |
|
break found; |
|
} |
|
return false; |
|
} |
|
fastRemove(es, i); |
|
return true; |
|
} |
|
/** |
|
* Private remove method that skips bounds checking and does not |
|
* return the value removed. |
|
*/ |
|
private void fastRemove(Object[] es, int i) { |
|
modCount++; |
|
final int newSize; |
|
if ((newSize = size - 1) > i) |
|
System.arraycopy(es, i + 1, es, i, newSize - i); |
|
es[size = newSize] = null; |
|
} |
|
/** |
|
* Removes all of the elements from this list. The list will |
|
* be empty after this call returns. |
|
*/ |
|
public void clear() { |
|
modCount++; |
|
final Object[] es = elementData; |
|
for (int to = size, i = size = 0; i < to; i++) |
|
es[i] = null; |
|
} |
|
/** |
|
* Appends all of the elements in the specified collection to the end of |
|
* this list, in the order that they are returned by the |
|
* specified collection's Iterator. The behavior of this operation is |
|
* undefined if the specified collection is modified while the operation |
|
* is in progress. (This implies that the behavior of this call is |
|
* undefined if the specified collection is this list, and this |
|
* list is nonempty.) |
|
* |
|
* @param c collection containing elements to be added to this list |
|
* @return {@code true} if this list changed as a result of the call |
|
* @throws NullPointerException if the specified collection is null |
|
*/ |
|
public boolean addAll(Collection<? extends E> c) { |
|
Object[] a = c.toArray(); |
|
modCount++; |
|
int numNew = a.length; |
|
if (numNew == 0) |
|
return false; |
|
Object[] elementData; |
|
final int s; |
|
if (numNew > (elementData = this.elementData).length - (s = size)) |
|
elementData = grow(s + numNew); |
|
System.arraycopy(a, 0, elementData, s, numNew); |
|
size = s + numNew; |
|
return true; |
|
} |
|
/** |
|
* Inserts all of the elements in the specified collection into this |
|
* list, starting at the specified position. Shifts the element |
|
* currently at that position (if any) and any subsequent elements to |
|
* the right (increases their indices). The new elements will appear |
|
* in the list in the order that they are returned by the |
|
* specified collection's iterator. |
|
* |
|
* @param index index at which to insert the first element from the |
|
* specified collection |
|
* @param c collection containing elements to be added to this list |
|
* @return {@code true} if this list changed as a result of the call |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
* @throws NullPointerException if the specified collection is null |
|
*/ |
|
public boolean addAll(int index, Collection<? extends E> c) { |
|
rangeCheckForAdd(index); |
|
Object[] a = c.toArray(); |
|
modCount++; |
|
int numNew = a.length; |
|
if (numNew == 0) |
|
return false; |
|
Object[] elementData; |
|
final int s; |
|
if (numNew > (elementData = this.elementData).length - (s = size)) |
|
elementData = grow(s + numNew); |
|
int numMoved = s - index; |
|
if (numMoved > 0) |
|
System.arraycopy(elementData, index, |
|
elementData, index + numNew, |
|
numMoved); |
|
System.arraycopy(a, 0, elementData, index, numNew); |
|
size = s + numNew; |
|
return true; |
|
} |
|
/** |
|
* Removes from this list all of the elements whose index is between |
|
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. |
|
* Shifts any succeeding elements to the left (reduces their index). |
|
* This call shortens the list by {@code (toIndex - fromIndex)} elements. |
|
* (If {@code toIndex==fromIndex}, this operation has no effect.) |
|
* |
|
* @throws IndexOutOfBoundsException if {@code fromIndex} or |
|
* {@code toIndex} is out of range |
|
* ({@code fromIndex < 0 || |
|
* toIndex > size() || |
|
* toIndex < fromIndex}) |
|
*/ |
|
protected void removeRange(int fromIndex, int toIndex) { |
|
if (fromIndex > toIndex) { |
|
throw new IndexOutOfBoundsException( |
|
outOfBoundsMsg(fromIndex, toIndex)); |
|
} |
|
modCount++; |
|
shiftTailOverGap(elementData, fromIndex, toIndex); |
|
} |
|
/** Erases the gap from lo to hi, by sliding down following elements. */ |
|
private void shiftTailOverGap(Object[] es, int lo, int hi) { |
|
System.arraycopy(es, hi, es, lo, size - hi); |
|
for (int to = size, i = (size -= hi - lo); i < to; i++) |
|
es[i] = null; |
|
} |
|
/** |
|
* A version of rangeCheck used by add and addAll. |
|
*/ |
|
private void rangeCheckForAdd(int index) { |
|
if (index > size || index < 0) |
|
throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); |
|
} |
|
/** |
|
* Constructs an IndexOutOfBoundsException detail message. |
|
* Of the many possible refactorings of the error handling code, |
|
* this "outlining" performs best with both server and client VMs. |
|
*/ |
|
private String outOfBoundsMsg(int index) { |
|
return "Index: "+index+", Size: "+size; |
|
} |
|
/** |
|
* A version used in checking (fromIndex > toIndex) condition |
|
*/ |
|
private static String outOfBoundsMsg(int fromIndex, int toIndex) { |
|
return "From Index: " + fromIndex + " > To Index: " + toIndex; |
|
} |
|
/** |
|
* Removes from this list all of its elements that are contained in the |
|
* specified collection. |
|
* |
|
* @param c collection containing elements to be removed from this list |
|
* @return {@code true} if this list changed as a result of the call |
|
* @throws ClassCastException if the class of an element of this list |
|
* is incompatible with the specified collection |
|
* (<a href="Collection.html#optional-restrictions">optional</a>) |
|
* @throws NullPointerException if this list contains a null element and the |
|
* specified collection does not permit null elements |
|
* (<a href="Collection.html#optional-restrictions">optional</a>), |
|
* or if the specified collection is null |
|
* @see Collection#contains(Object) |
|
*/ |
|
public boolean removeAll(Collection<?> c) { |
|
return batchRemove(c, false, 0, size); |
|
} |
|
/** |
|
* Retains only the elements in this list that are contained in the |
|
* specified collection. In other words, removes from this list all |
|
* of its elements that are not contained in the specified collection. |
|
* |
|
* @param c collection containing elements to be retained in this list |
|
* @return {@code true} if this list changed as a result of the call |
|
* @throws ClassCastException if the class of an element of this list |
|
* is incompatible with the specified collection |
|
* (<a href="Collection.html#optional-restrictions">optional</a>) |
|
* @throws NullPointerException if this list contains a null element and the |
|
* specified collection does not permit null elements |
|
* (<a href="Collection.html#optional-restrictions">optional</a>), |
|
* or if the specified collection is null |
|
* @see Collection#contains(Object) |
|
*/ |
|
public boolean retainAll(Collection<?> c) { |
|
return batchRemove(c, true, 0, size); |
|
} |
|
boolean batchRemove(Collection<?> c, boolean complement, |
|
final int from, final int end) { |
|
Objects.requireNonNull(c); |
|
final Object[] es = elementData; |
|
int r; |
|
// Optimize for initial run of survivors |
|
for (r = from;; r++) { |
|
if (r == end) |
|
return false; |
|
if (c.contains(es[r]) != complement) |
|
break; |
|
} |
|
int w = r++; |
|
try { |
|
for (Object e; r < end; r++) |
|
if (c.contains(e = es[r]) == complement) |
|
es[w++] = e; |
|
} catch (Throwable ex) { |
|
// Preserve behavioral compatibility with AbstractCollection, |
|
// even if c.contains() throws. |
|
System.arraycopy(es, r, es, w, end - r); |
|
w += end - r; |
|
throw ex; |
|
} finally { |
|
modCount += end - w; |
|
shiftTailOverGap(es, w, end); |
|
} |
|
return true; |
|
} |
|
/** |
|
* Saves the state of the {@code ArrayList} instance to a stream |
|
* (that is, serializes it). |
|
* |
|
* @param s the stream |
|
* @throws java.io.IOException if an I/O error occurs |
|
* @serialData The length of the array backing the {@code ArrayList} |
|
* instance is emitted (int), followed by all of its elements |
|
* (each an {@code Object}) in the proper order. |
|
*/ |
|
private void writeObject(java.io.ObjectOutputStream s) |
|
throws java.io.IOException { |
|
// Write out element count, and any hidden stuff |
|
int expectedModCount = modCount; |
|
s.defaultWriteObject(); |
|
// Write out size as capacity for behavioral compatibility with clone() |
|
s.writeInt(size); |
|
// Write out all elements in the proper order. |
|
for (int i=0; i<size; i++) { |
|
s.writeObject(elementData[i]); |
|
} |
|
if (modCount != expectedModCount) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
/** |
|
* Reconstitutes the {@code ArrayList} instance from a stream (that is, |
|
* deserializes it). |
|
* @param s the stream |
|
* @throws ClassNotFoundException if the class of a serialized object |
|
* could not be found |
|
* @throws java.io.IOException if an I/O error occurs |
|
*/ |
|
private void readObject(java.io.ObjectInputStream s) |
|
throws java.io.IOException, ClassNotFoundException { |
|
// Read in size, and any hidden stuff |
|
s.defaultReadObject(); |
|
// Read in capacity |
|
s.readInt(); // ignored |
|
if (size > 0) { |
|
// like clone(), allocate array based upon size not capacity |
|
SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size); |
|
Object[] elements = new Object[size]; |
|
// Read in all elements in the proper order. |
|
for (int i = 0; i < size; i++) { |
|
elements[i] = s.readObject(); |
|
} |
|
elementData = elements; |
|
} else if (size == 0) { |
|
elementData = EMPTY_ELEMENTDATA; |
|
} else { |
|
throw new java.io.InvalidObjectException("Invalid size: " + size); |
|
} |
|
} |
|
/** |
|
* Returns a list iterator over the elements in this list (in proper |
|
* sequence), starting at the specified position in the list. |
|
* The specified index indicates the first element that would be |
|
* returned by an initial call to {@link ListIterator#next next}. |
|
* An initial call to {@link ListIterator#previous previous} would |
|
* return the element with the specified index minus one. |
|
* |
|
* <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>. |
|
* |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
*/ |
|
public ListIterator<E> listIterator(int index) { |
|
rangeCheckForAdd(index); |
|
return new ListItr(index); |
|
} |
|
/** |
|
* Returns a list iterator over the elements in this list (in proper |
|
* sequence). |
|
* |
|
* <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>. |
|
* |
|
* @see #listIterator(int) |
|
*/ |
|
public ListIterator<E> listIterator() { |
|
return new ListItr(0); |
|
} |
|
/** |
|
* Returns an iterator over the elements in this list in proper sequence. |
|
* |
|
* <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>. |
|
* |
|
* @return an iterator over the elements in this list in proper sequence |
|
*/ |
|
public Iterator<E> iterator() { |
|
return new Itr(); |
|
} |
|
/** |
|
* An optimized version of AbstractList.Itr |
|
*/ |
|
private class Itr implements Iterator<E> { |
|
int cursor; // index of next element to return |
|
int lastRet = -1; // index of last element returned; -1 if no such |
|
int expectedModCount = modCount; |
|
// prevent creating a synthetic constructor |
|
Itr() {} |
|
public boolean hasNext() { |
|
return cursor != size; |
|
} |
|
@SuppressWarnings("unchecked") |
|
public E next() { |
|
checkForComodification(); |
|
int i = cursor; |
|
if (i >= size) |
|
throw new NoSuchElementException(); |
|
Object[] elementData = ArrayList.this.elementData; |
|
if (i >= elementData.length) |
|
throw new ConcurrentModificationException(); |
|
cursor = i + 1; |
|
return (E) elementData[lastRet = i]; |
|
} |
|
public void remove() { |
|
if (lastRet < 0) |
|
throw new IllegalStateException(); |
|
checkForComodification(); |
|
try { |
|
ArrayList.this.remove(lastRet); |
|
cursor = lastRet; |
|
lastRet = -1; |
|
expectedModCount = modCount; |
|
} catch (IndexOutOfBoundsException ex) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
@Override |
|
public void forEachRemaining(Consumer<? super E> action) { |
|
Objects.requireNonNull(action); |
|
final int size = ArrayList.this.size; |
|
int i = cursor; |
|
if (i < size) { |
|
final Object[] es = elementData; |
|
if (i >= es.length) |
|
throw new ConcurrentModificationException(); |
|
for (; i < size && modCount == expectedModCount; i++) |
|
action.accept(elementAt(es, i)); |
|
// update once at end to reduce heap write traffic |
|
cursor = i; |
|
lastRet = i - 1; |
|
checkForComodification(); |
|
} |
|
} |
|
final void checkForComodification() { |
|
if (modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
/** |
|
* An optimized version of AbstractList.ListItr |
|
*/ |
|
private class ListItr extends Itr implements ListIterator<E> { |
|
ListItr(int index) { |
|
super(); |
|
cursor = index; |
|
} |
|
public boolean hasPrevious() { |
|
return cursor != 0; |
|
} |
|
public int nextIndex() { |
|
return cursor; |
|
} |
|
public int previousIndex() { |
|
return cursor - 1; |
|
} |
|
@SuppressWarnings("unchecked") |
|
public E previous() { |
|
checkForComodification(); |
|
int i = cursor - 1; |
|
if (i < 0) |
|
throw new NoSuchElementException(); |
|
Object[] elementData = ArrayList.this.elementData; |
|
if (i >= elementData.length) |
|
throw new ConcurrentModificationException(); |
|
cursor = i; |
|
return (E) elementData[lastRet = i]; |
|
} |
|
public void set(E e) { |
|
if (lastRet < 0) |
|
throw new IllegalStateException(); |
|
checkForComodification(); |
|
try { |
|
ArrayList.this.set(lastRet, e); |
|
} catch (IndexOutOfBoundsException ex) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
public void add(E e) { |
|
checkForComodification(); |
|
try { |
|
int i = cursor; |
|
ArrayList.this.add(i, e); |
|
cursor = i + 1; |
|
lastRet = -1; |
|
expectedModCount = modCount; |
|
} catch (IndexOutOfBoundsException ex) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
} |
|
/** |
|
* Returns a view of the portion of this list between the specified |
|
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If |
|
* {@code fromIndex} and {@code toIndex} are equal, the returned list is |
|
* empty.) The returned list is backed by this list, so non-structural |
|
* changes in the returned list are reflected in this list, and vice-versa. |
|
* The returned list supports all of the optional list operations. |
|
* |
|
* <p>This method eliminates the need for explicit range operations (of |
|
* the sort that commonly exist for arrays). Any operation that expects |
|
* a list can be used as a range operation by passing a subList view |
|
* instead of a whole list. For example, the following idiom |
|
* removes a range of elements from a list: |
|
* <pre> |
|
* list.subList(from, to).clear(); |
|
* </pre> |
|
* Similar idioms may be constructed for {@link #indexOf(Object)} and |
|
* {@link #lastIndexOf(Object)}, and all of the algorithms in the |
|
* {@link Collections} class can be applied to a subList. |
|
* |
|
* <p>The semantics of the list returned by this method become undefined if |
|
* the backing list (i.e., this list) is <i>structurally modified</i> in |
|
* any way other than via the returned list. (Structural modifications are |
|
* those that change the size of this list, or otherwise perturb it in such |
|
* a fashion that iterations in progress may yield incorrect results.) |
|
* |
|
* @throws IndexOutOfBoundsException {@inheritDoc} |
|
* @throws IllegalArgumentException {@inheritDoc} |
|
*/ |
|
public List<E> subList(int fromIndex, int toIndex) { |
|
subListRangeCheck(fromIndex, toIndex, size); |
|
return new SubList<>(this, fromIndex, toIndex); |
|
} |
|
private static class SubList<E> extends AbstractList<E> implements RandomAccess { |
|
private final ArrayList<E> root; |
|
private final SubList<E> parent; |
|
private final int offset; |
|
private int size; |
|
/** |
|
* Constructs a sublist of an arbitrary ArrayList. |
|
*/ |
|
public SubList(ArrayList<E> root, int fromIndex, int toIndex) { |
|
this.root = root; |
|
this.parent = null; |
|
this.offset = fromIndex; |
|
this.size = toIndex - fromIndex; |
|
this.modCount = root.modCount; |
|
} |
|
/** |
|
* Constructs a sublist of another SubList. |
|
*/ |
|
private SubList(SubList<E> parent, int fromIndex, int toIndex) { |
|
this.root = parent.root; |
|
this.parent = parent; |
|
this.offset = parent.offset + fromIndex; |
|
this.size = toIndex - fromIndex; |
|
this.modCount = root.modCount; |
|
} |
|
public E set(int index, E element) { |
|
Objects.checkIndex(index, size); |
|
checkForComodification(); |
|
E oldValue = root.elementData(offset + index); |
|
root.elementData[offset + index] = element; |
|
return oldValue; |
|
} |
|
public E get(int index) { |
|
Objects.checkIndex(index, size); |
|
checkForComodification(); |
|
return root.elementData(offset + index); |
|
} |
|
public int size() { |
|
checkForComodification(); |
|
return size; |
|
} |
|
public void add(int index, E element) { |
|
rangeCheckForAdd(index); |
|
checkForComodification(); |
|
root.add(offset + index, element); |
|
updateSizeAndModCount(1); |
|
} |
|
public E remove(int index) { |
|
Objects.checkIndex(index, size); |
|
checkForComodification(); |
|
E result = root.remove(offset + index); |
|
updateSizeAndModCount(-1); |
|
return result; |
|
} |
|
protected void removeRange(int fromIndex, int toIndex) { |
|
checkForComodification(); |
|
root.removeRange(offset + fromIndex, offset + toIndex); |
|
updateSizeAndModCount(fromIndex - toIndex); |
|
} |
|
public boolean addAll(Collection<? extends E> c) { |
|
return addAll(this.size, c); |
|
} |
|
public boolean addAll(int index, Collection<? extends E> c) { |
|
rangeCheckForAdd(index); |
|
int cSize = c.size(); |
|
if (cSize==0) |
|
return false; |
|
checkForComodification(); |
|
root.addAll(offset + index, c); |
|
updateSizeAndModCount(cSize); |
|
return true; |
|
} |
|
public void replaceAll(UnaryOperator<E> operator) { |
|
root.replaceAllRange(operator, offset, offset + size); |
|
} |
|
public boolean removeAll(Collection<?> c) { |
|
return batchRemove(c, false); |
|
} |
|
public boolean retainAll(Collection<?> c) { |
|
return batchRemove(c, true); |
|
} |
|
private boolean batchRemove(Collection<?> c, boolean complement) { |
|
checkForComodification(); |
|
int oldSize = root.size; |
|
boolean modified = |
|
root.batchRemove(c, complement, offset, offset + size); |
|
if (modified) |
|
updateSizeAndModCount(root.size - oldSize); |
|
return modified; |
|
} |
|
public boolean removeIf(Predicate<? super E> filter) { |
|
checkForComodification(); |
|
int oldSize = root.size; |
|
boolean modified = root.removeIf(filter, offset, offset + size); |
|
if (modified) |
|
updateSizeAndModCount(root.size - oldSize); |
|
return modified; |
|
} |
|
public Object[] toArray() { |
|
checkForComodification(); |
|
return Arrays.copyOfRange(root.elementData, offset, offset + size); |
|
} |
|
@SuppressWarnings("unchecked") |
|
public <T> T[] toArray(T[] a) { |
|
checkForComodification(); |
|
if (a.length < size) |
|
return (T[]) Arrays.copyOfRange( |
|
root.elementData, offset, offset + size, a.getClass()); |
|
System.arraycopy(root.elementData, offset, a, 0, size); |
|
if (a.length > size) |
|
a[size] = null; |
|
return a; |
|
} |
|
public boolean equals(Object o) { |
|
if (o == this) { |
|
return true; |
|
} |
|
if (!(o instanceof List)) { |
|
return false; |
|
} |
|
boolean equal = root.equalsRange((List<?>)o, offset, offset + size); |
|
checkForComodification(); |
|
return equal; |
|
} |
|
public int hashCode() { |
|
int hash = root.hashCodeRange(offset, offset + size); |
|
checkForComodification(); |
|
return hash; |
|
} |
|
public int indexOf(Object o) { |
|
int index = root.indexOfRange(o, offset, offset + size); |
|
checkForComodification(); |
|
return index >= 0 ? index - offset : -1; |
|
} |
|
public int lastIndexOf(Object o) { |
|
int index = root.lastIndexOfRange(o, offset, offset + size); |
|
checkForComodification(); |
|
return index >= 0 ? index - offset : -1; |
|
} |
|
public boolean contains(Object o) { |
|
return indexOf(o) >= 0; |
|
} |
|
public Iterator<E> iterator() { |
|
return listIterator(); |
|
} |
|
public ListIterator<E> listIterator(int index) { |
|
checkForComodification(); |
|
rangeCheckForAdd(index); |
|
return new ListIterator<E>() { |
|
int cursor = index; |
|
int lastRet = -1; |
|
int expectedModCount = root.modCount; |
|
public boolean hasNext() { |
|
return cursor != SubList.this.size; |
|
} |
|
@SuppressWarnings("unchecked") |
|
public E next() { |
|
checkForComodification(); |
|
int i = cursor; |
|
if (i >= SubList.this.size) |
|
throw new NoSuchElementException(); |
|
Object[] elementData = root.elementData; |
|
if (offset + i >= elementData.length) |
|
throw new ConcurrentModificationException(); |
|
cursor = i + 1; |
|
return (E) elementData[offset + (lastRet = i)]; |
|
} |
|
public boolean hasPrevious() { |
|
return cursor != 0; |
|
} |
|
@SuppressWarnings("unchecked") |
|
public E previous() { |
|
checkForComodification(); |
|
int i = cursor - 1; |
|
if (i < 0) |
|
throw new NoSuchElementException(); |
|
Object[] elementData = root.elementData; |
|
if (offset + i >= elementData.length) |
|
throw new ConcurrentModificationException(); |
|
cursor = i; |
|
return (E) elementData[offset + (lastRet = i)]; |
|
} |
|
public void forEachRemaining(Consumer<? super E> action) { |
|
Objects.requireNonNull(action); |
|
final int size = SubList.this.size; |
|
int i = cursor; |
|
if (i < size) { |
|
final Object[] es = root.elementData; |
|
if (offset + i >= es.length) |
|
throw new ConcurrentModificationException(); |
|
for (; i < size && modCount == expectedModCount; i++) |
|
action.accept(elementAt(es, offset + i)); |
|
// update once at end to reduce heap write traffic |
|
cursor = i; |
|
lastRet = i - 1; |
|
checkForComodification(); |
|
} |
|
} |
|
public int nextIndex() { |
|
return cursor; |
|
} |
|
public int previousIndex() { |
|
return cursor - 1; |
|
} |
|
public void remove() { |
|
if (lastRet < 0) |
|
throw new IllegalStateException(); |
|
checkForComodification(); |
|
try { |
|
SubList.this.remove(lastRet); |
|
cursor = lastRet; |
|
lastRet = -1; |
|
expectedModCount = root.modCount; |
|
} catch (IndexOutOfBoundsException ex) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
public void set(E e) { |
|
if (lastRet < 0) |
|
throw new IllegalStateException(); |
|
checkForComodification(); |
|
try { |
|
root.set(offset + lastRet, e); |
|
} catch (IndexOutOfBoundsException ex) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
public void add(E e) { |
|
checkForComodification(); |
|
try { |
|
int i = cursor; |
|
SubList.this.add(i, e); |
|
cursor = i + 1; |
|
lastRet = -1; |
|
expectedModCount = root.modCount; |
|
} catch (IndexOutOfBoundsException ex) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
final void checkForComodification() { |
|
if (root.modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
} |
|
}; |
|
} |
|
public List<E> subList(int fromIndex, int toIndex) { |
|
subListRangeCheck(fromIndex, toIndex, size); |
|
return new SubList<>(this, fromIndex, toIndex); |
|
} |
|
private void rangeCheckForAdd(int index) { |
|
if (index < 0 || index > this.size) |
|
throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); |
|
} |
|
private String outOfBoundsMsg(int index) { |
|
return "Index: "+index+", Size: "+this.size; |
|
} |
|
private void checkForComodification() { |
|
if (root.modCount != modCount) |
|
throw new ConcurrentModificationException(); |
|
} |
|
private void updateSizeAndModCount(int sizeChange) { |
|
SubList<E> slist = this; |
|
do { |
|
slist.size += sizeChange; |
|
slist.modCount = root.modCount; |
|
slist = slist.parent; |
|
} while (slist != null); |
|
} |
|
public Spliterator<E> spliterator() { |
|
checkForComodification(); |
|
// ArrayListSpliterator not used here due to late-binding |
|
return new Spliterator<E>() { |
|
private int index = offset; // current index, modified on advance/split |
|
private int fence = -1; // -1 until used; then one past last index |
|
private int expectedModCount; // initialized when fence set |
|
private int getFence() { // initialize fence to size on first use |
|
int hi; // (a specialized variant appears in method forEach) |
|
if ((hi = fence) < 0) { |
|
expectedModCount = modCount; |
|
hi = fence = offset + size; |
|
} |
|
return hi; |
|
} |
|
public ArrayList<E>.ArrayListSpliterator trySplit() { |
|
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; |
|
// ArrayListSpliterator can be used here as the source is already bound |
|
return (lo >= mid) ? null : // divide range in half unless too small |
|
root.new ArrayListSpliterator(lo, index = mid, expectedModCount); |
|
} |
|
public boolean tryAdvance(Consumer<? super E> action) { |
|
Objects.requireNonNull(action); |
|
int hi = getFence(), i = index; |
|
if (i < hi) { |
|
index = i + 1; |
|
@SuppressWarnings("unchecked") E e = (E)root.elementData[i]; |
|
action.accept(e); |
|
if (root.modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
return true; |
|
} |
|
return false; |
|
} |
|
public void forEachRemaining(Consumer<? super E> action) { |
|
Objects.requireNonNull(action); |
|
int i, hi, mc; // hoist accesses and checks from loop |
|
ArrayList<E> lst = root; |
|
Object[] a; |
|
if ((a = lst.elementData) != null) { |
|
if ((hi = fence) < 0) { |
|
mc = modCount; |
|
hi = offset + size; |
|
} |
|
else |
|
mc = expectedModCount; |
|
if ((i = index) >= 0 && (index = hi) <= a.length) { |
|
for (; i < hi; ++i) { |
|
@SuppressWarnings("unchecked") E e = (E) a[i]; |
|
action.accept(e); |
|
} |
|
if (lst.modCount == mc) |
|
return; |
|
} |
|
} |
|
throw new ConcurrentModificationException(); |
|
} |
|
public long estimateSize() { |
|
return getFence() - index; |
|
} |
|
public int characteristics() { |
|
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; |
|
} |
|
}; |
|
} |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
@Override |
|
public void forEach(Consumer<? super E> action) { |
|
Objects.requireNonNull(action); |
|
final int expectedModCount = modCount; |
|
final Object[] es = elementData; |
|
final int size = this.size; |
|
for (int i = 0; modCount == expectedModCount && i < size; i++) |
|
action.accept(elementAt(es, i)); |
|
if (modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
} |
|
/** |
|
* Creates a <em><a href="Spliterator.html#binding">late-binding</a></em> |
|
* and <em>fail-fast</em> {@link Spliterator} over the elements in this |
|
* list. |
|
* |
|
* <p>The {@code Spliterator} reports {@link Spliterator#SIZED}, |
|
* {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}. |
|
* Overriding implementations should document the reporting of additional |
|
* characteristic values. |
|
* |
|
* @return a {@code Spliterator} over the elements in this list |
|
* @since 1.8 |
|
*/ |
|
@Override |
|
public Spliterator<E> spliterator() { |
|
return new ArrayListSpliterator(0, -1, 0); |
|
} |
|
/** Index-based split-by-two, lazily initialized Spliterator */ |
|
final class ArrayListSpliterator implements Spliterator<E> { |
|
/* |
|
* If ArrayLists were immutable, or structurally immutable (no |
|
* adds, removes, etc), we could implement their spliterators |
|
* with Arrays.spliterator. Instead we detect as much |
|
* interference during traversal as practical without |
|
* sacrificing much performance. We rely primarily on |
|
* modCounts. These are not guaranteed to detect concurrency |
|
* violations, and are sometimes overly conservative about |
|
* within-thread interference, but detect enough problems to |
|
* be worthwhile in practice. To carry this out, we (1) lazily |
|
* initialize fence and expectedModCount until the latest |
|
* point that we need to commit to the state we are checking |
|
* against; thus improving precision. (This doesn't apply to |
|
* SubLists, that create spliterators with current non-lazy |
|
* values). (2) We perform only a single |
|
* ConcurrentModificationException check at the end of forEach |
|
* (the most performance-sensitive method). When using forEach |
|
* (as opposed to iterators), we can normally only detect |
|
* interference after actions, not before. Further |
|
* CME-triggering checks apply to all other possible |
|
* violations of assumptions for example null or too-small |
|
* elementData array given its size(), that could only have |
|
* occurred due to interference. This allows the inner loop |
|
* of forEach to run without any further checks, and |
|
* simplifies lambda-resolution. While this does entail a |
|
* number of checks, note that in the common case of |
|
* list.stream().forEach(a), no checks or other computation |
|
* occur anywhere other than inside forEach itself. The other |
|
* less-often-used methods cannot take advantage of most of |
|
* these streamlinings. |
|
*/ |
|
private int index; // current index, modified on advance/split |
|
private int fence; // -1 until used; then one past last index |
|
private int expectedModCount; // initialized when fence set |
|
/** Creates new spliterator covering the given range. */ |
|
ArrayListSpliterator(int origin, int fence, int expectedModCount) { |
|
this.index = origin; |
|
this.fence = fence; |
|
this.expectedModCount = expectedModCount; |
|
} |
|
private int getFence() { // initialize fence to size on first use |
|
int hi; // (a specialized variant appears in method forEach) |
|
if ((hi = fence) < 0) { |
|
expectedModCount = modCount; |
|
hi = fence = size; |
|
} |
|
return hi; |
|
} |
|
public ArrayListSpliterator trySplit() { |
|
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; |
|
return (lo >= mid) ? null : // divide range in half unless too small |
|
new ArrayListSpliterator(lo, index = mid, expectedModCount); |
|
} |
|
public boolean tryAdvance(Consumer<? super E> action) { |
|
if (action == null) |
|
throw new NullPointerException(); |
|
int hi = getFence(), i = index; |
|
if (i < hi) { |
|
index = i + 1; |
|
@SuppressWarnings("unchecked") E e = (E)elementData[i]; |
|
action.accept(e); |
|
if (modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
return true; |
|
} |
|
return false; |
|
} |
|
public void forEachRemaining(Consumer<? super E> action) { |
|
int i, hi, mc; // hoist accesses and checks from loop |
|
Object[] a; |
|
if (action == null) |
|
throw new NullPointerException(); |
|
if ((a = elementData) != null) { |
|
if ((hi = fence) < 0) { |
|
mc = modCount; |
|
hi = size; |
|
} |
|
else |
|
mc = expectedModCount; |
|
if ((i = index) >= 0 && (index = hi) <= a.length) { |
|
for (; i < hi; ++i) { |
|
@SuppressWarnings("unchecked") E e = (E) a[i]; |
|
action.accept(e); |
|
} |
|
if (modCount == mc) |
|
return; |
|
} |
|
} |
|
throw new ConcurrentModificationException(); |
|
} |
|
public long estimateSize() { |
|
return getFence() - index; |
|
} |
|
public int characteristics() { |
|
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; |
|
} |
|
} |
|
// A tiny bit set implementation |
|
private static long[] nBits(int n) { |
|
return new long[((n - 1) >> 6) + 1]; |
|
} |
|
private static void setBit(long[] bits, int i) { |
|
bits[i >> 6] |= 1L << i; |
|
} |
|
private static boolean isClear(long[] bits, int i) { |
|
return (bits[i >> 6] & (1L << i)) == 0; |
|
} |
|
/** |
|
* @throws NullPointerException {@inheritDoc} |
|
*/ |
|
@Override |
|
public boolean removeIf(Predicate<? super E> filter) { |
|
return removeIf(filter, 0, size); |
|
} |
|
/** |
|
* Removes all elements satisfying the given predicate, from index |
|
* i (inclusive) to index end (exclusive). |
|
*/ |
|
boolean removeIf(Predicate<? super E> filter, int i, final int end) { |
|
Objects.requireNonNull(filter); |
|
int expectedModCount = modCount; |
|
final Object[] es = elementData; |
|
// Optimize for initial run of survivors |
|
for (; i < end && !filter.test(elementAt(es, i)); i++) |
|
; |
|
// Tolerate predicates that reentrantly access the collection for |
|
// read (but writers still get CME), so traverse once to find |
|
// elements to delete, a second pass to physically expunge. |
|
if (i < end) { |
|
final int beg = i; |
|
final long[] deathRow = nBits(end - beg); |
|
deathRow[0] = 1L; // set bit 0 |
|
for (i = beg + 1; i < end; i++) |
|
if (filter.test(elementAt(es, i))) |
|
setBit(deathRow, i - beg); |
|
if (modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
modCount++; |
|
int w = beg; |
|
for (i = beg; i < end; i++) |
|
if (isClear(deathRow, i - beg)) |
|
es[w++] = es[i]; |
|
shiftTailOverGap(es, w, end); |
|
return true; |
|
} else { |
|
if (modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
return false; |
|
} |
|
} |
|
@Override |
|
public void replaceAll(UnaryOperator<E> operator) { |
|
replaceAllRange(operator, 0, size); |
|
modCount++; |
|
} |
|
private void replaceAllRange(UnaryOperator<E> operator, int i, int end) { |
|
Objects.requireNonNull(operator); |
|
final int expectedModCount = modCount; |
|
final Object[] es = elementData; |
|
for (; modCount == expectedModCount && i < end; i++) |
|
es[i] = operator.apply(elementAt(es, i)); |
|
if (modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
} |
|
@Override |
|
@SuppressWarnings("unchecked") |
|
public void sort(Comparator<? super E> c) { |
|
final int expectedModCount = modCount; |
|
Arrays.sort((E[]) elementData, 0, size, c); |
|
if (modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
modCount++; |
|
} |
|
void checkInvariants() { |
|
// assert size >= 0; |
|
// assert size == elementData.length || elementData[size] == null; |
|
} |
|
} |