|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
|
|
package sun.java2d.marlin; |
|
|
|
import java.util.Arrays; |
|
import sun.awt.geom.PathConsumer2D; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
final class Dasher implements sun.awt.geom.PathConsumer2D, MarlinConst { |
|
|
|
static final int recLimit = 4; |
|
static final float ERR = 0.01f; |
|
static final float minTincrement = 1f / (1 << recLimit); |
|
|
|
private PathConsumer2D out; |
|
private float[] dash; |
|
private int dashLen; |
|
private float startPhase; |
|
private boolean startDashOn; |
|
private int startIdx; |
|
|
|
private boolean starting; |
|
private boolean needsMoveTo; |
|
|
|
private int idx; |
|
private boolean dashOn; |
|
private float phase; |
|
|
|
private float sx, sy; |
|
private float x0, y0; |
|
|
|
|
|
private final float[] curCurvepts; |
|
|
|
|
|
final RendererContext rdrCtx; |
|
|
|
|
|
final float[] dashes_initial = new float[INITIAL_ARRAY]; |
|
|
|
|
|
boolean recycleDashes; |
|
|
|
// per-thread initial arrays (large enough to satisfy most usages |
|
|
|
private final float[] firstSegmentsBuffer_initial = new float[INITIAL_ARRAY + 1]; |
|
|
|
|
|
|
|
|
|
*/ |
|
Dasher(final RendererContext rdrCtx) { |
|
this.rdrCtx = rdrCtx; |
|
|
|
firstSegmentsBuffer = firstSegmentsBuffer_initial; |
|
|
|
// we need curCurvepts to be able to contain 2 curves because when |
|
|
|
curCurvepts = new float[8 * 2]; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
Dasher init(final PathConsumer2D out, float[] dash, int dashLen, |
|
float phase, boolean recycleDashes) |
|
{ |
|
if (phase < 0f) { |
|
throw new IllegalArgumentException("phase < 0 !"); |
|
} |
|
this.out = out; |
|
|
|
|
|
int idx = 0; |
|
dashOn = true; |
|
float d; |
|
while (phase >= (d = dash[idx])) { |
|
phase -= d; |
|
idx = (idx + 1) % dashLen; |
|
dashOn = !dashOn; |
|
} |
|
|
|
this.dash = dash; |
|
this.dashLen = dashLen; |
|
this.startPhase = this.phase = phase; |
|
this.startDashOn = dashOn; |
|
this.startIdx = idx; |
|
this.starting = true; |
|
needsMoveTo = false; |
|
firstSegidx = 0; |
|
|
|
this.recycleDashes = recycleDashes; |
|
|
|
return this; |
|
} |
|
|
|
|
|
|
|
|
|
*/ |
|
void dispose() { |
|
if (doCleanDirty) { |
|
|
|
Arrays.fill(curCurvepts, 0f); |
|
Arrays.fill(firstSegmentsBuffer, 0f); |
|
} |
|
|
|
if (recycleDashes && dash != dashes_initial) { |
|
rdrCtx.putDirtyFloatArray(dash); |
|
dash = null; |
|
} |
|
|
|
if (firstSegmentsBuffer != firstSegmentsBuffer_initial) { |
|
rdrCtx.putDirtyFloatArray(firstSegmentsBuffer); |
|
firstSegmentsBuffer = firstSegmentsBuffer_initial; |
|
} |
|
} |
|
|
|
@Override |
|
public void moveTo(float x0, float y0) { |
|
if (firstSegidx > 0) { |
|
out.moveTo(sx, sy); |
|
emitFirstSegments(); |
|
} |
|
needsMoveTo = true; |
|
this.idx = startIdx; |
|
this.dashOn = this.startDashOn; |
|
this.phase = this.startPhase; |
|
this.sx = this.x0 = x0; |
|
this.sy = this.y0 = y0; |
|
this.starting = true; |
|
} |
|
|
|
private void emitSeg(float[] buf, int off, int type) { |
|
switch (type) { |
|
case 8: |
|
out.curveTo(buf[off+0], buf[off+1], |
|
buf[off+2], buf[off+3], |
|
buf[off+4], buf[off+5]); |
|
return; |
|
case 6: |
|
out.quadTo(buf[off+0], buf[off+1], |
|
buf[off+2], buf[off+3]); |
|
return; |
|
case 4: |
|
out.lineTo(buf[off], buf[off+1]); |
|
return; |
|
default: |
|
} |
|
} |
|
|
|
private void emitFirstSegments() { |
|
final float[] fSegBuf = firstSegmentsBuffer; |
|
|
|
for (int i = 0; i < firstSegidx; ) { |
|
int type = (int)fSegBuf[i]; |
|
emitSeg(fSegBuf, i + 1, type); |
|
i += (type - 1); |
|
} |
|
firstSegidx = 0; |
|
} |
|
// We don't emit the first dash right away. If we did, caps would be |
|
// drawn on it, but we need joins to be drawn if there's a closePath() |
|
// So, we store the path elements that make up the first dash in the |
|
// buffer below. |
|
private float[] firstSegmentsBuffer; |
|
private int firstSegidx; |
|
|
|
// precondition: pts must be in relative coordinates (relative to x0,y0) |
|
|
|
private void goTo(float[] pts, int off, final int type) { |
|
float x = pts[off + type - 4]; |
|
float y = pts[off + type - 3]; |
|
if (dashOn) { |
|
if (starting) { |
|
int len = type - 2 + 1; |
|
int segIdx = firstSegidx; |
|
float[] buf = firstSegmentsBuffer; |
|
if (segIdx + len > buf.length) { |
|
if (doStats) { |
|
RendererContext.stats.stat_array_dasher_firstSegmentsBuffer |
|
.add(segIdx + len); |
|
} |
|
firstSegmentsBuffer = buf |
|
= rdrCtx.widenDirtyFloatArray(buf, segIdx, segIdx + len); |
|
} |
|
buf[segIdx++] = type; |
|
len--; |
|
|
|
System.arraycopy(pts, off, buf, segIdx, len); |
|
segIdx += len; |
|
firstSegidx = segIdx; |
|
} else { |
|
if (needsMoveTo) { |
|
out.moveTo(x0, y0); |
|
needsMoveTo = false; |
|
} |
|
emitSeg(pts, off, type); |
|
} |
|
} else { |
|
starting = false; |
|
needsMoveTo = true; |
|
} |
|
this.x0 = x; |
|
this.y0 = y; |
|
} |
|
|
|
@Override |
|
public void lineTo(float x1, float y1) { |
|
float dx = x1 - x0; |
|
float dy = y1 - y0; |
|
|
|
float len = dx*dx + dy*dy; |
|
if (len == 0f) { |
|
return; |
|
} |
|
len = (float) Math.sqrt(len); |
|
|
|
// The scaling factors needed to get the dx and dy of the |
|
|
|
final float cx = dx / len; |
|
final float cy = dy / len; |
|
|
|
final float[] _curCurvepts = curCurvepts; |
|
final float[] _dash = dash; |
|
|
|
float leftInThisDashSegment; |
|
float dashdx, dashdy, p; |
|
|
|
while (true) { |
|
leftInThisDashSegment = _dash[idx] - phase; |
|
|
|
if (len <= leftInThisDashSegment) { |
|
_curCurvepts[0] = x1; |
|
_curCurvepts[1] = y1; |
|
goTo(_curCurvepts, 0, 4); |
|
|
|
|
|
phase += len; |
|
|
|
if (len == leftInThisDashSegment) { |
|
phase = 0f; |
|
idx = (idx + 1) % dashLen; |
|
dashOn = !dashOn; |
|
} |
|
return; |
|
} |
|
|
|
dashdx = _dash[idx] * cx; |
|
dashdy = _dash[idx] * cy; |
|
|
|
if (phase == 0f) { |
|
_curCurvepts[0] = x0 + dashdx; |
|
_curCurvepts[1] = y0 + dashdy; |
|
} else { |
|
p = leftInThisDashSegment / _dash[idx]; |
|
_curCurvepts[0] = x0 + p * dashdx; |
|
_curCurvepts[1] = y0 + p * dashdy; |
|
} |
|
|
|
goTo(_curCurvepts, 0, 4); |
|
|
|
len -= leftInThisDashSegment; |
|
|
|
idx = (idx + 1) % dashLen; |
|
dashOn = !dashOn; |
|
phase = 0f; |
|
} |
|
} |
|
|
|
|
|
private final LengthIterator li = new LengthIterator(); |
|
|
|
// preconditions: curCurvepts must be an array of length at least 2 * type, |
|
|
|
private void somethingTo(int type) { |
|
if (pointCurve(curCurvepts, type)) { |
|
return; |
|
} |
|
li.initializeIterationOnCurve(curCurvepts, type); |
|
|
|
|
|
int curCurveoff = 0; |
|
float lastSplitT = 0f; |
|
float t; |
|
float leftInThisDashSegment = dash[idx] - phase; |
|
|
|
while ((t = li.next(leftInThisDashSegment)) < 1f) { |
|
if (t != 0f) { |
|
Helpers.subdivideAt((t - lastSplitT) / (1f - lastSplitT), |
|
curCurvepts, curCurveoff, |
|
curCurvepts, 0, |
|
curCurvepts, type, type); |
|
lastSplitT = t; |
|
goTo(curCurvepts, 2, type); |
|
curCurveoff = type; |
|
} |
|
|
|
idx = (idx + 1) % dashLen; |
|
dashOn = !dashOn; |
|
phase = 0f; |
|
leftInThisDashSegment = dash[idx]; |
|
} |
|
goTo(curCurvepts, curCurveoff+2, type); |
|
phase += li.lastSegLen(); |
|
if (phase >= dash[idx]) { |
|
phase = 0f; |
|
idx = (idx + 1) % dashLen; |
|
dashOn = !dashOn; |
|
} |
|
|
|
li.reset(); |
|
} |
|
|
|
private static boolean pointCurve(float[] curve, int type) { |
|
for (int i = 2; i < type; i++) { |
|
if (curve[i] != curve[i-2]) { |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
// Objects of this class are used to iterate through curves. They return |
|
// t values where the left side of the curve has a specified length. |
|
// It does this by subdividing the input curve until a certain error |
|
// condition has been met. A recursive subdivision procedure would |
|
// return as many as 1<<limit curves, but this is an iterator and we |
|
// don't need all the curves all at once, so what we carry out a |
|
// lazy inorder traversal of the recursion tree (meaning we only move |
|
// through the tree when we need the next subdivided curve). This saves |
|
// us a lot of memory because at any one time we only need to store |
|
// limit+1 curves - one for each level of the tree + 1. |
|
// NOTE: the way we do things here is not enough to traverse a general |
|
// tree; however, the trees we are interested in have the property that |
|
|
|
static final class LengthIterator { |
|
private enum Side {LEFT, RIGHT}; |
|
// Holds the curves at various levels of the recursion. The root |
|
// (i.e. the original curve) is at recCurveStack[0] (but then it |
|
// gets subdivided, the left half is put at 1, so most of the time |
|
// only the right half of the original curve is at 0) |
|
private final float[][] recCurveStack; |
|
// sides[i] indicates whether the node at level i+1 in the path from |
|
// the root to the current leaf is a left or right child of its parent. |
|
private final Side[] sides; |
|
private int curveType; |
|
|
|
private float nextT; |
|
private float lenAtNextT; |
|
private float lastT; |
|
private float lenAtLastT; |
|
private float lenAtLastSplit; |
|
private float lastSegLen; |
|
// the current level in the recursion tree. 0 is the root. limit |
|
|
|
private int recLevel; |
|
private boolean done; |
|
|
|
// the lengths of the lines of the control polygon. Only its first |
|
// curveType/2 - 1 elements are valid. This is an optimization. See |
|
|
|
private final float[] curLeafCtrlPolyLengths = new float[3]; |
|
|
|
LengthIterator() { |
|
this.recCurveStack = new float[recLimit + 1][8]; |
|
this.sides = new Side[recLimit]; |
|
// if any methods are called without first initializing this object |
|
|
|
this.nextT = Float.MAX_VALUE; |
|
this.lenAtNextT = Float.MAX_VALUE; |
|
this.lenAtLastSplit = Float.MIN_VALUE; |
|
this.recLevel = Integer.MIN_VALUE; |
|
this.lastSegLen = Float.MAX_VALUE; |
|
this.done = true; |
|
} |
|
|
|
|
|
|
|
*/ |
|
void reset() { |
|
// keep data dirty |
|
|
|
if (doCleanDirty) { |
|
final int recLimit = recCurveStack.length - 1; |
|
for (int i = recLimit; i >= 0; i--) { |
|
Arrays.fill(recCurveStack[i], 0f); |
|
} |
|
Arrays.fill(sides, Side.LEFT); |
|
Arrays.fill(curLeafCtrlPolyLengths, 0f); |
|
Arrays.fill(nextRoots, 0f); |
|
Arrays.fill(flatLeafCoefCache, 0f); |
|
flatLeafCoefCache[2] = -1f; |
|
} |
|
} |
|
|
|
void initializeIterationOnCurve(float[] pts, int type) { |
|
|
|
System.arraycopy(pts, 0, recCurveStack[0], 0, 8); |
|
this.curveType = type; |
|
this.recLevel = 0; |
|
this.lastT = 0f; |
|
this.lenAtLastT = 0f; |
|
this.nextT = 0f; |
|
this.lenAtNextT = 0f; |
|
goLeft(); |
|
this.lenAtLastSplit = 0f; |
|
if (recLevel > 0) { |
|
this.sides[0] = Side.LEFT; |
|
this.done = false; |
|
} else { |
|
|
|
this.sides[0] = Side.RIGHT; |
|
this.done = true; |
|
} |
|
this.lastSegLen = 0f; |
|
} |
|
|
|
|
|
private int cachedHaveLowAcceleration = -1; |
|
|
|
private boolean haveLowAcceleration(float err) { |
|
if (cachedHaveLowAcceleration == -1) { |
|
final float len1 = curLeafCtrlPolyLengths[0]; |
|
final float len2 = curLeafCtrlPolyLengths[1]; |
|
// the test below is equivalent to !within(len1/len2, 1, err). |
|
// It is using a multiplication instead of a division, so it |
|
|
|
if (!Helpers.within(len1, len2, err*len2)) { |
|
cachedHaveLowAcceleration = 0; |
|
return false; |
|
} |
|
if (curveType == 8) { |
|
final float len3 = curLeafCtrlPolyLengths[2]; |
|
// if len1 is close to 2 and 2 is close to 3, that probably |
|
// means 1 is close to 3 so the second part of this test might |
|
|
|
final float errLen3 = err * len3; |
|
if (!(Helpers.within(len2, len3, errLen3) && |
|
Helpers.within(len1, len3, errLen3))) { |
|
cachedHaveLowAcceleration = 0; |
|
return false; |
|
} |
|
} |
|
cachedHaveLowAcceleration = 1; |
|
return true; |
|
} |
|
|
|
return (cachedHaveLowAcceleration == 1); |
|
} |
|
|
|
// we want to avoid allocations/gc so we keep this array so we |
|
|
|
private final float[] nextRoots = new float[4]; |
|
|
|
// caches the coefficients of the current leaf in its flattened |
|
// form (see inside next() for what that means). The cache is |
|
// invalid when it's third element is negative, since in any |
|
|
|
private final float[] flatLeafCoefCache = new float[]{0f, 0f, -1f, 0f}; |
|
|
|
// returns the t value where the remaining curve should be split in |
|
// order for the left subdivided curve to have length len. If len |
|
|
|
float next(final float len) { |
|
final float targetLength = lenAtLastSplit + len; |
|
while (lenAtNextT < targetLength) { |
|
if (done) { |
|
lastSegLen = lenAtNextT - lenAtLastSplit; |
|
return 1f; |
|
} |
|
goToNextLeaf(); |
|
} |
|
lenAtLastSplit = targetLength; |
|
final float leaflen = lenAtNextT - lenAtLastT; |
|
float t = (targetLength - lenAtLastT) / leaflen; |
|
|
|
// cubicRootsInAB is a fairly expensive call, so we just don't do it |
|
|
|
if (!haveLowAcceleration(0.05f)) { |
|
// We flatten the current leaf along the x axis, so that we're |
|
// left with a, b, c which define a 1D Bezier curve. We then |
|
// solve this to get the parameter of the original leaf that |
|
|
|
final float[] _flatLeafCoefCache = flatLeafCoefCache; |
|
|
|
if (_flatLeafCoefCache[2] < 0) { |
|
float x = 0f + curLeafCtrlPolyLengths[0], |
|
y = x + curLeafCtrlPolyLengths[1]; |
|
if (curveType == 8) { |
|
float z = y + curLeafCtrlPolyLengths[2]; |
|
_flatLeafCoefCache[0] = 3f * (x - y) + z; |
|
_flatLeafCoefCache[1] = 3f * (y - 2f * x); |
|
_flatLeafCoefCache[2] = 3f * x; |
|
_flatLeafCoefCache[3] = -z; |
|
} else if (curveType == 6) { |
|
_flatLeafCoefCache[0] = 0f; |
|
_flatLeafCoefCache[1] = y - 2f * x; |
|
_flatLeafCoefCache[2] = 2f * x; |
|
_flatLeafCoefCache[3] = -y; |
|
} |
|
} |
|
float a = _flatLeafCoefCache[0]; |
|
float b = _flatLeafCoefCache[1]; |
|
float c = _flatLeafCoefCache[2]; |
|
float d = t * _flatLeafCoefCache[3]; |
|
|
|
// we use cubicRootsInAB here, because we want only roots in 0, 1, |
|
// and our quadratic root finder doesn't filter, so it's just a |
|
|
|
int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0, 1); |
|
if (n == 1 && !Float.isNaN(nextRoots[0])) { |
|
t = nextRoots[0]; |
|
} |
|
} |
|
// t is relative to the current leaf, so we must make it a valid parameter |
|
|
|
t = t * (nextT - lastT) + lastT; |
|
if (t >= 1f) { |
|
t = 1f; |
|
done = true; |
|
} |
|
// even if done = true, if we're here, that means targetLength |
|
// is equal to, or very, very close to the total length of the |
|
// curve, so lastSegLen won't be too high. In cases where len |
|
// overshoots the curve, this method will exit in the while |
|
|
|
lastSegLen = len; |
|
return t; |
|
} |
|
|
|
float lastSegLen() { |
|
return lastSegLen; |
|
} |
|
|
|
// go to the next leaf (in an inorder traversal) in the recursion tree |
|
|
|
private void goToNextLeaf() { |
|
// We must go to the first ancestor node that has an unvisited |
|
|
|
int _recLevel = recLevel; |
|
final Side[] _sides = sides; |
|
|
|
_recLevel--; |
|
while(_sides[_recLevel] == Side.RIGHT) { |
|
if (_recLevel == 0) { |
|
recLevel = 0; |
|
done = true; |
|
return; |
|
} |
|
_recLevel--; |
|
} |
|
|
|
_sides[_recLevel] = Side.RIGHT; |
|
|
|
System.arraycopy(recCurveStack[_recLevel], 0, |
|
recCurveStack[_recLevel+1], 0, 8); |
|
_recLevel++; |
|
|
|
recLevel = _recLevel; |
|
goLeft(); |
|
} |
|
|
|
|
|
private void goLeft() { |
|
float len = onLeaf(); |
|
if (len >= 0f) { |
|
lastT = nextT; |
|
lenAtLastT = lenAtNextT; |
|
nextT += (1 << (recLimit - recLevel)) * minTincrement; |
|
lenAtNextT += len; |
|
|
|
flatLeafCoefCache[2] = -1f; |
|
cachedHaveLowAcceleration = -1; |
|
} else { |
|
Helpers.subdivide(recCurveStack[recLevel], 0, |
|
recCurveStack[recLevel+1], 0, |
|
recCurveStack[recLevel], 0, curveType); |
|
sides[recLevel] = Side.LEFT; |
|
recLevel++; |
|
goLeft(); |
|
} |
|
} |
|
|
|
// this is a bit of a hack. It returns -1 if we're not on a leaf, and |
|
|
|
private float onLeaf() { |
|
float[] curve = recCurveStack[recLevel]; |
|
float polyLen = 0f; |
|
|
|
float x0 = curve[0], y0 = curve[1]; |
|
for (int i = 2; i < curveType; i += 2) { |
|
final float x1 = curve[i], y1 = curve[i+1]; |
|
final float len = Helpers.linelen(x0, y0, x1, y1); |
|
polyLen += len; |
|
curLeafCtrlPolyLengths[i/2 - 1] = len; |
|
x0 = x1; |
|
y0 = y1; |
|
} |
|
|
|
final float lineLen = Helpers.linelen(curve[0], curve[1], |
|
curve[curveType-2], |
|
curve[curveType-1]); |
|
if ((polyLen - lineLen) < ERR || recLevel == recLimit) { |
|
return (polyLen + lineLen) / 2f; |
|
} |
|
return -1f; |
|
} |
|
} |
|
|
|
@Override |
|
public void curveTo(float x1, float y1, |
|
float x2, float y2, |
|
float x3, float y3) |
|
{ |
|
final float[] _curCurvepts = curCurvepts; |
|
_curCurvepts[0] = x0; _curCurvepts[1] = y0; |
|
_curCurvepts[2] = x1; _curCurvepts[3] = y1; |
|
_curCurvepts[4] = x2; _curCurvepts[5] = y2; |
|
_curCurvepts[6] = x3; _curCurvepts[7] = y3; |
|
somethingTo(8); |
|
} |
|
|
|
@Override |
|
public void quadTo(float x1, float y1, float x2, float y2) { |
|
final float[] _curCurvepts = curCurvepts; |
|
_curCurvepts[0] = x0; _curCurvepts[1] = y0; |
|
_curCurvepts[2] = x1; _curCurvepts[3] = y1; |
|
_curCurvepts[4] = x2; _curCurvepts[5] = y2; |
|
somethingTo(6); |
|
} |
|
|
|
@Override |
|
public void closePath() { |
|
lineTo(sx, sy); |
|
if (firstSegidx > 0) { |
|
if (!dashOn || needsMoveTo) { |
|
out.moveTo(sx, sy); |
|
} |
|
emitFirstSegments(); |
|
} |
|
moveTo(sx, sy); |
|
} |
|
|
|
@Override |
|
public void pathDone() { |
|
if (firstSegidx > 0) { |
|
out.moveTo(sx, sy); |
|
emitFirstSegments(); |
|
} |
|
out.pathDone(); |
|
|
|
|
|
dispose(); |
|
} |
|
|
|
@Override |
|
public long getNativeConsumer() { |
|
throw new InternalError("Dasher does not use a native consumer"); |
|
} |
|
} |
|
|