/* |
|
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
package java.awt.geom; |
|
import java.awt.Shape; |
|
import java.awt.Rectangle; |
|
import java.io.Serializable; |
|
import sun.awt.geom.Curve; |
|
/** |
|
* The <code>QuadCurve2D</code> class defines a quadratic parametric curve |
|
* segment in {@code (x,y)} coordinate space. |
|
* <p> |
|
* This class is only the abstract superclass for all objects that |
|
* store a 2D quadratic curve segment. |
|
* The actual storage representation of the coordinates is left to |
|
* the subclass. |
|
* |
|
* @author Jim Graham |
|
* @since 1.2 |
|
*/ |
|
public abstract class QuadCurve2D implements Shape, Cloneable { |
|
/** |
|
* A quadratic parametric curve segment specified with |
|
* {@code float} coordinates. |
|
* |
|
* @since 1.2 |
|
*/ |
|
public static class Float extends QuadCurve2D implements Serializable { |
|
/** |
|
* The X coordinate of the start point of the quadratic curve |
|
* segment. |
|
* @since 1.2 |
|
* @serial |
|
*/ |
|
public float x1; |
|
/** |
|
* The Y coordinate of the start point of the quadratic curve |
|
* segment. |
|
* @since 1.2 |
|
* @serial |
|
*/ |
|
public float y1; |
|
/** |
|
* The X coordinate of the control point of the quadratic curve |
|
* segment. |
|
* @since 1.2 |
|
* @serial |
|
*/ |
|
public float ctrlx; |
|
/** |
|
* The Y coordinate of the control point of the quadratic curve |
|
* segment. |
|
* @since 1.2 |
|
* @serial |
|
*/ |
|
public float ctrly; |
|
/** |
|
* The X coordinate of the end point of the quadratic curve |
|
* segment. |
|
* @since 1.2 |
|
* @serial |
|
*/ |
|
public float x2; |
|
/** |
|
* The Y coordinate of the end point of the quadratic curve |
|
* segment. |
|
* @since 1.2 |
|
* @serial |
|
*/ |
|
public float y2; |
|
/** |
|
* Constructs and initializes a <code>QuadCurve2D</code> with |
|
* coordinates (0, 0, 0, 0, 0, 0). |
|
* @since 1.2 |
|
*/ |
|
public Float() { |
|
} |
|
/** |
|
* Constructs and initializes a <code>QuadCurve2D</code> from the |
|
* specified {@code float} coordinates. |
|
* |
|
* @param x1 the X coordinate of the start point |
|
* @param y1 the Y coordinate of the start point |
|
* @param ctrlx the X coordinate of the control point |
|
* @param ctrly the Y coordinate of the control point |
|
* @param x2 the X coordinate of the end point |
|
* @param y2 the Y coordinate of the end point |
|
* @since 1.2 |
|
*/ |
|
public Float(float x1, float y1, |
|
float ctrlx, float ctrly, |
|
float x2, float y2) |
|
{ |
|
setCurve(x1, y1, ctrlx, ctrly, x2, y2); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public double getX1() { |
|
return (double) x1; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public double getY1() { |
|
return (double) y1; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public Point2D getP1() { |
|
return new Point2D.Float(x1, y1); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public double getCtrlX() { |
|
return (double) ctrlx; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public double getCtrlY() { |
|
return (double) ctrly; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public Point2D getCtrlPt() { |
|
return new Point2D.Float(ctrlx, ctrly); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public double getX2() { |
|
return (double) x2; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public double getY2() { |
|
return (double) y2; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public Point2D getP2() { |
|
return new Point2D.Float(x2, y2); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public void setCurve(double x1, double y1, |
|
double ctrlx, double ctrly, |
|
double x2, double y2) |
|
{ |
|
this.x1 = (float) x1; |
|
this.y1 = (float) y1; |
|
this.ctrlx = (float) ctrlx; |
|
this.ctrly = (float) ctrly; |
|
this.x2 = (float) x2; |
|
this.y2 = (float) y2; |
|
} |
|
/** |
|
* Sets the location of the end points and control point of this curve |
|
* to the specified {@code float} coordinates. |
|
* |
|
* @param x1 the X coordinate of the start point |
|
* @param y1 the Y coordinate of the start point |
|
* @param ctrlx the X coordinate of the control point |
|
* @param ctrly the Y coordinate of the control point |
|
* @param x2 the X coordinate of the end point |
|
* @param y2 the Y coordinate of the end point |
|
* @since 1.2 |
|
*/ |
|
public void setCurve(float x1, float y1, |
|
float ctrlx, float ctrly, |
|
float x2, float y2) |
|
{ |
|
this.x1 = x1; |
|
this.y1 = y1; |
|
this.ctrlx = ctrlx; |
|
this.ctrly = ctrly; |
|
this.x2 = x2; |
|
this.y2 = y2; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public Rectangle2D getBounds2D() { |
|
float left = Math.min(Math.min(x1, x2), ctrlx); |
|
float top = Math.min(Math.min(y1, y2), ctrly); |
|
float right = Math.max(Math.max(x1, x2), ctrlx); |
|
float bottom = Math.max(Math.max(y1, y2), ctrly); |
|
return new Rectangle2D.Float(left, top, |
|
right - left, bottom - top); |
|
} |
|
/* |
|
* JDK 1.6 serialVersionUID |
|
*/ |
|
private static final long serialVersionUID = -8511188402130719609L; |
|
} |
|
/** |
|
* A quadratic parametric curve segment specified with |
|
* {@code double} coordinates. |
|
* |
|
* @since 1.2 |
|
*/ |
|
public static class Double extends QuadCurve2D implements Serializable { |
|
/** |
|
* The X coordinate of the start point of the quadratic curve |
|
* segment. |
|
* @since 1.2 |
|
* @serial |
|
*/ |
|
public double x1; |
|
/** |
|
* The Y coordinate of the start point of the quadratic curve |
|
* segment. |
|
* @since 1.2 |
|
* @serial |
|
*/ |
|
public double y1; |
|
/** |
|
* The X coordinate of the control point of the quadratic curve |
|
* segment. |
|
* @since 1.2 |
|
* @serial |
|
*/ |
|
public double ctrlx; |
|
/** |
|
* The Y coordinate of the control point of the quadratic curve |
|
* segment. |
|
* @since 1.2 |
|
* @serial |
|
*/ |
|
public double ctrly; |
|
/** |
|
* The X coordinate of the end point of the quadratic curve |
|
* segment. |
|
* @since 1.2 |
|
* @serial |
|
*/ |
|
public double x2; |
|
/** |
|
* The Y coordinate of the end point of the quadratic curve |
|
* segment. |
|
* @since 1.2 |
|
* @serial |
|
*/ |
|
public double y2; |
|
/** |
|
* Constructs and initializes a <code>QuadCurve2D</code> with |
|
* coordinates (0, 0, 0, 0, 0, 0). |
|
* @since 1.2 |
|
*/ |
|
public Double() { |
|
} |
|
/** |
|
* Constructs and initializes a <code>QuadCurve2D</code> from the |
|
* specified {@code double} coordinates. |
|
* |
|
* @param x1 the X coordinate of the start point |
|
* @param y1 the Y coordinate of the start point |
|
* @param ctrlx the X coordinate of the control point |
|
* @param ctrly the Y coordinate of the control point |
|
* @param x2 the X coordinate of the end point |
|
* @param y2 the Y coordinate of the end point |
|
* @since 1.2 |
|
*/ |
|
public Double(double x1, double y1, |
|
double ctrlx, double ctrly, |
|
double x2, double y2) |
|
{ |
|
setCurve(x1, y1, ctrlx, ctrly, x2, y2); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public double getX1() { |
|
return x1; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public double getY1() { |
|
return y1; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public Point2D getP1() { |
|
return new Point2D.Double(x1, y1); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public double getCtrlX() { |
|
return ctrlx; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public double getCtrlY() { |
|
return ctrly; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public Point2D getCtrlPt() { |
|
return new Point2D.Double(ctrlx, ctrly); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public double getX2() { |
|
return x2; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public double getY2() { |
|
return y2; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public Point2D getP2() { |
|
return new Point2D.Double(x2, y2); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public void setCurve(double x1, double y1, |
|
double ctrlx, double ctrly, |
|
double x2, double y2) |
|
{ |
|
this.x1 = x1; |
|
this.y1 = y1; |
|
this.ctrlx = ctrlx; |
|
this.ctrly = ctrly; |
|
this.x2 = x2; |
|
this.y2 = y2; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public Rectangle2D getBounds2D() { |
|
double left = Math.min(Math.min(x1, x2), ctrlx); |
|
double top = Math.min(Math.min(y1, y2), ctrly); |
|
double right = Math.max(Math.max(x1, x2), ctrlx); |
|
double bottom = Math.max(Math.max(y1, y2), ctrly); |
|
return new Rectangle2D.Double(left, top, |
|
right - left, bottom - top); |
|
} |
|
/* |
|
* JDK 1.6 serialVersionUID |
|
*/ |
|
private static final long serialVersionUID = 4217149928428559721L; |
|
} |
|
/** |
|
* This is an abstract class that cannot be instantiated directly. |
|
* Type-specific implementation subclasses are available for |
|
* instantiation and provide a number of formats for storing |
|
* the information necessary to satisfy the various accessor |
|
* methods below. |
|
* |
|
* @see java.awt.geom.QuadCurve2D.Float |
|
* @see java.awt.geom.QuadCurve2D.Double |
|
* @since 1.2 |
|
*/ |
|
protected QuadCurve2D() { |
|
} |
|
/** |
|
* Returns the X coordinate of the start point in |
|
* <code>double</code> in precision. |
|
* @return the X coordinate of the start point. |
|
* @since 1.2 |
|
*/ |
|
public abstract double getX1(); |
|
/** |
|
* Returns the Y coordinate of the start point in |
|
* <code>double</code> precision. |
|
* @return the Y coordinate of the start point. |
|
* @since 1.2 |
|
*/ |
|
public abstract double getY1(); |
|
/** |
|
* Returns the start point. |
|
* @return a <code>Point2D</code> that is the start point of this |
|
* <code>QuadCurve2D</code>. |
|
* @since 1.2 |
|
*/ |
|
public abstract Point2D getP1(); |
|
/** |
|
* Returns the X coordinate of the control point in |
|
* <code>double</code> precision. |
|
* @return X coordinate the control point |
|
* @since 1.2 |
|
*/ |
|
public abstract double getCtrlX(); |
|
/** |
|
* Returns the Y coordinate of the control point in |
|
* <code>double</code> precision. |
|
* @return the Y coordinate of the control point. |
|
* @since 1.2 |
|
*/ |
|
public abstract double getCtrlY(); |
|
/** |
|
* Returns the control point. |
|
* @return a <code>Point2D</code> that is the control point of this |
|
* <code>Point2D</code>. |
|
* @since 1.2 |
|
*/ |
|
public abstract Point2D getCtrlPt(); |
|
/** |
|
* Returns the X coordinate of the end point in |
|
* <code>double</code> precision. |
|
* @return the x coordinate of the end point. |
|
* @since 1.2 |
|
*/ |
|
public abstract double getX2(); |
|
/** |
|
* Returns the Y coordinate of the end point in |
|
* <code>double</code> precision. |
|
* @return the Y coordinate of the end point. |
|
* @since 1.2 |
|
*/ |
|
public abstract double getY2(); |
|
/** |
|
* Returns the end point. |
|
* @return a <code>Point</code> object that is the end point |
|
* of this <code>Point2D</code>. |
|
* @since 1.2 |
|
*/ |
|
public abstract Point2D getP2(); |
|
/** |
|
* Sets the location of the end points and control point of this curve |
|
* to the specified <code>double</code> coordinates. |
|
* |
|
* @param x1 the X coordinate of the start point |
|
* @param y1 the Y coordinate of the start point |
|
* @param ctrlx the X coordinate of the control point |
|
* @param ctrly the Y coordinate of the control point |
|
* @param x2 the X coordinate of the end point |
|
* @param y2 the Y coordinate of the end point |
|
* @since 1.2 |
|
*/ |
|
public abstract void setCurve(double x1, double y1, |
|
double ctrlx, double ctrly, |
|
double x2, double y2); |
|
/** |
|
* Sets the location of the end points and control points of this |
|
* <code>QuadCurve2D</code> to the <code>double</code> coordinates at |
|
* the specified offset in the specified array. |
|
* @param coords the array containing coordinate values |
|
* @param offset the index into the array from which to start |
|
* getting the coordinate values and assigning them to this |
|
* <code>QuadCurve2D</code> |
|
* @since 1.2 |
|
*/ |
|
public void setCurve(double[] coords, int offset) { |
|
setCurve(coords[offset + 0], coords[offset + 1], |
|
coords[offset + 2], coords[offset + 3], |
|
coords[offset + 4], coords[offset + 5]); |
|
} |
|
/** |
|
* Sets the location of the end points and control point of this |
|
* <code>QuadCurve2D</code> to the specified <code>Point2D</code> |
|
* coordinates. |
|
* @param p1 the start point |
|
* @param cp the control point |
|
* @param p2 the end point |
|
* @since 1.2 |
|
*/ |
|
public void setCurve(Point2D p1, Point2D cp, Point2D p2) { |
|
setCurve(p1.getX(), p1.getY(), |
|
cp.getX(), cp.getY(), |
|
p2.getX(), p2.getY()); |
|
} |
|
/** |
|
* Sets the location of the end points and control points of this |
|
* <code>QuadCurve2D</code> to the coordinates of the |
|
* <code>Point2D</code> objects at the specified offset in |
|
* the specified array. |
|
* @param pts an array containing <code>Point2D</code> that define |
|
* coordinate values |
|
* @param offset the index into <code>pts</code> from which to start |
|
* getting the coordinate values and assigning them to this |
|
* <code>QuadCurve2D</code> |
|
* @since 1.2 |
|
*/ |
|
public void setCurve(Point2D[] pts, int offset) { |
|
setCurve(pts[offset + 0].getX(), pts[offset + 0].getY(), |
|
pts[offset + 1].getX(), pts[offset + 1].getY(), |
|
pts[offset + 2].getX(), pts[offset + 2].getY()); |
|
} |
|
/** |
|
* Sets the location of the end points and control point of this |
|
* <code>QuadCurve2D</code> to the same as those in the specified |
|
* <code>QuadCurve2D</code>. |
|
* @param c the specified <code>QuadCurve2D</code> |
|
* @since 1.2 |
|
*/ |
|
public void setCurve(QuadCurve2D c) { |
|
setCurve(c.getX1(), c.getY1(), |
|
c.getCtrlX(), c.getCtrlY(), |
|
c.getX2(), c.getY2()); |
|
} |
|
/** |
|
* Returns the square of the flatness, or maximum distance of a |
|
* control point from the line connecting the end points, of the |
|
* quadratic curve specified by the indicated control points. |
|
* |
|
* @param x1 the X coordinate of the start point |
|
* @param y1 the Y coordinate of the start point |
|
* @param ctrlx the X coordinate of the control point |
|
* @param ctrly the Y coordinate of the control point |
|
* @param x2 the X coordinate of the end point |
|
* @param y2 the Y coordinate of the end point |
|
* @return the square of the flatness of the quadratic curve |
|
* defined by the specified coordinates. |
|
* @since 1.2 |
|
*/ |
|
public static double getFlatnessSq(double x1, double y1, |
|
double ctrlx, double ctrly, |
|
double x2, double y2) { |
|
return Line2D.ptSegDistSq(x1, y1, x2, y2, ctrlx, ctrly); |
|
} |
|
/** |
|
* Returns the flatness, or maximum distance of a |
|
* control point from the line connecting the end points, of the |
|
* quadratic curve specified by the indicated control points. |
|
* |
|
* @param x1 the X coordinate of the start point |
|
* @param y1 the Y coordinate of the start point |
|
* @param ctrlx the X coordinate of the control point |
|
* @param ctrly the Y coordinate of the control point |
|
* @param x2 the X coordinate of the end point |
|
* @param y2 the Y coordinate of the end point |
|
* @return the flatness of the quadratic curve defined by the |
|
* specified coordinates. |
|
* @since 1.2 |
|
*/ |
|
public static double getFlatness(double x1, double y1, |
|
double ctrlx, double ctrly, |
|
double x2, double y2) { |
|
return Line2D.ptSegDist(x1, y1, x2, y2, ctrlx, ctrly); |
|
} |
|
/** |
|
* Returns the square of the flatness, or maximum distance of a |
|
* control point from the line connecting the end points, of the |
|
* quadratic curve specified by the control points stored in the |
|
* indicated array at the indicated index. |
|
* @param coords an array containing coordinate values |
|
* @param offset the index into <code>coords</code> from which to |
|
* to start getting the values from the array |
|
* @return the flatness of the quadratic curve that is defined by the |
|
* values in the specified array at the specified index. |
|
* @since 1.2 |
|
*/ |
|
public static double getFlatnessSq(double coords[], int offset) { |
|
return Line2D.ptSegDistSq(coords[offset + 0], coords[offset + 1], |
|
coords[offset + 4], coords[offset + 5], |
|
coords[offset + 2], coords[offset + 3]); |
|
} |
|
/** |
|
* Returns the flatness, or maximum distance of a |
|
* control point from the line connecting the end points, of the |
|
* quadratic curve specified by the control points stored in the |
|
* indicated array at the indicated index. |
|
* @param coords an array containing coordinate values |
|
* @param offset the index into <code>coords</code> from which to |
|
* start getting the coordinate values |
|
* @return the flatness of a quadratic curve defined by the |
|
* specified array at the specified offset. |
|
* @since 1.2 |
|
*/ |
|
public static double getFlatness(double coords[], int offset) { |
|
return Line2D.ptSegDist(coords[offset + 0], coords[offset + 1], |
|
coords[offset + 4], coords[offset + 5], |
|
coords[offset + 2], coords[offset + 3]); |
|
} |
|
/** |
|
* Returns the square of the flatness, or maximum distance of a |
|
* control point from the line connecting the end points, of this |
|
* <code>QuadCurve2D</code>. |
|
* @return the square of the flatness of this |
|
* <code>QuadCurve2D</code>. |
|
* @since 1.2 |
|
*/ |
|
public double getFlatnessSq() { |
|
return Line2D.ptSegDistSq(getX1(), getY1(), |
|
getX2(), getY2(), |
|
getCtrlX(), getCtrlY()); |
|
} |
|
/** |
|
* Returns the flatness, or maximum distance of a |
|
* control point from the line connecting the end points, of this |
|
* <code>QuadCurve2D</code>. |
|
* @return the flatness of this <code>QuadCurve2D</code>. |
|
* @since 1.2 |
|
*/ |
|
public double getFlatness() { |
|
return Line2D.ptSegDist(getX1(), getY1(), |
|
getX2(), getY2(), |
|
getCtrlX(), getCtrlY()); |
|
} |
|
/** |
|
* Subdivides this <code>QuadCurve2D</code> and stores the resulting |
|
* two subdivided curves into the <code>left</code> and |
|
* <code>right</code> curve parameters. |
|
* Either or both of the <code>left</code> and <code>right</code> |
|
* objects can be the same as this <code>QuadCurve2D</code> or |
|
* <code>null</code>. |
|
* @param left the <code>QuadCurve2D</code> object for storing the |
|
* left or first half of the subdivided curve |
|
* @param right the <code>QuadCurve2D</code> object for storing the |
|
* right or second half of the subdivided curve |
|
* @since 1.2 |
|
*/ |
|
public void subdivide(QuadCurve2D left, QuadCurve2D right) { |
|
subdivide(this, left, right); |
|
} |
|
/** |
|
* Subdivides the quadratic curve specified by the <code>src</code> |
|
* parameter and stores the resulting two subdivided curves into the |
|
* <code>left</code> and <code>right</code> curve parameters. |
|
* Either or both of the <code>left</code> and <code>right</code> |
|
* objects can be the same as the <code>src</code> object or |
|
* <code>null</code>. |
|
* @param src the quadratic curve to be subdivided |
|
* @param left the <code>QuadCurve2D</code> object for storing the |
|
* left or first half of the subdivided curve |
|
* @param right the <code>QuadCurve2D</code> object for storing the |
|
* right or second half of the subdivided curve |
|
* @since 1.2 |
|
*/ |
|
public static void subdivide(QuadCurve2D src, |
|
QuadCurve2D left, |
|
QuadCurve2D right) { |
|
double x1 = src.getX1(); |
|
double y1 = src.getY1(); |
|
double ctrlx = src.getCtrlX(); |
|
double ctrly = src.getCtrlY(); |
|
double x2 = src.getX2(); |
|
double y2 = src.getY2(); |
|
double ctrlx1 = (x1 + ctrlx) / 2.0; |
|
double ctrly1 = (y1 + ctrly) / 2.0; |
|
double ctrlx2 = (x2 + ctrlx) / 2.0; |
|
double ctrly2 = (y2 + ctrly) / 2.0; |
|
ctrlx = (ctrlx1 + ctrlx2) / 2.0; |
|
ctrly = (ctrly1 + ctrly2) / 2.0; |
|
if (left != null) { |
|
left.setCurve(x1, y1, ctrlx1, ctrly1, ctrlx, ctrly); |
|
} |
|
if (right != null) { |
|
right.setCurve(ctrlx, ctrly, ctrlx2, ctrly2, x2, y2); |
|
} |
|
} |
|
/** |
|
* Subdivides the quadratic curve specified by the coordinates |
|
* stored in the <code>src</code> array at indices |
|
* <code>srcoff</code> through <code>srcoff</code> + 5 |
|
* and stores the resulting two subdivided curves into the two |
|
* result arrays at the corresponding indices. |
|
* Either or both of the <code>left</code> and <code>right</code> |
|
* arrays can be <code>null</code> or a reference to the same array |
|
* and offset as the <code>src</code> array. |
|
* Note that the last point in the first subdivided curve is the |
|
* same as the first point in the second subdivided curve. Thus, |
|
* it is possible to pass the same array for <code>left</code> and |
|
* <code>right</code> and to use offsets such that |
|
* <code>rightoff</code> equals <code>leftoff</code> + 4 in order |
|
* to avoid allocating extra storage for this common point. |
|
* @param src the array holding the coordinates for the source curve |
|
* @param srcoff the offset into the array of the beginning of the |
|
* the 6 source coordinates |
|
* @param left the array for storing the coordinates for the first |
|
* half of the subdivided curve |
|
* @param leftoff the offset into the array of the beginning of the |
|
* the 6 left coordinates |
|
* @param right the array for storing the coordinates for the second |
|
* half of the subdivided curve |
|
* @param rightoff the offset into the array of the beginning of the |
|
* the 6 right coordinates |
|
* @since 1.2 |
|
*/ |
|
public static void subdivide(double src[], int srcoff, |
|
double left[], int leftoff, |
|
double right[], int rightoff) { |
|
double x1 = src[srcoff + 0]; |
|
double y1 = src[srcoff + 1]; |
|
double ctrlx = src[srcoff + 2]; |
|
double ctrly = src[srcoff + 3]; |
|
double x2 = src[srcoff + 4]; |
|
double y2 = src[srcoff + 5]; |
|
if (left != null) { |
|
left[leftoff + 0] = x1; |
|
left[leftoff + 1] = y1; |
|
} |
|
if (right != null) { |
|
right[rightoff + 4] = x2; |
|
right[rightoff + 5] = y2; |
|
} |
|
x1 = (x1 + ctrlx) / 2.0; |
|
y1 = (y1 + ctrly) / 2.0; |
|
x2 = (x2 + ctrlx) / 2.0; |
|
y2 = (y2 + ctrly) / 2.0; |
|
ctrlx = (x1 + x2) / 2.0; |
|
ctrly = (y1 + y2) / 2.0; |
|
if (left != null) { |
|
left[leftoff + 2] = x1; |
|
left[leftoff + 3] = y1; |
|
left[leftoff + 4] = ctrlx; |
|
left[leftoff + 5] = ctrly; |
|
} |
|
if (right != null) { |
|
right[rightoff + 0] = ctrlx; |
|
right[rightoff + 1] = ctrly; |
|
right[rightoff + 2] = x2; |
|
right[rightoff + 3] = y2; |
|
} |
|
} |
|
/** |
|
* Solves the quadratic whose coefficients are in the <code>eqn</code> |
|
* array and places the non-complex roots back into the same array, |
|
* returning the number of roots. The quadratic solved is represented |
|
* by the equation: |
|
* <pre> |
|
* eqn = {C, B, A}; |
|
* ax^2 + bx + c = 0 |
|
* </pre> |
|
* A return value of <code>-1</code> is used to distinguish a constant |
|
* equation, which might be always 0 or never 0, from an equation that |
|
* has no zeroes. |
|
* @param eqn the array that contains the quadratic coefficients |
|
* @return the number of roots, or <code>-1</code> if the equation is |
|
* a constant |
|
* @since 1.2 |
|
*/ |
|
public static int solveQuadratic(double eqn[]) { |
|
return solveQuadratic(eqn, eqn); |
|
} |
|
/** |
|
* Solves the quadratic whose coefficients are in the <code>eqn</code> |
|
* array and places the non-complex roots into the <code>res</code> |
|
* array, returning the number of roots. |
|
* The quadratic solved is represented by the equation: |
|
* <pre> |
|
* eqn = {C, B, A}; |
|
* ax^2 + bx + c = 0 |
|
* </pre> |
|
* A return value of <code>-1</code> is used to distinguish a constant |
|
* equation, which might be always 0 or never 0, from an equation that |
|
* has no zeroes. |
|
* @param eqn the specified array of coefficients to use to solve |
|
* the quadratic equation |
|
* @param res the array that contains the non-complex roots |
|
* resulting from the solution of the quadratic equation |
|
* @return the number of roots, or <code>-1</code> if the equation is |
|
* a constant. |
|
* @since 1.3 |
|
*/ |
|
public static int solveQuadratic(double eqn[], double res[]) { |
|
double a = eqn[2]; |
|
double b = eqn[1]; |
|
double c = eqn[0]; |
|
int roots = 0; |
|
if (a == 0.0) { |
|
// The quadratic parabola has degenerated to a line. |
|
if (b == 0.0) { |
|
// The line has degenerated to a constant. |
|
return -1; |
|
} |
|
res[roots++] = -c / b; |
|
} else { |
|
// From Numerical Recipes, 5.6, Quadratic and Cubic Equations |
|
double d = b * b - 4.0 * a * c; |
|
if (d < 0.0) { |
|
// If d < 0.0, then there are no roots |
|
return 0; |
|
} |
|
d = Math.sqrt(d); |
|
// For accuracy, calculate one root using: |
|
// (-b +/- d) / 2a |
|
// and the other using: |
|
// 2c / (-b +/- d) |
|
// Choose the sign of the +/- so that b+d gets larger in magnitude |
|
if (b < 0.0) { |
|
d = -d; |
|
} |
|
double q = (b + d) / -2.0; |
|
// We already tested a for being 0 above |
|
res[roots++] = q / a; |
|
if (q != 0.0) { |
|
res[roots++] = c / q; |
|
} |
|
} |
|
return roots; |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public boolean contains(double x, double y) { |
|
double x1 = getX1(); |
|
double y1 = getY1(); |
|
double xc = getCtrlX(); |
|
double yc = getCtrlY(); |
|
double x2 = getX2(); |
|
double y2 = getY2(); |
|
/* |
|
* We have a convex shape bounded by quad curve Pc(t) |
|
* and ine Pl(t). |
|
* |
|
* P1 = (x1, y1) - start point of curve |
|
* P2 = (x2, y2) - end point of curve |
|
* Pc = (xc, yc) - control point |
|
* |
|
* Pq(t) = P1*(1 - t)^2 + 2*Pc*t*(1 - t) + P2*t^2 = |
|
* = (P1 - 2*Pc + P2)*t^2 + 2*(Pc - P1)*t + P1 |
|
* Pl(t) = P1*(1 - t) + P2*t |
|
* t = [0:1] |
|
* |
|
* P = (x, y) - point of interest |
|
* |
|
* Let's look at second derivative of quad curve equation: |
|
* |
|
* Pq''(t) = 2 * (P1 - 2 * Pc + P2) = Pq'' |
|
* It's constant vector. |
|
* |
|
* Let's draw a line through P to be parallel to this |
|
* vector and find the intersection of the quad curve |
|
* and the line. |
|
* |
|
* Pq(t) is point of intersection if system of equations |
|
* below has the solution. |
|
* |
|
* L(s) = P + Pq''*s == Pq(t) |
|
* Pq''*s + (P - Pq(t)) == 0 |
|
* |
|
* | xq''*s + (x - xq(t)) == 0 |
|
* | yq''*s + (y - yq(t)) == 0 |
|
* |
|
* This system has the solution if rank of its matrix equals to 1. |
|
* That is, determinant of the matrix should be zero. |
|
* |
|
* (y - yq(t))*xq'' == (x - xq(t))*yq'' |
|
* |
|
* Let's solve this equation with 't' variable. |
|
* Also let kx = x1 - 2*xc + x2 |
|
* ky = y1 - 2*yc + y2 |
|
* |
|
* t0q = (1/2)*((x - x1)*ky - (y - y1)*kx) / |
|
* ((xc - x1)*ky - (yc - y1)*kx) |
|
* |
|
* Let's do the same for our line Pl(t): |
|
* |
|
* t0l = ((x - x1)*ky - (y - y1)*kx) / |
|
* ((x2 - x1)*ky - (y2 - y1)*kx) |
|
* |
|
* It's easy to check that t0q == t0l. This fact means |
|
* we can compute t0 only one time. |
|
* |
|
* In case t0 < 0 or t0 > 1, we have an intersections outside |
|
* of shape bounds. So, P is definitely out of shape. |
|
* |
|
* In case t0 is inside [0:1], we should calculate Pq(t0) |
|
* and Pl(t0). We have three points for now, and all of them |
|
* lie on one line. So, we just need to detect, is our point |
|
* of interest between points of intersections or not. |
|
* |
|
* If the denominator in the t0q and t0l equations is |
|
* zero, then the points must be collinear and so the |
|
* curve is degenerate and encloses no area. Thus the |
|
* result is false. |
|
*/ |
|
double kx = x1 - 2 * xc + x2; |
|
double ky = y1 - 2 * yc + y2; |
|
double dx = x - x1; |
|
double dy = y - y1; |
|
double dxl = x2 - x1; |
|
double dyl = y2 - y1; |
|
double t0 = (dx * ky - dy * kx) / (dxl * ky - dyl * kx); |
|
if (t0 < 0 || t0 > 1 || t0 != t0) { |
|
return false; |
|
} |
|
double xb = kx * t0 * t0 + 2 * (xc - x1) * t0 + x1; |
|
double yb = ky * t0 * t0 + 2 * (yc - y1) * t0 + y1; |
|
double xl = dxl * t0 + x1; |
|
double yl = dyl * t0 + y1; |
|
return (x >= xb && x < xl) || |
|
(x >= xl && x < xb) || |
|
(y >= yb && y < yl) || |
|
(y >= yl && y < yb); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public boolean contains(Point2D p) { |
|
return contains(p.getX(), p.getY()); |
|
} |
|
/** |
|
* Fill an array with the coefficients of the parametric equation |
|
* in t, ready for solving against val with solveQuadratic. |
|
* We currently have: |
|
* val = Py(t) = C1*(1-t)^2 + 2*CP*t*(1-t) + C2*t^2 |
|
* = C1 - 2*C1*t + C1*t^2 + 2*CP*t - 2*CP*t^2 + C2*t^2 |
|
* = C1 + (2*CP - 2*C1)*t + (C1 - 2*CP + C2)*t^2 |
|
* 0 = (C1 - val) + (2*CP - 2*C1)*t + (C1 - 2*CP + C2)*t^2 |
|
* 0 = C + Bt + At^2 |
|
* C = C1 - val |
|
* B = 2*CP - 2*C1 |
|
* A = C1 - 2*CP + C2 |
|
*/ |
|
private static void fillEqn(double eqn[], double val, |
|
double c1, double cp, double c2) { |
|
eqn[0] = c1 - val; |
|
eqn[1] = cp + cp - c1 - c1; |
|
eqn[2] = c1 - cp - cp + c2; |
|
return; |
|
} |
|
/** |
|
* Evaluate the t values in the first num slots of the vals[] array |
|
* and place the evaluated values back into the same array. Only |
|
* evaluate t values that are within the range <0, 1>, including |
|
* the 0 and 1 ends of the range iff the include0 or include1 |
|
* booleans are true. If an "inflection" equation is handed in, |
|
* then any points which represent a point of inflection for that |
|
* quadratic equation are also ignored. |
|
*/ |
|
private static int evalQuadratic(double vals[], int num, |
|
boolean include0, |
|
boolean include1, |
|
double inflect[], |
|
double c1, double ctrl, double c2) { |
|
int j = 0; |
|
for (int i = 0; i < num; i++) { |
|
double t = vals[i]; |
|
if ((include0 ? t >= 0 : t > 0) && |
|
(include1 ? t <= 1 : t < 1) && |
|
(inflect == null || |
|
inflect[1] + 2*inflect[2]*t != 0)) |
|
{ |
|
double u = 1 - t; |
|
vals[j++] = c1*u*u + 2*ctrl*t*u + c2*t*t; |
|
} |
|
} |
|
return j; |
|
} |
|
private static final int BELOW = -2; |
|
private static final int LOWEDGE = -1; |
|
private static final int INSIDE = 0; |
|
private static final int HIGHEDGE = 1; |
|
private static final int ABOVE = 2; |
|
/** |
|
* Determine where coord lies with respect to the range from |
|
* low to high. It is assumed that low <= high. The return |
|
* value is one of the 5 values BELOW, LOWEDGE, INSIDE, HIGHEDGE, |
|
* or ABOVE. |
|
*/ |
|
private static int getTag(double coord, double low, double high) { |
|
if (coord <= low) { |
|
return (coord < low ? BELOW : LOWEDGE); |
|
} |
|
if (coord >= high) { |
|
return (coord > high ? ABOVE : HIGHEDGE); |
|
} |
|
return INSIDE; |
|
} |
|
/** |
|
* Determine if the pttag represents a coordinate that is already |
|
* in its test range, or is on the border with either of the two |
|
* opttags representing another coordinate that is "towards the |
|
* inside" of that test range. In other words, are either of the |
|
* two "opt" points "drawing the pt inward"? |
|
*/ |
|
private static boolean inwards(int pttag, int opt1tag, int opt2tag) { |
|
switch (pttag) { |
|
case BELOW: |
|
case ABOVE: |
|
default: |
|
return false; |
|
case LOWEDGE: |
|
return (opt1tag >= INSIDE || opt2tag >= INSIDE); |
|
case INSIDE: |
|
return true; |
|
case HIGHEDGE: |
|
return (opt1tag <= INSIDE || opt2tag <= INSIDE); |
|
} |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public boolean intersects(double x, double y, double w, double h) { |
|
// Trivially reject non-existant rectangles |
|
if (w <= 0 || h <= 0) { |
|
return false; |
|
} |
|
// Trivially accept if either endpoint is inside the rectangle |
|
// (not on its border since it may end there and not go inside) |
|
// Record where they lie with respect to the rectangle. |
|
// -1 => left, 0 => inside, 1 => right |
|
double x1 = getX1(); |
|
double y1 = getY1(); |
|
int x1tag = getTag(x1, x, x+w); |
|
int y1tag = getTag(y1, y, y+h); |
|
if (x1tag == INSIDE && y1tag == INSIDE) { |
|
return true; |
|
} |
|
double x2 = getX2(); |
|
double y2 = getY2(); |
|
int x2tag = getTag(x2, x, x+w); |
|
int y2tag = getTag(y2, y, y+h); |
|
if (x2tag == INSIDE && y2tag == INSIDE) { |
|
return true; |
|
} |
|
double ctrlx = getCtrlX(); |
|
double ctrly = getCtrlY(); |
|
int ctrlxtag = getTag(ctrlx, x, x+w); |
|
int ctrlytag = getTag(ctrly, y, y+h); |
|
// Trivially reject if all points are entirely to one side of |
|
// the rectangle. |
|
if (x1tag < INSIDE && x2tag < INSIDE && ctrlxtag < INSIDE) { |
|
return false; // All points left |
|
} |
|
if (y1tag < INSIDE && y2tag < INSIDE && ctrlytag < INSIDE) { |
|
return false; // All points above |
|
} |
|
if (x1tag > INSIDE && x2tag > INSIDE && ctrlxtag > INSIDE) { |
|
return false; // All points right |
|
} |
|
if (y1tag > INSIDE && y2tag > INSIDE && ctrlytag > INSIDE) { |
|
return false; // All points below |
|
} |
|
// Test for endpoints on the edge where either the segment |
|
// or the curve is headed "inwards" from them |
|
// Note: These tests are a superset of the fast endpoint tests |
|
// above and thus repeat those tests, but take more time |
|
// and cover more cases |
|
if (inwards(x1tag, x2tag, ctrlxtag) && |
|
inwards(y1tag, y2tag, ctrlytag)) |
|
{ |
|
// First endpoint on border with either edge moving inside |
|
return true; |
|
} |
|
if (inwards(x2tag, x1tag, ctrlxtag) && |
|
inwards(y2tag, y1tag, ctrlytag)) |
|
{ |
|
// Second endpoint on border with either edge moving inside |
|
return true; |
|
} |
|
// Trivially accept if endpoints span directly across the rectangle |
|
boolean xoverlap = (x1tag * x2tag <= 0); |
|
boolean yoverlap = (y1tag * y2tag <= 0); |
|
if (x1tag == INSIDE && x2tag == INSIDE && yoverlap) { |
|
return true; |
|
} |
|
if (y1tag == INSIDE && y2tag == INSIDE && xoverlap) { |
|
return true; |
|
} |
|
// We now know that both endpoints are outside the rectangle |
|
// but the 3 points are not all on one side of the rectangle. |
|
// Therefore the curve cannot be contained inside the rectangle, |
|
// but the rectangle might be contained inside the curve, or |
|
// the curve might intersect the boundary of the rectangle. |
|
double[] eqn = new double[3]; |
|
double[] res = new double[3]; |
|
if (!yoverlap) { |
|
// Both Y coordinates for the closing segment are above or |
|
// below the rectangle which means that we can only intersect |
|
// if the curve crosses the top (or bottom) of the rectangle |
|
// in more than one place and if those crossing locations |
|
// span the horizontal range of the rectangle. |
|
fillEqn(eqn, (y1tag < INSIDE ? y : y+h), y1, ctrly, y2); |
|
return (solveQuadratic(eqn, res) == 2 && |
|
evalQuadratic(res, 2, true, true, null, |
|
x1, ctrlx, x2) == 2 && |
|
getTag(res[0], x, x+w) * getTag(res[1], x, x+w) <= 0); |
|
} |
|
// Y ranges overlap. Now we examine the X ranges |
|
if (!xoverlap) { |
|
// Both X coordinates for the closing segment are left of |
|
// or right of the rectangle which means that we can only |
|
// intersect if the curve crosses the left (or right) edge |
|
// of the rectangle in more than one place and if those |
|
// crossing locations span the vertical range of the rectangle. |
|
fillEqn(eqn, (x1tag < INSIDE ? x : x+w), x1, ctrlx, x2); |
|
return (solveQuadratic(eqn, res) == 2 && |
|
evalQuadratic(res, 2, true, true, null, |
|
y1, ctrly, y2) == 2 && |
|
getTag(res[0], y, y+h) * getTag(res[1], y, y+h) <= 0); |
|
} |
|
// The X and Y ranges of the endpoints overlap the X and Y |
|
// ranges of the rectangle, now find out how the endpoint |
|
// line segment intersects the Y range of the rectangle |
|
double dx = x2 - x1; |
|
double dy = y2 - y1; |
|
double k = y2 * x1 - x2 * y1; |
|
int c1tag, c2tag; |
|
if (y1tag == INSIDE) { |
|
c1tag = x1tag; |
|
} else { |
|
c1tag = getTag((k + dx * (y1tag < INSIDE ? y : y+h)) / dy, x, x+w); |
|
} |
|
if (y2tag == INSIDE) { |
|
c2tag = x2tag; |
|
} else { |
|
c2tag = getTag((k + dx * (y2tag < INSIDE ? y : y+h)) / dy, x, x+w); |
|
} |
|
// If the part of the line segment that intersects the Y range |
|
// of the rectangle crosses it horizontally - trivially accept |
|
if (c1tag * c2tag <= 0) { |
|
return true; |
|
} |
|
// Now we know that both the X and Y ranges intersect and that |
|
// the endpoint line segment does not directly cross the rectangle. |
|
// |
|
// We can almost treat this case like one of the cases above |
|
// where both endpoints are to one side, except that we will |
|
// only get one intersection of the curve with the vertical |
|
// side of the rectangle. This is because the endpoint segment |
|
// accounts for the other intersection. |
|
// |
|
// (Remember there is overlap in both the X and Y ranges which |
|
// means that the segment must cross at least one vertical edge |
|
// of the rectangle - in particular, the "near vertical side" - |
|
// leaving only one intersection for the curve.) |
|
// |
|
// Now we calculate the y tags of the two intersections on the |
|
// "near vertical side" of the rectangle. We will have one with |
|
// the endpoint segment, and one with the curve. If those two |
|
// vertical intersections overlap the Y range of the rectangle, |
|
// we have an intersection. Otherwise, we don't. |
|
// c1tag = vertical intersection class of the endpoint segment |
|
// |
|
// Choose the y tag of the endpoint that was not on the same |
|
// side of the rectangle as the subsegment calculated above. |
|
// Note that we can "steal" the existing Y tag of that endpoint |
|
// since it will be provably the same as the vertical intersection. |
|
c1tag = ((c1tag * x1tag <= 0) ? y1tag : y2tag); |
|
// c2tag = vertical intersection class of the curve |
|
// |
|
// We have to calculate this one the straightforward way. |
|
// Note that the c2tag can still tell us which vertical edge |
|
// to test against. |
|
fillEqn(eqn, (c2tag < INSIDE ? x : x+w), x1, ctrlx, x2); |
|
int num = solveQuadratic(eqn, res); |
|
// Note: We should be able to assert(num == 2); since the |
|
// X range "crosses" (not touches) the vertical boundary, |
|
// but we pass num to evalQuadratic for completeness. |
|
evalQuadratic(res, num, true, true, null, y1, ctrly, y2); |
|
// Note: We can assert(num evals == 1); since one of the |
|
// 2 crossings will be out of the [0,1] range. |
|
c2tag = getTag(res[0], y, y+h); |
|
// Finally, we have an intersection if the two crossings |
|
// overlap the Y range of the rectangle. |
|
return (c1tag * c2tag <= 0); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public boolean intersects(Rectangle2D r) { |
|
return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight()); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public boolean contains(double x, double y, double w, double h) { |
|
if (w <= 0 || h <= 0) { |
|
return false; |
|
} |
|
// Assertion: Quadratic curves closed by connecting their |
|
// endpoints are always convex. |
|
return (contains(x, y) && |
|
contains(x + w, y) && |
|
contains(x + w, y + h) && |
|
contains(x, y + h)); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public boolean contains(Rectangle2D r) { |
|
return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight()); |
|
} |
|
/** |
|
* {@inheritDoc} |
|
* @since 1.2 |
|
*/ |
|
public Rectangle getBounds() { |
|
return getBounds2D().getBounds(); |
|
} |
|
/** |
|
* Returns an iteration object that defines the boundary of the |
|
* shape of this <code>QuadCurve2D</code>. |
|
* The iterator for this class is not multi-threaded safe, |
|
* which means that this <code>QuadCurve2D</code> class does not |
|
* guarantee that modifications to the geometry of this |
|
* <code>QuadCurve2D</code> object do not affect any iterations of |
|
* that geometry that are already in process. |
|
* @param at an optional {@link AffineTransform} to apply to the |
|
* shape boundary |
|
* @return a {@link PathIterator} object that defines the boundary |
|
* of the shape. |
|
* @since 1.2 |
|
*/ |
|
public PathIterator getPathIterator(AffineTransform at) { |
|
return new QuadIterator(this, at); |
|
} |
|
/** |
|
* Returns an iteration object that defines the boundary of the |
|
* flattened shape of this <code>QuadCurve2D</code>. |
|
* The iterator for this class is not multi-threaded safe, |
|
* which means that this <code>QuadCurve2D</code> class does not |
|
* guarantee that modifications to the geometry of this |
|
* <code>QuadCurve2D</code> object do not affect any iterations of |
|
* that geometry that are already in process. |
|
* @param at an optional <code>AffineTransform</code> to apply |
|
* to the boundary of the shape |
|
* @param flatness the maximum distance that the control points for a |
|
* subdivided curve can be with respect to a line connecting |
|
* the end points of this curve before this curve is |
|
* replaced by a straight line connecting the end points. |
|
* @return a <code>PathIterator</code> object that defines the |
|
* flattened boundary of the shape. |
|
* @since 1.2 |
|
*/ |
|
public PathIterator getPathIterator(AffineTransform at, double flatness) { |
|
return new FlatteningPathIterator(getPathIterator(at), flatness); |
|
} |
|
/** |
|
* Creates a new object of the same class and with the same contents |
|
* as this object. |
|
* |
|
* @return a clone of this instance. |
|
* @exception OutOfMemoryError if there is not enough memory. |
|
* @see java.lang.Cloneable |
|
* @since 1.2 |
|
*/ |
|
public Object clone() { |
|
try { |
|
return super.clone(); |
|
} catch (CloneNotSupportedException e) { |
|
// this shouldn't happen, since we are Cloneable |
|
throw new InternalError(e); |
|
} |
|
} |
|
} |