/* |
|
* Copyright (c) 1994, 2017, Oracle and/or its affiliates. All rights reserved. |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
package java.util; |
|
import java.io.*; |
|
import java.util.concurrent.ThreadLocalRandom; |
|
import java.util.function.BiConsumer; |
|
import java.util.function.Function; |
|
import java.util.function.BiFunction; |
|
import sun.misc.SharedSecrets; |
|
/** |
|
* This class implements a hash table, which maps keys to values. Any |
|
* non-<code>null</code> object can be used as a key or as a value. <p> |
|
* |
|
* To successfully store and retrieve objects from a hashtable, the |
|
* objects used as keys must implement the <code>hashCode</code> |
|
* method and the <code>equals</code> method. <p> |
|
* |
|
* An instance of <code>Hashtable</code> has two parameters that affect its |
|
* performance: <i>initial capacity</i> and <i>load factor</i>. The |
|
* <i>capacity</i> is the number of <i>buckets</i> in the hash table, and the |
|
* <i>initial capacity</i> is simply the capacity at the time the hash table |
|
* is created. Note that the hash table is <i>open</i>: in the case of a "hash |
|
* collision", a single bucket stores multiple entries, which must be searched |
|
* sequentially. The <i>load factor</i> is a measure of how full the hash |
|
* table is allowed to get before its capacity is automatically increased. |
|
* The initial capacity and load factor parameters are merely hints to |
|
* the implementation. The exact details as to when and whether the rehash |
|
* method is invoked are implementation-dependent.<p> |
|
* |
|
* Generally, the default load factor (.75) offers a good tradeoff between |
|
* time and space costs. Higher values decrease the space overhead but |
|
* increase the time cost to look up an entry (which is reflected in most |
|
* <tt>Hashtable</tt> operations, including <tt>get</tt> and <tt>put</tt>).<p> |
|
* |
|
* The initial capacity controls a tradeoff between wasted space and the |
|
* need for <code>rehash</code> operations, which are time-consuming. |
|
* No <code>rehash</code> operations will <i>ever</i> occur if the initial |
|
* capacity is greater than the maximum number of entries the |
|
* <tt>Hashtable</tt> will contain divided by its load factor. However, |
|
* setting the initial capacity too high can waste space.<p> |
|
* |
|
* If many entries are to be made into a <code>Hashtable</code>, |
|
* creating it with a sufficiently large capacity may allow the |
|
* entries to be inserted more efficiently than letting it perform |
|
* automatic rehashing as needed to grow the table. <p> |
|
* |
|
* This example creates a hashtable of numbers. It uses the names of |
|
* the numbers as keys: |
|
* <pre> {@code |
|
* Hashtable<String, Integer> numbers |
|
* = new Hashtable<String, Integer>(); |
|
* numbers.put("one", 1); |
|
* numbers.put("two", 2); |
|
* numbers.put("three", 3);}</pre> |
|
* |
|
* <p>To retrieve a number, use the following code: |
|
* <pre> {@code |
|
* Integer n = numbers.get("two"); |
|
* if (n != null) { |
|
* System.out.println("two = " + n); |
|
* }}</pre> |
|
* |
|
* <p>The iterators returned by the <tt>iterator</tt> method of the collections |
|
* returned by all of this class's "collection view methods" are |
|
* <em>fail-fast</em>: if the Hashtable is structurally modified at any time |
|
* after the iterator is created, in any way except through the iterator's own |
|
* <tt>remove</tt> method, the iterator will throw a {@link |
|
* ConcurrentModificationException}. Thus, in the face of concurrent |
|
* modification, the iterator fails quickly and cleanly, rather than risking |
|
* arbitrary, non-deterministic behavior at an undetermined time in the future. |
|
* The Enumerations returned by Hashtable's keys and elements methods are |
|
* <em>not</em> fail-fast. |
|
* |
|
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed |
|
* as it is, generally speaking, impossible to make any hard guarantees in the |
|
* presence of unsynchronized concurrent modification. Fail-fast iterators |
|
* throw <tt>ConcurrentModificationException</tt> on a best-effort basis. |
|
* Therefore, it would be wrong to write a program that depended on this |
|
* exception for its correctness: <i>the fail-fast behavior of iterators |
|
* should be used only to detect bugs.</i> |
|
* |
|
* <p>As of the Java 2 platform v1.2, this class was retrofitted to |
|
* implement the {@link Map} interface, making it a member of the |
|
* <a href="{@docRoot}/../technotes/guides/collections/index.html"> |
|
* |
|
* Java Collections Framework</a>. Unlike the new collection |
|
* implementations, {@code Hashtable} is synchronized. If a |
|
* thread-safe implementation is not needed, it is recommended to use |
|
* {@link HashMap} in place of {@code Hashtable}. If a thread-safe |
|
* highly-concurrent implementation is desired, then it is recommended |
|
* to use {@link java.util.concurrent.ConcurrentHashMap} in place of |
|
* {@code Hashtable}. |
|
* |
|
* @author Arthur van Hoff |
|
* @author Josh Bloch |
|
* @author Neal Gafter |
|
* @see Object#equals(java.lang.Object) |
|
* @see Object#hashCode() |
|
* @see Hashtable#rehash() |
|
* @see Collection |
|
* @see Map |
|
* @see HashMap |
|
* @see TreeMap |
|
* @since JDK1.0 |
|
*/ |
|
public class Hashtable<K,V> |
|
extends Dictionary<K,V> |
|
implements Map<K,V>, Cloneable, java.io.Serializable { |
|
/** |
|
* The hash table data. |
|
*/ |
|
private transient Entry<?,?>[] table; |
|
/** |
|
* The total number of entries in the hash table. |
|
*/ |
|
private transient int count; |
|
/** |
|
* The table is rehashed when its size exceeds this threshold. (The |
|
* value of this field is (int)(capacity * loadFactor).) |
|
* |
|
* @serial |
|
*/ |
|
private int threshold; |
|
/** |
|
* The load factor for the hashtable. |
|
* |
|
* @serial |
|
*/ |
|
private float loadFactor; |
|
/** |
|
* The number of times this Hashtable has been structurally modified |
|
* Structural modifications are those that change the number of entries in |
|
* the Hashtable or otherwise modify its internal structure (e.g., |
|
* rehash). This field is used to make iterators on Collection-views of |
|
* the Hashtable fail-fast. (See ConcurrentModificationException). |
|
*/ |
|
private transient int modCount = 0; |
|
/** use serialVersionUID from JDK 1.0.2 for interoperability */ |
|
private static final long serialVersionUID = 1421746759512286392L; |
|
/** |
|
* Constructs a new, empty hashtable with the specified initial |
|
* capacity and the specified load factor. |
|
* |
|
* @param initialCapacity the initial capacity of the hashtable. |
|
* @param loadFactor the load factor of the hashtable. |
|
* @exception IllegalArgumentException if the initial capacity is less |
|
* than zero, or if the load factor is nonpositive. |
|
*/ |
|
public Hashtable(int initialCapacity, float loadFactor) { |
|
if (initialCapacity < 0) |
|
throw new IllegalArgumentException("Illegal Capacity: "+ |
|
initialCapacity); |
|
if (loadFactor <= 0 || Float.isNaN(loadFactor)) |
|
throw new IllegalArgumentException("Illegal Load: "+loadFactor); |
|
if (initialCapacity==0) |
|
initialCapacity = 1; |
|
this.loadFactor = loadFactor; |
|
table = new Entry<?,?>[initialCapacity]; |
|
threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1); |
|
} |
|
/** |
|
* Constructs a new, empty hashtable with the specified initial capacity |
|
* and default load factor (0.75). |
|
* |
|
* @param initialCapacity the initial capacity of the hashtable. |
|
* @exception IllegalArgumentException if the initial capacity is less |
|
* than zero. |
|
*/ |
|
public Hashtable(int initialCapacity) { |
|
this(initialCapacity, 0.75f); |
|
} |
|
/** |
|
* Constructs a new, empty hashtable with a default initial capacity (11) |
|
* and load factor (0.75). |
|
*/ |
|
public Hashtable() { |
|
this(11, 0.75f); |
|
} |
|
/** |
|
* Constructs a new hashtable with the same mappings as the given |
|
* Map. The hashtable is created with an initial capacity sufficient to |
|
* hold the mappings in the given Map and a default load factor (0.75). |
|
* |
|
* @param t the map whose mappings are to be placed in this map. |
|
* @throws NullPointerException if the specified map is null. |
|
* @since 1.2 |
|
*/ |
|
public Hashtable(Map<? extends K, ? extends V> t) { |
|
this(Math.max(2*t.size(), 11), 0.75f); |
|
putAll(t); |
|
} |
|
/** |
|
* Returns the number of keys in this hashtable. |
|
* |
|
* @return the number of keys in this hashtable. |
|
*/ |
|
public synchronized int size() { |
|
return count; |
|
} |
|
/** |
|
* Tests if this hashtable maps no keys to values. |
|
* |
|
* @return <code>true</code> if this hashtable maps no keys to values; |
|
* <code>false</code> otherwise. |
|
*/ |
|
public synchronized boolean isEmpty() { |
|
return count == 0; |
|
} |
|
/** |
|
* Returns an enumeration of the keys in this hashtable. |
|
* |
|
* @return an enumeration of the keys in this hashtable. |
|
* @see Enumeration |
|
* @see #elements() |
|
* @see #keySet() |
|
* @see Map |
|
*/ |
|
public synchronized Enumeration<K> keys() { |
|
return this.<K>getEnumeration(KEYS); |
|
} |
|
/** |
|
* Returns an enumeration of the values in this hashtable. |
|
* Use the Enumeration methods on the returned object to fetch the elements |
|
* sequentially. |
|
* |
|
* @return an enumeration of the values in this hashtable. |
|
* @see java.util.Enumeration |
|
* @see #keys() |
|
* @see #values() |
|
* @see Map |
|
*/ |
|
public synchronized Enumeration<V> elements() { |
|
return this.<V>getEnumeration(VALUES); |
|
} |
|
/** |
|
* Tests if some key maps into the specified value in this hashtable. |
|
* This operation is more expensive than the {@link #containsKey |
|
* containsKey} method. |
|
* |
|
* <p>Note that this method is identical in functionality to |
|
* {@link #containsValue containsValue}, (which is part of the |
|
* {@link Map} interface in the collections framework). |
|
* |
|
* @param value a value to search for |
|
* @return <code>true</code> if and only if some key maps to the |
|
* <code>value</code> argument in this hashtable as |
|
* determined by the <tt>equals</tt> method; |
|
* <code>false</code> otherwise. |
|
* @exception NullPointerException if the value is <code>null</code> |
|
*/ |
|
public synchronized boolean contains(Object value) { |
|
if (value == null) { |
|
throw new NullPointerException(); |
|
} |
|
Entry<?,?> tab[] = table; |
|
for (int i = tab.length ; i-- > 0 ;) { |
|
for (Entry<?,?> e = tab[i] ; e != null ; e = e.next) { |
|
if (e.value.equals(value)) { |
|
return true; |
|
} |
|
} |
|
} |
|
return false; |
|
} |
|
/** |
|
* Returns true if this hashtable maps one or more keys to this value. |
|
* |
|
* <p>Note that this method is identical in functionality to {@link |
|
* #contains contains} (which predates the {@link Map} interface). |
|
* |
|
* @param value value whose presence in this hashtable is to be tested |
|
* @return <tt>true</tt> if this map maps one or more keys to the |
|
* specified value |
|
* @throws NullPointerException if the value is <code>null</code> |
|
* @since 1.2 |
|
*/ |
|
public boolean containsValue(Object value) { |
|
return contains(value); |
|
} |
|
/** |
|
* Tests if the specified object is a key in this hashtable. |
|
* |
|
* @param key possible key |
|
* @return <code>true</code> if and only if the specified object |
|
* is a key in this hashtable, as determined by the |
|
* <tt>equals</tt> method; <code>false</code> otherwise. |
|
* @throws NullPointerException if the key is <code>null</code> |
|
* @see #contains(Object) |
|
*/ |
|
public synchronized boolean containsKey(Object key) { |
|
Entry<?,?> tab[] = table; |
|
int hash = key.hashCode(); |
|
int index = (hash & 0x7FFFFFFF) % tab.length; |
|
for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) { |
|
if ((e.hash == hash) && e.key.equals(key)) { |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
/** |
|
* Returns the value to which the specified key is mapped, |
|
* or {@code null} if this map contains no mapping for the key. |
|
* |
|
* <p>More formally, if this map contains a mapping from a key |
|
* {@code k} to a value {@code v} such that {@code (key.equals(k))}, |
|
* then this method returns {@code v}; otherwise it returns |
|
* {@code null}. (There can be at most one such mapping.) |
|
* |
|
* @param key the key whose associated value is to be returned |
|
* @return the value to which the specified key is mapped, or |
|
* {@code null} if this map contains no mapping for the key |
|
* @throws NullPointerException if the specified key is null |
|
* @see #put(Object, Object) |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
public synchronized V get(Object key) { |
|
Entry<?,?> tab[] = table; |
|
int hash = key.hashCode(); |
|
int index = (hash & 0x7FFFFFFF) % tab.length; |
|
for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) { |
|
if ((e.hash == hash) && e.key.equals(key)) { |
|
return (V)e.value; |
|
} |
|
} |
|
return null; |
|
} |
|
/** |
|
* The maximum size of array to allocate. |
|
* Some VMs reserve some header words in an array. |
|
* Attempts to allocate larger arrays may result in |
|
* OutOfMemoryError: Requested array size exceeds VM limit |
|
*/ |
|
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; |
|
/** |
|
* Increases the capacity of and internally reorganizes this |
|
* hashtable, in order to accommodate and access its entries more |
|
* efficiently. This method is called automatically when the |
|
* number of keys in the hashtable exceeds this hashtable's capacity |
|
* and load factor. |
|
*/ |
|
@SuppressWarnings("unchecked") |
|
protected void rehash() { |
|
int oldCapacity = table.length; |
|
Entry<?,?>[] oldMap = table; |
|
// overflow-conscious code |
|
int newCapacity = (oldCapacity << 1) + 1; |
|
if (newCapacity - MAX_ARRAY_SIZE > 0) { |
|
if (oldCapacity == MAX_ARRAY_SIZE) |
|
// Keep running with MAX_ARRAY_SIZE buckets |
|
return; |
|
newCapacity = MAX_ARRAY_SIZE; |
|
} |
|
Entry<?,?>[] newMap = new Entry<?,?>[newCapacity]; |
|
modCount++; |
|
threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1); |
|
table = newMap; |
|
for (int i = oldCapacity ; i-- > 0 ;) { |
|
for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) { |
|
Entry<K,V> e = old; |
|
old = old.next; |
|
int index = (e.hash & 0x7FFFFFFF) % newCapacity; |
|
e.next = (Entry<K,V>)newMap[index]; |
|
newMap[index] = e; |
|
} |
|
} |
|
} |
|
private void addEntry(int hash, K key, V value, int index) { |
|
modCount++; |
|
Entry<?,?> tab[] = table; |
|
if (count >= threshold) { |
|
// Rehash the table if the threshold is exceeded |
|
rehash(); |
|
tab = table; |
|
hash = key.hashCode(); |
|
index = (hash & 0x7FFFFFFF) % tab.length; |
|
} |
|
// Creates the new entry. |
|
@SuppressWarnings("unchecked") |
|
Entry<K,V> e = (Entry<K,V>) tab[index]; |
|
tab[index] = new Entry<>(hash, key, value, e); |
|
count++; |
|
} |
|
/** |
|
* Maps the specified <code>key</code> to the specified |
|
* <code>value</code> in this hashtable. Neither the key nor the |
|
* value can be <code>null</code>. <p> |
|
* |
|
* The value can be retrieved by calling the <code>get</code> method |
|
* with a key that is equal to the original key. |
|
* |
|
* @param key the hashtable key |
|
* @param value the value |
|
* @return the previous value of the specified key in this hashtable, |
|
* or <code>null</code> if it did not have one |
|
* @exception NullPointerException if the key or value is |
|
* <code>null</code> |
|
* @see Object#equals(Object) |
|
* @see #get(Object) |
|
*/ |
|
public synchronized V put(K key, V value) { |
|
// Make sure the value is not null |
|
if (value == null) { |
|
throw new NullPointerException(); |
|
} |
|
// Makes sure the key is not already in the hashtable. |
|
Entry<?,?> tab[] = table; |
|
int hash = key.hashCode(); |
|
int index = (hash & 0x7FFFFFFF) % tab.length; |
|
@SuppressWarnings("unchecked") |
|
Entry<K,V> entry = (Entry<K,V>)tab[index]; |
|
for(; entry != null ; entry = entry.next) { |
|
if ((entry.hash == hash) && entry.key.equals(key)) { |
|
V old = entry.value; |
|
entry.value = value; |
|
return old; |
|
} |
|
} |
|
addEntry(hash, key, value, index); |
|
return null; |
|
} |
|
/** |
|
* Removes the key (and its corresponding value) from this |
|
* hashtable. This method does nothing if the key is not in the hashtable. |
|
* |
|
* @param key the key that needs to be removed |
|
* @return the value to which the key had been mapped in this hashtable, |
|
* or <code>null</code> if the key did not have a mapping |
|
* @throws NullPointerException if the key is <code>null</code> |
|
*/ |
|
public synchronized V remove(Object key) { |
|
Entry<?,?> tab[] = table; |
|
int hash = key.hashCode(); |
|
int index = (hash & 0x7FFFFFFF) % tab.length; |
|
@SuppressWarnings("unchecked") |
|
Entry<K,V> e = (Entry<K,V>)tab[index]; |
|
for(Entry<K,V> prev = null ; e != null ; prev = e, e = e.next) { |
|
if ((e.hash == hash) && e.key.equals(key)) { |
|
modCount++; |
|
if (prev != null) { |
|
prev.next = e.next; |
|
} else { |
|
tab[index] = e.next; |
|
} |
|
count--; |
|
V oldValue = e.value; |
|
e.value = null; |
|
return oldValue; |
|
} |
|
} |
|
return null; |
|
} |
|
/** |
|
* Copies all of the mappings from the specified map to this hashtable. |
|
* These mappings will replace any mappings that this hashtable had for any |
|
* of the keys currently in the specified map. |
|
* |
|
* @param t mappings to be stored in this map |
|
* @throws NullPointerException if the specified map is null |
|
* @since 1.2 |
|
*/ |
|
public synchronized void putAll(Map<? extends K, ? extends V> t) { |
|
for (Map.Entry<? extends K, ? extends V> e : t.entrySet()) |
|
put(e.getKey(), e.getValue()); |
|
} |
|
/** |
|
* Clears this hashtable so that it contains no keys. |
|
*/ |
|
public synchronized void clear() { |
|
Entry<?,?> tab[] = table; |
|
modCount++; |
|
for (int index = tab.length; --index >= 0; ) |
|
tab[index] = null; |
|
count = 0; |
|
} |
|
/** |
|
* Creates a shallow copy of this hashtable. All the structure of the |
|
* hashtable itself is copied, but the keys and values are not cloned. |
|
* This is a relatively expensive operation. |
|
* |
|
* @return a clone of the hashtable |
|
*/ |
|
public synchronized Object clone() { |
|
try { |
|
Hashtable<?,?> t = (Hashtable<?,?>)super.clone(); |
|
t.table = new Entry<?,?>[table.length]; |
|
for (int i = table.length ; i-- > 0 ; ) { |
|
t.table[i] = (table[i] != null) |
|
? (Entry<?,?>) table[i].clone() : null; |
|
} |
|
t.keySet = null; |
|
t.entrySet = null; |
|
t.values = null; |
|
t.modCount = 0; |
|
return t; |
|
} catch (CloneNotSupportedException e) { |
|
// this shouldn't happen, since we are Cloneable |
|
throw new InternalError(e); |
|
} |
|
} |
|
/** |
|
* Returns a string representation of this <tt>Hashtable</tt> object |
|
* in the form of a set of entries, enclosed in braces and separated |
|
* by the ASCII characters "<tt>, </tt>" (comma and space). Each |
|
* entry is rendered as the key, an equals sign <tt>=</tt>, and the |
|
* associated element, where the <tt>toString</tt> method is used to |
|
* convert the key and element to strings. |
|
* |
|
* @return a string representation of this hashtable |
|
*/ |
|
public synchronized String toString() { |
|
int max = size() - 1; |
|
if (max == -1) |
|
return "{}"; |
|
StringBuilder sb = new StringBuilder(); |
|
Iterator<Map.Entry<K,V>> it = entrySet().iterator(); |
|
sb.append('{'); |
|
for (int i = 0; ; i++) { |
|
Map.Entry<K,V> e = it.next(); |
|
K key = e.getKey(); |
|
V value = e.getValue(); |
|
sb.append(key == this ? "(this Map)" : key.toString()); |
|
sb.append('='); |
|
sb.append(value == this ? "(this Map)" : value.toString()); |
|
if (i == max) |
|
return sb.append('}').toString(); |
|
sb.append(", "); |
|
} |
|
} |
|
private <T> Enumeration<T> getEnumeration(int type) { |
|
if (count == 0) { |
|
return Collections.emptyEnumeration(); |
|
} else { |
|
return new Enumerator<>(type, false); |
|
} |
|
} |
|
private <T> Iterator<T> getIterator(int type) { |
|
if (count == 0) { |
|
return Collections.emptyIterator(); |
|
} else { |
|
return new Enumerator<>(type, true); |
|
} |
|
} |
|
// Views |
|
/** |
|
* Each of these fields are initialized to contain an instance of the |
|
* appropriate view the first time this view is requested. The views are |
|
* stateless, so there's no reason to create more than one of each. |
|
*/ |
|
private transient volatile Set<K> keySet; |
|
private transient volatile Set<Map.Entry<K,V>> entrySet; |
|
private transient volatile Collection<V> values; |
|
/** |
|
* Returns a {@link Set} view of the keys contained in this map. |
|
* The set is backed by the map, so changes to the map are |
|
* reflected in the set, and vice-versa. If the map is modified |
|
* while an iteration over the set is in progress (except through |
|
* the iterator's own <tt>remove</tt> operation), the results of |
|
* the iteration are undefined. The set supports element removal, |
|
* which removes the corresponding mapping from the map, via the |
|
* <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, |
|
* <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> |
|
* operations. It does not support the <tt>add</tt> or <tt>addAll</tt> |
|
* operations. |
|
* |
|
* @since 1.2 |
|
*/ |
|
public Set<K> keySet() { |
|
if (keySet == null) |
|
keySet = Collections.synchronizedSet(new KeySet(), this); |
|
return keySet; |
|
} |
|
private class KeySet extends AbstractSet<K> { |
|
public Iterator<K> iterator() { |
|
return getIterator(KEYS); |
|
} |
|
public int size() { |
|
return count; |
|
} |
|
public boolean contains(Object o) { |
|
return containsKey(o); |
|
} |
|
public boolean remove(Object o) { |
|
return Hashtable.this.remove(o) != null; |
|
} |
|
public void clear() { |
|
Hashtable.this.clear(); |
|
} |
|
} |
|
/** |
|
* Returns a {@link Set} view of the mappings contained in this map. |
|
* The set is backed by the map, so changes to the map are |
|
* reflected in the set, and vice-versa. If the map is modified |
|
* while an iteration over the set is in progress (except through |
|
* the iterator's own <tt>remove</tt> operation, or through the |
|
* <tt>setValue</tt> operation on a map entry returned by the |
|
* iterator) the results of the iteration are undefined. The set |
|
* supports element removal, which removes the corresponding |
|
* mapping from the map, via the <tt>Iterator.remove</tt>, |
|
* <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and |
|
* <tt>clear</tt> operations. It does not support the |
|
* <tt>add</tt> or <tt>addAll</tt> operations. |
|
* |
|
* @since 1.2 |
|
*/ |
|
public Set<Map.Entry<K,V>> entrySet() { |
|
if (entrySet==null) |
|
entrySet = Collections.synchronizedSet(new EntrySet(), this); |
|
return entrySet; |
|
} |
|
private class EntrySet extends AbstractSet<Map.Entry<K,V>> { |
|
public Iterator<Map.Entry<K,V>> iterator() { |
|
return getIterator(ENTRIES); |
|
} |
|
public boolean add(Map.Entry<K,V> o) { |
|
return super.add(o); |
|
} |
|
public boolean contains(Object o) { |
|
if (!(o instanceof Map.Entry)) |
|
return false; |
|
Map.Entry<?,?> entry = (Map.Entry<?,?>)o; |
|
Object key = entry.getKey(); |
|
Entry<?,?>[] tab = table; |
|
int hash = key.hashCode(); |
|
int index = (hash & 0x7FFFFFFF) % tab.length; |
|
for (Entry<?,?> e = tab[index]; e != null; e = e.next) |
|
if (e.hash==hash && e.equals(entry)) |
|
return true; |
|
return false; |
|
} |
|
public boolean remove(Object o) { |
|
if (!(o instanceof Map.Entry)) |
|
return false; |
|
Map.Entry<?,?> entry = (Map.Entry<?,?>) o; |
|
Object key = entry.getKey(); |
|
Entry<?,?>[] tab = table; |
|
int hash = key.hashCode(); |
|
int index = (hash & 0x7FFFFFFF) % tab.length; |
|
@SuppressWarnings("unchecked") |
|
Entry<K,V> e = (Entry<K,V>)tab[index]; |
|
for(Entry<K,V> prev = null; e != null; prev = e, e = e.next) { |
|
if (e.hash==hash && e.equals(entry)) { |
|
modCount++; |
|
if (prev != null) |
|
prev.next = e.next; |
|
else |
|
tab[index] = e.next; |
|
count--; |
|
e.value = null; |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
public int size() { |
|
return count; |
|
} |
|
public void clear() { |
|
Hashtable.this.clear(); |
|
} |
|
} |
|
/** |
|
* Returns a {@link Collection} view of the values contained in this map. |
|
* The collection is backed by the map, so changes to the map are |
|
* reflected in the collection, and vice-versa. If the map is |
|
* modified while an iteration over the collection is in progress |
|
* (except through the iterator's own <tt>remove</tt> operation), |
|
* the results of the iteration are undefined. The collection |
|
* supports element removal, which removes the corresponding |
|
* mapping from the map, via the <tt>Iterator.remove</tt>, |
|
* <tt>Collection.remove</tt>, <tt>removeAll</tt>, |
|
* <tt>retainAll</tt> and <tt>clear</tt> operations. It does not |
|
* support the <tt>add</tt> or <tt>addAll</tt> operations. |
|
* |
|
* @since 1.2 |
|
*/ |
|
public Collection<V> values() { |
|
if (values==null) |
|
values = Collections.synchronizedCollection(new ValueCollection(), |
|
this); |
|
return values; |
|
} |
|
private class ValueCollection extends AbstractCollection<V> { |
|
public Iterator<V> iterator() { |
|
return getIterator(VALUES); |
|
} |
|
public int size() { |
|
return count; |
|
} |
|
public boolean contains(Object o) { |
|
return containsValue(o); |
|
} |
|
public void clear() { |
|
Hashtable.this.clear(); |
|
} |
|
} |
|
// Comparison and hashing |
|
/** |
|
* Compares the specified Object with this Map for equality, |
|
* as per the definition in the Map interface. |
|
* |
|
* @param o object to be compared for equality with this hashtable |
|
* @return true if the specified Object is equal to this Map |
|
* @see Map#equals(Object) |
|
* @since 1.2 |
|
*/ |
|
public synchronized boolean equals(Object o) { |
|
if (o == this) |
|
return true; |
|
if (!(o instanceof Map)) |
|
return false; |
|
Map<?,?> t = (Map<?,?>) o; |
|
if (t.size() != size()) |
|
return false; |
|
try { |
|
Iterator<Map.Entry<K,V>> i = entrySet().iterator(); |
|
while (i.hasNext()) { |
|
Map.Entry<K,V> e = i.next(); |
|
K key = e.getKey(); |
|
V value = e.getValue(); |
|
if (value == null) { |
|
if (!(t.get(key)==null && t.containsKey(key))) |
|
return false; |
|
} else { |
|
if (!value.equals(t.get(key))) |
|
return false; |
|
} |
|
} |
|
} catch (ClassCastException unused) { |
|
return false; |
|
} catch (NullPointerException unused) { |
|
return false; |
|
} |
|
return true; |
|
} |
|
/** |
|
* Returns the hash code value for this Map as per the definition in the |
|
* Map interface. |
|
* |
|
* @see Map#hashCode() |
|
* @since 1.2 |
|
*/ |
|
public synchronized int hashCode() { |
|
/* |
|
* This code detects the recursion caused by computing the hash code |
|
* of a self-referential hash table and prevents the stack overflow |
|
* that would otherwise result. This allows certain 1.1-era |
|
* applets with self-referential hash tables to work. This code |
|
* abuses the loadFactor field to do double-duty as a hashCode |
|
* in progress flag, so as not to worsen the space performance. |
|
* A negative load factor indicates that hash code computation is |
|
* in progress. |
|
*/ |
|
int h = 0; |
|
if (count == 0 || loadFactor < 0) |
|
return h; // Returns zero |
|
loadFactor = -loadFactor; // Mark hashCode computation in progress |
|
Entry<?,?>[] tab = table; |
|
for (Entry<?,?> entry : tab) { |
|
while (entry != null) { |
|
h += entry.hashCode(); |
|
entry = entry.next; |
|
} |
|
} |
|
loadFactor = -loadFactor; // Mark hashCode computation complete |
|
return h; |
|
} |
|
@Override |
|
public synchronized V getOrDefault(Object key, V defaultValue) { |
|
V result = get(key); |
|
return (null == result) ? defaultValue : result; |
|
} |
|
@SuppressWarnings("unchecked") |
|
@Override |
|
public synchronized void forEach(BiConsumer<? super K, ? super V> action) { |
|
Objects.requireNonNull(action); // explicit check required in case |
|
// table is empty. |
|
final int expectedModCount = modCount; |
|
Entry<?, ?>[] tab = table; |
|
for (Entry<?, ?> entry : tab) { |
|
while (entry != null) { |
|
action.accept((K)entry.key, (V)entry.value); |
|
entry = entry.next; |
|
if (expectedModCount != modCount) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
} |
|
} |
|
@SuppressWarnings("unchecked") |
|
@Override |
|
public synchronized void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { |
|
Objects.requireNonNull(function); // explicit check required in case |
|
// table is empty. |
|
final int expectedModCount = modCount; |
|
Entry<K, V>[] tab = (Entry<K, V>[])table; |
|
for (Entry<K, V> entry : tab) { |
|
while (entry != null) { |
|
entry.value = Objects.requireNonNull( |
|
function.apply(entry.key, entry.value)); |
|
entry = entry.next; |
|
if (expectedModCount != modCount) { |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
} |
|
} |
|
@Override |
|
public synchronized V putIfAbsent(K key, V value) { |
|
Objects.requireNonNull(value); |
|
// Makes sure the key is not already in the hashtable. |
|
Entry<?,?> tab[] = table; |
|
int hash = key.hashCode(); |
|
int index = (hash & 0x7FFFFFFF) % tab.length; |
|
@SuppressWarnings("unchecked") |
|
Entry<K,V> entry = (Entry<K,V>)tab[index]; |
|
for (; entry != null; entry = entry.next) { |
|
if ((entry.hash == hash) && entry.key.equals(key)) { |
|
V old = entry.value; |
|
if (old == null) { |
|
entry.value = value; |
|
} |
|
return old; |
|
} |
|
} |
|
addEntry(hash, key, value, index); |
|
return null; |
|
} |
|
@Override |
|
public synchronized boolean remove(Object key, Object value) { |
|
Objects.requireNonNull(value); |
|
Entry<?,?> tab[] = table; |
|
int hash = key.hashCode(); |
|
int index = (hash & 0x7FFFFFFF) % tab.length; |
|
@SuppressWarnings("unchecked") |
|
Entry<K,V> e = (Entry<K,V>)tab[index]; |
|
for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) { |
|
if ((e.hash == hash) && e.key.equals(key) && e.value.equals(value)) { |
|
modCount++; |
|
if (prev != null) { |
|
prev.next = e.next; |
|
} else { |
|
tab[index] = e.next; |
|
} |
|
count--; |
|
e.value = null; |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
@Override |
|
public synchronized boolean replace(K key, V oldValue, V newValue) { |
|
Objects.requireNonNull(oldValue); |
|
Objects.requireNonNull(newValue); |
|
Entry<?,?> tab[] = table; |
|
int hash = key.hashCode(); |
|
int index = (hash & 0x7FFFFFFF) % tab.length; |
|
@SuppressWarnings("unchecked") |
|
Entry<K,V> e = (Entry<K,V>)tab[index]; |
|
for (; e != null; e = e.next) { |
|
if ((e.hash == hash) && e.key.equals(key)) { |
|
if (e.value.equals(oldValue)) { |
|
e.value = newValue; |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
} |
|
return false; |
|
} |
|
@Override |
|
public synchronized V replace(K key, V value) { |
|
Objects.requireNonNull(value); |
|
Entry<?,?> tab[] = table; |
|
int hash = key.hashCode(); |
|
int index = (hash & 0x7FFFFFFF) % tab.length; |
|
@SuppressWarnings("unchecked") |
|
Entry<K,V> e = (Entry<K,V>)tab[index]; |
|
for (; e != null; e = e.next) { |
|
if ((e.hash == hash) && e.key.equals(key)) { |
|
V oldValue = e.value; |
|
e.value = value; |
|
return oldValue; |
|
} |
|
} |
|
return null; |
|
} |
|
@Override |
|
public synchronized V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { |
|
Objects.requireNonNull(mappingFunction); |
|
Entry<?,?> tab[] = table; |
|
int hash = key.hashCode(); |
|
int index = (hash & 0x7FFFFFFF) % tab.length; |
|
@SuppressWarnings("unchecked") |
|
Entry<K,V> e = (Entry<K,V>)tab[index]; |
|
for (; e != null; e = e.next) { |
|
if (e.hash == hash && e.key.equals(key)) { |
|
// Hashtable not accept null value |
|
return e.value; |
|
} |
|
} |
|
V newValue = mappingFunction.apply(key); |
|
if (newValue != null) { |
|
addEntry(hash, key, newValue, index); |
|
} |
|
return newValue; |
|
} |
|
@Override |
|
public synchronized V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
|
Objects.requireNonNull(remappingFunction); |
|
Entry<?,?> tab[] = table; |
|
int hash = key.hashCode(); |
|
int index = (hash & 0x7FFFFFFF) % tab.length; |
|
@SuppressWarnings("unchecked") |
|
Entry<K,V> e = (Entry<K,V>)tab[index]; |
|
for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) { |
|
if (e.hash == hash && e.key.equals(key)) { |
|
V newValue = remappingFunction.apply(key, e.value); |
|
if (newValue == null) { |
|
modCount++; |
|
if (prev != null) { |
|
prev.next = e.next; |
|
} else { |
|
tab[index] = e.next; |
|
} |
|
count--; |
|
} else { |
|
e.value = newValue; |
|
} |
|
return newValue; |
|
} |
|
} |
|
return null; |
|
} |
|
@Override |
|
public synchronized V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
|
Objects.requireNonNull(remappingFunction); |
|
Entry<?,?> tab[] = table; |
|
int hash = key.hashCode(); |
|
int index = (hash & 0x7FFFFFFF) % tab.length; |
|
@SuppressWarnings("unchecked") |
|
Entry<K,V> e = (Entry<K,V>)tab[index]; |
|
for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) { |
|
if (e.hash == hash && Objects.equals(e.key, key)) { |
|
V newValue = remappingFunction.apply(key, e.value); |
|
if (newValue == null) { |
|
modCount++; |
|
if (prev != null) { |
|
prev.next = e.next; |
|
} else { |
|
tab[index] = e.next; |
|
} |
|
count--; |
|
} else { |
|
e.value = newValue; |
|
} |
|
return newValue; |
|
} |
|
} |
|
V newValue = remappingFunction.apply(key, null); |
|
if (newValue != null) { |
|
addEntry(hash, key, newValue, index); |
|
} |
|
return newValue; |
|
} |
|
@Override |
|
public synchronized V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) { |
|
Objects.requireNonNull(remappingFunction); |
|
Entry<?,?> tab[] = table; |
|
int hash = key.hashCode(); |
|
int index = (hash & 0x7FFFFFFF) % tab.length; |
|
@SuppressWarnings("unchecked") |
|
Entry<K,V> e = (Entry<K,V>)tab[index]; |
|
for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) { |
|
if (e.hash == hash && e.key.equals(key)) { |
|
V newValue = remappingFunction.apply(e.value, value); |
|
if (newValue == null) { |
|
modCount++; |
|
if (prev != null) { |
|
prev.next = e.next; |
|
} else { |
|
tab[index] = e.next; |
|
} |
|
count--; |
|
} else { |
|
e.value = newValue; |
|
} |
|
return newValue; |
|
} |
|
} |
|
if (value != null) { |
|
addEntry(hash, key, value, index); |
|
} |
|
return value; |
|
} |
|
/** |
|
* Save the state of the Hashtable to a stream (i.e., serialize it). |
|
* |
|
* @serialData The <i>capacity</i> of the Hashtable (the length of the |
|
* bucket array) is emitted (int), followed by the |
|
* <i>size</i> of the Hashtable (the number of key-value |
|
* mappings), followed by the key (Object) and value (Object) |
|
* for each key-value mapping represented by the Hashtable |
|
* The key-value mappings are emitted in no particular order. |
|
*/ |
|
private void writeObject(java.io.ObjectOutputStream s) |
|
throws IOException { |
|
Entry<Object, Object> entryStack = null; |
|
synchronized (this) { |
|
// Write out the threshold and loadFactor |
|
s.defaultWriteObject(); |
|
// Write out the length and count of elements |
|
s.writeInt(table.length); |
|
s.writeInt(count); |
|
// Stack copies of the entries in the table |
|
for (int index = 0; index < table.length; index++) { |
|
Entry<?,?> entry = table[index]; |
|
while (entry != null) { |
|
entryStack = |
|
new Entry<>(0, entry.key, entry.value, entryStack); |
|
entry = entry.next; |
|
} |
|
} |
|
} |
|
// Write out the key/value objects from the stacked entries |
|
while (entryStack != null) { |
|
s.writeObject(entryStack.key); |
|
s.writeObject(entryStack.value); |
|
entryStack = entryStack.next; |
|
} |
|
} |
|
/** |
|
* Reconstitute the Hashtable from a stream (i.e., deserialize it). |
|
*/ |
|
private void readObject(java.io.ObjectInputStream s) |
|
throws IOException, ClassNotFoundException |
|
{ |
|
// Read in the threshold and loadFactor |
|
s.defaultReadObject(); |
|
// Validate loadFactor (ignore threshold - it will be re-computed) |
|
if (loadFactor <= 0 || Float.isNaN(loadFactor)) |
|
throw new StreamCorruptedException("Illegal Load: " + loadFactor); |
|
// Read the original length of the array and number of elements |
|
int origlength = s.readInt(); |
|
int elements = s.readInt(); |
|
// Validate # of elements |
|
if (elements < 0) |
|
throw new StreamCorruptedException("Illegal # of Elements: " + elements); |
|
// Clamp original length to be more than elements / loadFactor |
|
// (this is the invariant enforced with auto-growth) |
|
origlength = Math.max(origlength, (int)(elements / loadFactor) + 1); |
|
// Compute new length with a bit of room 5% + 3 to grow but |
|
// no larger than the clamped original length. Make the length |
|
// odd if it's large enough, this helps distribute the entries. |
|
// Guard against the length ending up zero, that's not valid. |
|
int length = (int)((elements + elements / 20) / loadFactor) + 3; |
|
if (length > elements && (length & 1) == 0) |
|
length--; |
|
length = Math.min(length, origlength); |
|
if (length < 0) { // overflow |
|
length = origlength; |
|
} |
|
// Check Map.Entry[].class since it's the nearest public type to |
|
// what we're actually creating. |
|
SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, length); |
|
table = new Entry<?,?>[length]; |
|
threshold = (int)Math.min(length * loadFactor, MAX_ARRAY_SIZE + 1); |
|
count = 0; |
|
// Read the number of elements and then all the key/value objects |
|
for (; elements > 0; elements--) { |
|
@SuppressWarnings("unchecked") |
|
K key = (K)s.readObject(); |
|
@SuppressWarnings("unchecked") |
|
V value = (V)s.readObject(); |
|
// sync is eliminated for performance |
|
reconstitutionPut(table, key, value); |
|
} |
|
} |
|
/** |
|
* The put method used by readObject. This is provided because put |
|
* is overridable and should not be called in readObject since the |
|
* subclass will not yet be initialized. |
|
* |
|
* <p>This differs from the regular put method in several ways. No |
|
* checking for rehashing is necessary since the number of elements |
|
* initially in the table is known. The modCount is not incremented and |
|
* there's no synchronization because we are creating a new instance. |
|
* Also, no return value is needed. |
|
*/ |
|
private void reconstitutionPut(Entry<?,?>[] tab, K key, V value) |
|
throws StreamCorruptedException |
|
{ |
|
if (value == null) { |
|
throw new java.io.StreamCorruptedException(); |
|
} |
|
// Makes sure the key is not already in the hashtable. |
|
// This should not happen in deserialized version. |
|
int hash = key.hashCode(); |
|
int index = (hash & 0x7FFFFFFF) % tab.length; |
|
for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) { |
|
if ((e.hash == hash) && e.key.equals(key)) { |
|
throw new java.io.StreamCorruptedException(); |
|
} |
|
} |
|
// Creates the new entry. |
|
@SuppressWarnings("unchecked") |
|
Entry<K,V> e = (Entry<K,V>)tab[index]; |
|
tab[index] = new Entry<>(hash, key, value, e); |
|
count++; |
|
} |
|
/** |
|
* Hashtable bucket collision list entry |
|
*/ |
|
private static class Entry<K,V> implements Map.Entry<K,V> { |
|
final int hash; |
|
final K key; |
|
V value; |
|
Entry<K,V> next; |
|
protected Entry(int hash, K key, V value, Entry<K,V> next) { |
|
this.hash = hash; |
|
this.key = key; |
|
this.value = value; |
|
this.next = next; |
|
} |
|
@SuppressWarnings("unchecked") |
|
protected Object clone() { |
|
return new Entry<>(hash, key, value, |
|
(next==null ? null : (Entry<K,V>) next.clone())); |
|
} |
|
// Map.Entry Ops |
|
public K getKey() { |
|
return key; |
|
} |
|
public V getValue() { |
|
return value; |
|
} |
|
public V setValue(V value) { |
|
if (value == null) |
|
throw new NullPointerException(); |
|
V oldValue = this.value; |
|
this.value = value; |
|
return oldValue; |
|
} |
|
public boolean equals(Object o) { |
|
if (!(o instanceof Map.Entry)) |
|
return false; |
|
Map.Entry<?,?> e = (Map.Entry<?,?>)o; |
|
return (key==null ? e.getKey()==null : key.equals(e.getKey())) && |
|
(value==null ? e.getValue()==null : value.equals(e.getValue())); |
|
} |
|
public int hashCode() { |
|
return hash ^ Objects.hashCode(value); |
|
} |
|
public String toString() { |
|
return key.toString()+"="+value.toString(); |
|
} |
|
} |
|
// Types of Enumerations/Iterations |
|
private static final int KEYS = 0; |
|
private static final int VALUES = 1; |
|
private static final int ENTRIES = 2; |
|
/** |
|
* A hashtable enumerator class. This class implements both the |
|
* Enumeration and Iterator interfaces, but individual instances |
|
* can be created with the Iterator methods disabled. This is necessary |
|
* to avoid unintentionally increasing the capabilities granted a user |
|
* by passing an Enumeration. |
|
*/ |
|
private class Enumerator<T> implements Enumeration<T>, Iterator<T> { |
|
Entry<?,?>[] table = Hashtable.this.table; |
|
int index = table.length; |
|
Entry<?,?> entry; |
|
Entry<?,?> lastReturned; |
|
int type; |
|
/** |
|
* Indicates whether this Enumerator is serving as an Iterator |
|
* or an Enumeration. (true -> Iterator). |
|
*/ |
|
boolean iterator; |
|
/** |
|
* The modCount value that the iterator believes that the backing |
|
* Hashtable should have. If this expectation is violated, the iterator |
|
* has detected concurrent modification. |
|
*/ |
|
protected int expectedModCount = modCount; |
|
Enumerator(int type, boolean iterator) { |
|
this.type = type; |
|
this.iterator = iterator; |
|
} |
|
public boolean hasMoreElements() { |
|
Entry<?,?> e = entry; |
|
int i = index; |
|
Entry<?,?>[] t = table; |
|
/* Use locals for faster loop iteration */ |
|
while (e == null && i > 0) { |
|
e = t[--i]; |
|
} |
|
entry = e; |
|
index = i; |
|
return e != null; |
|
} |
|
@SuppressWarnings("unchecked") |
|
public T nextElement() { |
|
Entry<?,?> et = entry; |
|
int i = index; |
|
Entry<?,?>[] t = table; |
|
/* Use locals for faster loop iteration */ |
|
while (et == null && i > 0) { |
|
et = t[--i]; |
|
} |
|
entry = et; |
|
index = i; |
|
if (et != null) { |
|
Entry<?,?> e = lastReturned = entry; |
|
entry = e.next; |
|
return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e); |
|
} |
|
throw new NoSuchElementException("Hashtable Enumerator"); |
|
} |
|
// Iterator methods |
|
public boolean hasNext() { |
|
return hasMoreElements(); |
|
} |
|
public T next() { |
|
if (modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
return nextElement(); |
|
} |
|
public void remove() { |
|
if (!iterator) |
|
throw new UnsupportedOperationException(); |
|
if (lastReturned == null) |
|
throw new IllegalStateException("Hashtable Enumerator"); |
|
if (modCount != expectedModCount) |
|
throw new ConcurrentModificationException(); |
|
synchronized(Hashtable.this) { |
|
Entry<?,?>[] tab = Hashtable.this.table; |
|
int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length; |
|
@SuppressWarnings("unchecked") |
|
Entry<K,V> e = (Entry<K,V>)tab[index]; |
|
for(Entry<K,V> prev = null; e != null; prev = e, e = e.next) { |
|
if (e == lastReturned) { |
|
modCount++; |
|
expectedModCount++; |
|
if (prev == null) |
|
tab[index] = e.next; |
|
else |
|
prev.next = e.next; |
|
count--; |
|
lastReturned = null; |
|
return; |
|
} |
|
} |
|
throw new ConcurrentModificationException(); |
|
} |
|
} |
|
} |
|
} |