| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 */  | 
 | 
 | 
 | 
package sun.java2d.marlin;  | 
 | 
 | 
 | 
import java.util.Arrays;  | 
 | 
import static java.lang.Math.ulp;  | 
 | 
import static java.lang.Math.sqrt;  | 
 | 
 | 
 | 
import sun.awt.geom.PathConsumer2D;  | 
 | 
import sun.java2d.marlin.Curve.BreakPtrIterator;  | 
 | 
 | 
 | 
 | 
 | 
// TODO: some of the arithmetic here is too verbose and prone to hard to  | 
 | 
// debug typos. We should consider making a small Point/Vector class that  | 
 | 
 | 
 | 
final class Stroker implements PathConsumer2D, MarlinConst { | 
 | 
 | 
 | 
    private static final int MOVE_TO = 0;  | 
 | 
    private static final int DRAWING_OP_TO = 1;   | 
 | 
    private static final int CLOSE = 2;  | 
 | 
 | 
 | 
      | 
 | 
 | 
 | 
     */  | 
 | 
    public static final int JOIN_MITER = 0;  | 
 | 
 | 
 | 
      | 
 | 
 | 
 | 
     */  | 
 | 
    public static final int JOIN_ROUND = 1;  | 
 | 
 | 
 | 
      | 
 | 
 | 
 | 
     */  | 
 | 
    public static final int JOIN_BEVEL = 2;  | 
 | 
 | 
 | 
      | 
 | 
 | 
 | 
     */  | 
 | 
    public static final int CAP_BUTT = 0;  | 
 | 
 | 
 | 
      | 
 | 
 | 
 | 
     */  | 
 | 
    public static final int CAP_ROUND = 1;  | 
 | 
 | 
 | 
      | 
 | 
 | 
 | 
     */  | 
 | 
    public static final int CAP_SQUARE = 2;  | 
 | 
 | 
 | 
    // pisces used to use fixed point arithmetic with 16 decimal digits. I  | 
 | 
    // didn't want to change the values of the constant below when I converted  | 
 | 
      | 
 | 
    private static final float ROUND_JOIN_THRESHOLD = 1000/65536f;  | 
 | 
 | 
 | 
    private static final float C = 0.5522847498307933f;  | 
 | 
 | 
 | 
    private static final int MAX_N_CURVES = 11;  | 
 | 
 | 
 | 
    private PathConsumer2D out;  | 
 | 
 | 
 | 
    private int capStyle;  | 
 | 
    private int joinStyle;  | 
 | 
 | 
 | 
    private float lineWidth2;  | 
 | 
    private float invHalfLineWidth2Sq;  | 
 | 
 | 
 | 
    private final float[] offset0 = new float[2];  | 
 | 
    private final float[] offset1 = new float[2];  | 
 | 
    private final float[] offset2 = new float[2];  | 
 | 
    private final float[] miter = new float[2];  | 
 | 
    private float miterLimitSq;  | 
 | 
 | 
 | 
    private int prev;  | 
 | 
 | 
 | 
      | 
 | 
    private float sx0, sy0, sdx, sdy;  | 
 | 
    // the current point and the slope there.  | 
 | 
    private float cx0, cy0, cdx, cdy;   | 
 | 
    // vectors that when added to (sx0,sy0) and (cx0,cy0) respectively yield the  | 
 | 
    // first and last points on the left parallel path. Since this path is  | 
 | 
    // parallel, it's slope at any point is parallel to the slope of the  | 
 | 
    // original path (thought they may have different directions), so these  | 
 | 
    // could be computed from sdx,sdy and cdx,cdy (and vice versa), but that  | 
 | 
      | 
 | 
    private float smx, smy, cmx, cmy;  | 
 | 
 | 
 | 
    private final PolyStack reverse;  | 
 | 
 | 
 | 
    // This is where the curve to be processed is put. We give it  | 
 | 
    // enough room to store 2 curves: one for the current subdivision, the  | 
 | 
      | 
 | 
    private final float[] middle = new float[2 * 8];  | 
 | 
    private final float[] lp = new float[8];  | 
 | 
    private final float[] rp = new float[8];  | 
 | 
    private final float[] subdivTs = new float[MAX_N_CURVES - 1];  | 
 | 
 | 
 | 
      | 
 | 
    final RendererContext rdrCtx;  | 
 | 
 | 
 | 
      | 
 | 
    final Curve curve;  | 
 | 
 | 
 | 
      | 
 | 
 | 
 | 
 | 
 | 
     */  | 
 | 
    Stroker(final RendererContext rdrCtx) { | 
 | 
        this.rdrCtx = rdrCtx;  | 
 | 
 | 
 | 
        this.reverse = new PolyStack(rdrCtx);  | 
 | 
        this.curve = rdrCtx.curve;  | 
 | 
    }  | 
 | 
 | 
 | 
      | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
     */  | 
 | 
    Stroker init(PathConsumer2D pc2d,  | 
 | 
              float lineWidth,  | 
 | 
              int capStyle,  | 
 | 
              int joinStyle,  | 
 | 
              float miterLimit)  | 
 | 
    { | 
 | 
        this.out = pc2d;  | 
 | 
 | 
 | 
        this.lineWidth2 = lineWidth / 2f;  | 
 | 
        this.invHalfLineWidth2Sq = 1f / (2f * lineWidth2 * lineWidth2);  | 
 | 
        this.capStyle = capStyle;  | 
 | 
        this.joinStyle = joinStyle;  | 
 | 
 | 
 | 
        float limit = miterLimit * lineWidth2;  | 
 | 
        this.miterLimitSq = limit * limit;  | 
 | 
 | 
 | 
        this.prev = CLOSE;  | 
 | 
 | 
 | 
        rdrCtx.stroking = 1;  | 
 | 
 | 
 | 
        return this;   | 
 | 
    }  | 
 | 
 | 
 | 
      | 
 | 
 | 
 | 
 | 
 | 
     */  | 
 | 
    void dispose() { | 
 | 
        reverse.dispose();  | 
 | 
 | 
 | 
        if (doCleanDirty) { | 
 | 
              | 
 | 
            Arrays.fill(offset0, 0f);  | 
 | 
            Arrays.fill(offset1, 0f);  | 
 | 
            Arrays.fill(offset2, 0f);  | 
 | 
            Arrays.fill(miter, 0f);  | 
 | 
            Arrays.fill(middle, 0f);  | 
 | 
            Arrays.fill(lp, 0f);  | 
 | 
            Arrays.fill(rp, 0f);  | 
 | 
            Arrays.fill(subdivTs, 0f);  | 
 | 
        }  | 
 | 
    }  | 
 | 
 | 
 | 
    private static void computeOffset(final float lx, final float ly,  | 
 | 
                                      final float w, final float[] m)  | 
 | 
    { | 
 | 
        float len = lx*lx + ly*ly;  | 
 | 
        if (len == 0f) { | 
 | 
            m[0] = 0f;  | 
 | 
            m[1] = 0f;  | 
 | 
        } else { | 
 | 
            len = (float) sqrt(len);  | 
 | 
            m[0] =  (ly * w) / len;  | 
 | 
            m[1] = -(lx * w) / len;  | 
 | 
        }  | 
 | 
    }  | 
 | 
 | 
 | 
    // Returns true if the vectors (dx1, dy1) and (dx2, dy2) are  | 
 | 
    // clockwise (if dx1,dy1 needs to be rotated clockwise to close  | 
 | 
    // the smallest angle between it and dx2,dy2).  | 
 | 
    // This is equivalent to detecting whether a point q is on the right side  | 
 | 
    // of a line passing through points p1, p2 where p2 = p1+(dx1,dy1) and  | 
 | 
    // q = p2+(dx2,dy2), which is the same as saying p1, p2, q are in a  | 
 | 
    // clockwise order.  | 
 | 
      | 
 | 
    private static boolean isCW(final float dx1, final float dy1,  | 
 | 
                                final float dx2, final float dy2)  | 
 | 
    { | 
 | 
        return dx1 * dy2 <= dy1 * dx2;  | 
 | 
    }  | 
 | 
 | 
 | 
    private void drawRoundJoin(float x, float y,  | 
 | 
                               float omx, float omy, float mx, float my,  | 
 | 
                               boolean rev,  | 
 | 
                               float threshold)  | 
 | 
    { | 
 | 
        if ((omx == 0 && omy == 0) || (mx == 0 && my == 0)) { | 
 | 
            return;  | 
 | 
        }  | 
 | 
 | 
 | 
        float domx = omx - mx;  | 
 | 
        float domy = omy - my;  | 
 | 
        float len = domx*domx + domy*domy;  | 
 | 
        if (len < threshold) { | 
 | 
            return;  | 
 | 
        }  | 
 | 
 | 
 | 
        if (rev) { | 
 | 
            omx = -omx;  | 
 | 
            omy = -omy;  | 
 | 
            mx  = -mx;  | 
 | 
            my  = -my;  | 
 | 
        }  | 
 | 
        drawRoundJoin(x, y, omx, omy, mx, my, rev);  | 
 | 
    }  | 
 | 
 | 
 | 
    private void drawRoundJoin(float cx, float cy,  | 
 | 
                               float omx, float omy,  | 
 | 
                               float mx, float my,  | 
 | 
                               boolean rev)  | 
 | 
    { | 
 | 
        // The sign of the dot product of mx,my and omx,omy is equal to the  | 
 | 
        // the sign of the cosine of ext  | 
 | 
          | 
 | 
        final float cosext = omx * mx + omy * my;  | 
 | 
        // If it is >=0, we know that abs(ext) is <= 90 degrees, so we only  | 
 | 
        // need 1 curve to approximate the circle section that joins omx,omy  | 
 | 
          | 
 | 
        final int numCurves = (cosext >= 0f) ? 1 : 2;  | 
 | 
 | 
 | 
        switch (numCurves) { | 
 | 
        case 1:  | 
 | 
            drawBezApproxForArc(cx, cy, omx, omy, mx, my, rev);  | 
 | 
            break;  | 
 | 
        case 2:  | 
 | 
            // we need to split the arc into 2 arcs spanning the same angle.  | 
 | 
            // The point we want will be one of the 2 intersections of the  | 
 | 
            // perpendicular bisector of the chord (omx,omy)->(mx,my) and the  | 
 | 
            // circle. We could find this by scaling the vector  | 
 | 
            // (omx+mx, omy+my)/2 so that it has length=lineWidth2 (and thus lies  | 
 | 
            // on the circle), but that can have numerical problems when the angle  | 
 | 
            // between omx,omy and mx,my is close to 180 degrees. So we compute a  | 
 | 
            // normal of (omx,omy)-(mx,my). This will be the direction of the  | 
 | 
            // perpendicular bisector. To get one of the intersections, we just scale  | 
 | 
            // this vector that its length is lineWidth2 (this works because the  | 
 | 
            // perpendicular bisector goes through the origin). This scaling doesn't  | 
 | 
            // have numerical problems because we know that lineWidth2 divided by  | 
 | 
            // this normal's length is at least 0.5 and at most sqrt(2)/2 (because  | 
 | 
              | 
 | 
            float nx = my - omy, ny = omx - mx;  | 
 | 
            float nlen = (float) sqrt(nx*nx + ny*ny);  | 
 | 
            float scale = lineWidth2/nlen;  | 
 | 
            float mmx = nx * scale, mmy = ny * scale;  | 
 | 
 | 
 | 
            // if (isCW(omx, omy, mx, my) != isCW(mmx, mmy, mx, my)) then we've  | 
 | 
            // computed the wrong intersection so we get the other one.  | 
 | 
              | 
 | 
            if (rev) { | 
 | 
                mmx = -mmx;  | 
 | 
                mmy = -mmy;  | 
 | 
            }  | 
 | 
            drawBezApproxForArc(cx, cy, omx, omy, mmx, mmy, rev);  | 
 | 
            drawBezApproxForArc(cx, cy, mmx, mmy, mx, my, rev);  | 
 | 
            break;  | 
 | 
        default:  | 
 | 
        }  | 
 | 
    }  | 
 | 
 | 
 | 
      | 
 | 
    private void drawBezApproxForArc(final float cx, final float cy,  | 
 | 
                                     final float omx, final float omy,  | 
 | 
                                     final float mx, final float my,  | 
 | 
                                     boolean rev)  | 
 | 
    { | 
 | 
        final float cosext2 = (omx * mx + omy * my) * invHalfLineWidth2Sq;  | 
 | 
 | 
 | 
        // check round off errors producing cos(ext) > 1 and a NaN below  | 
 | 
          | 
 | 
        if (cosext2 >= 0.5f) { | 
 | 
              | 
 | 
            return;  | 
 | 
        }  | 
 | 
 | 
 | 
        // cv is the length of P1-P0 and P2-P3 divided by the radius of the arc  | 
 | 
        // (so, cv assumes the arc has radius 1). P0, P1, P2, P3 are the points that  | 
 | 
        // define the bezier curve we're computing.  | 
 | 
        // It is computed using the constraints that P1-P0 and P3-P2 are parallel  | 
 | 
          | 
 | 
        float cv = (float) ((4.0 / 3.0) * sqrt(0.5 - cosext2) /  | 
 | 
                            (1.0 + sqrt(cosext2 + 0.5)));  | 
 | 
          | 
 | 
        if (rev) {  | 
 | 
            cv = -cv;  | 
 | 
        }  | 
 | 
        final float x1 = cx + omx;  | 
 | 
        final float y1 = cy + omy;  | 
 | 
        final float x2 = x1 - cv * omy;  | 
 | 
        final float y2 = y1 + cv * omx;  | 
 | 
 | 
 | 
        final float x4 = cx + mx;  | 
 | 
        final float y4 = cy + my;  | 
 | 
        final float x3 = x4 + cv * my;  | 
 | 
        final float y3 = y4 - cv * mx;  | 
 | 
 | 
 | 
        emitCurveTo(x1, y1, x2, y2, x3, y3, x4, y4, rev);  | 
 | 
    }  | 
 | 
 | 
 | 
    private void drawRoundCap(float cx, float cy, float mx, float my) { | 
 | 
        // the first and second arguments of the following two calls  | 
 | 
        // are really will be ignored by emitCurveTo (because of the false),  | 
 | 
        // but we put them in anyway, as opposed to just giving it 4 zeroes,  | 
 | 
        // because it's just 4 additions and it's not good to rely on this  | 
 | 
          | 
 | 
        emitCurveTo(cx+mx-C*my, cy+my+C*mx,  | 
 | 
                    cx-my+C*mx, cy+mx+C*my,  | 
 | 
                    cx-my,      cy+mx);  | 
 | 
        emitCurveTo(cx-my-C*mx, cy+mx-C*my,  | 
 | 
                    cx-mx-C*my, cy-my+C*mx,  | 
 | 
                    cx-mx,      cy-my);  | 
 | 
    }  | 
 | 
 | 
 | 
    // Put the intersection point of the lines (x0, y0) -> (x1, y1)  | 
 | 
    // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1].  | 
 | 
      | 
 | 
    private static void computeIntersection(final float x0, final float y0,  | 
 | 
                                            final float x1, final float y1,  | 
 | 
                                            final float x0p, final float y0p,  | 
 | 
                                            final float x1p, final float y1p,  | 
 | 
                                            final float[] m, int off)  | 
 | 
    { | 
 | 
        float x10 = x1 - x0;  | 
 | 
        float y10 = y1 - y0;  | 
 | 
        float x10p = x1p - x0p;  | 
 | 
        float y10p = y1p - y0p;  | 
 | 
 | 
 | 
        float den = x10*y10p - x10p*y10;  | 
 | 
        float t = x10p*(y0-y0p) - y10p*(x0-x0p);  | 
 | 
        t /= den;  | 
 | 
        m[off++] = x0 + t*x10;  | 
 | 
        m[off]   = y0 + t*y10;  | 
 | 
    }  | 
 | 
 | 
 | 
    private void drawMiter(final float pdx, final float pdy,  | 
 | 
                           final float x0, final float y0,  | 
 | 
                           final float dx, final float dy,  | 
 | 
                           float omx, float omy, float mx, float my,  | 
 | 
                           boolean rev)  | 
 | 
    { | 
 | 
        if ((mx == omx && my == omy) ||  | 
 | 
            (pdx == 0f && pdy == 0f) ||  | 
 | 
            (dx == 0f && dy == 0f))  | 
 | 
        { | 
 | 
            return;  | 
 | 
        }  | 
 | 
 | 
 | 
        if (rev) { | 
 | 
            omx = -omx;  | 
 | 
            omy = -omy;  | 
 | 
            mx  = -mx;  | 
 | 
            my  = -my;  | 
 | 
        }  | 
 | 
 | 
 | 
        computeIntersection((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,  | 
 | 
                            (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my,  | 
 | 
                            miter, 0);  | 
 | 
 | 
 | 
        final float miterX = miter[0];  | 
 | 
        final float miterY = miter[1];  | 
 | 
        float lenSq = (miterX-x0)*(miterX-x0) + (miterY-y0)*(miterY-y0);  | 
 | 
 | 
 | 
        // If the lines are parallel, lenSq will be either NaN or +inf  | 
 | 
        // (actually, I'm not sure if the latter is possible. The important  | 
 | 
        // thing is that -inf is not possible, because lenSq is a square).  | 
 | 
        // For both of those values, the comparison below will fail and  | 
 | 
          | 
 | 
        if (lenSq < miterLimitSq) { | 
 | 
            emitLineTo(miterX, miterY, rev);  | 
 | 
        }  | 
 | 
    }  | 
 | 
 | 
 | 
    @Override  | 
 | 
    public void moveTo(float x0, float y0) { | 
 | 
        if (prev == DRAWING_OP_TO) { | 
 | 
            finish();  | 
 | 
        }  | 
 | 
        this.sx0 = this.cx0 = x0;  | 
 | 
        this.sy0 = this.cy0 = y0;  | 
 | 
        this.cdx = this.sdx = 1;  | 
 | 
        this.cdy = this.sdy = 0;  | 
 | 
        this.prev = MOVE_TO;  | 
 | 
    }  | 
 | 
 | 
 | 
    @Override  | 
 | 
    public void lineTo(float x1, float y1) { | 
 | 
        float dx = x1 - cx0;  | 
 | 
        float dy = y1 - cy0;  | 
 | 
        if (dx == 0f && dy == 0f) { | 
 | 
            dx = 1f;  | 
 | 
        }  | 
 | 
        computeOffset(dx, dy, lineWidth2, offset0);  | 
 | 
        final float mx = offset0[0];  | 
 | 
        final float my = offset0[1];  | 
 | 
 | 
 | 
        drawJoin(cdx, cdy, cx0, cy0, dx, dy, cmx, cmy, mx, my);  | 
 | 
 | 
 | 
        emitLineTo(cx0 + mx, cy0 + my);  | 
 | 
        emitLineTo( x1 + mx,  y1 + my);  | 
 | 
 | 
 | 
        emitLineToRev(cx0 - mx, cy0 - my);  | 
 | 
        emitLineToRev( x1 - mx,  y1 - my);  | 
 | 
 | 
 | 
        this.cmx = mx;  | 
 | 
        this.cmy = my;  | 
 | 
        this.cdx = dx;  | 
 | 
        this.cdy = dy;  | 
 | 
        this.cx0 = x1;  | 
 | 
        this.cy0 = y1;  | 
 | 
        this.prev = DRAWING_OP_TO;  | 
 | 
    }  | 
 | 
 | 
 | 
    @Override  | 
 | 
    public void closePath() { | 
 | 
        if (prev != DRAWING_OP_TO) { | 
 | 
            if (prev == CLOSE) { | 
 | 
                return;  | 
 | 
            }  | 
 | 
            emitMoveTo(cx0, cy0 - lineWidth2);  | 
 | 
            this.cmx = this.smx = 0;  | 
 | 
            this.cmy = this.smy = -lineWidth2;  | 
 | 
            this.cdx = this.sdx = 1;  | 
 | 
            this.cdy = this.sdy = 0;  | 
 | 
            finish();  | 
 | 
            return;  | 
 | 
        }  | 
 | 
 | 
 | 
        if (cx0 != sx0 || cy0 != sy0) { | 
 | 
            lineTo(sx0, sy0);  | 
 | 
        }  | 
 | 
 | 
 | 
        drawJoin(cdx, cdy, cx0, cy0, sdx, sdy, cmx, cmy, smx, smy);  | 
 | 
 | 
 | 
        emitLineTo(sx0 + smx, sy0 + smy);  | 
 | 
 | 
 | 
        emitMoveTo(sx0 - smx, sy0 - smy);  | 
 | 
        emitReverse();  | 
 | 
 | 
 | 
        this.prev = CLOSE;  | 
 | 
        emitClose();  | 
 | 
    }  | 
 | 
 | 
 | 
    private void emitReverse() { | 
 | 
        reverse.popAll(out);  | 
 | 
    }  | 
 | 
 | 
 | 
    @Override  | 
 | 
    public void pathDone() { | 
 | 
        if (prev == DRAWING_OP_TO) { | 
 | 
            finish();  | 
 | 
        }  | 
 | 
 | 
 | 
        out.pathDone();  | 
 | 
 | 
 | 
        // this shouldn't matter since this object won't be used  | 
 | 
          | 
 | 
        this.prev = CLOSE;  | 
 | 
 | 
 | 
          | 
 | 
        dispose();  | 
 | 
    }  | 
 | 
 | 
 | 
    private void finish() { | 
 | 
        if (capStyle == CAP_ROUND) { | 
 | 
            drawRoundCap(cx0, cy0, cmx, cmy);  | 
 | 
        } else if (capStyle == CAP_SQUARE) { | 
 | 
            emitLineTo(cx0 - cmy + cmx, cy0 + cmx + cmy);  | 
 | 
            emitLineTo(cx0 - cmy - cmx, cy0 + cmx - cmy);  | 
 | 
        }  | 
 | 
 | 
 | 
        emitReverse();  | 
 | 
 | 
 | 
        if (capStyle == CAP_ROUND) { | 
 | 
            drawRoundCap(sx0, sy0, -smx, -smy);  | 
 | 
        } else if (capStyle == CAP_SQUARE) { | 
 | 
            emitLineTo(sx0 + smy - smx, sy0 - smx - smy);  | 
 | 
            emitLineTo(sx0 + smy + smx, sy0 - smx + smy);  | 
 | 
        }  | 
 | 
 | 
 | 
        emitClose();  | 
 | 
    }  | 
 | 
 | 
 | 
    private void emitMoveTo(final float x0, final float y0) { | 
 | 
        out.moveTo(x0, y0);  | 
 | 
    }  | 
 | 
 | 
 | 
    private void emitLineTo(final float x1, final float y1) { | 
 | 
        out.lineTo(x1, y1);  | 
 | 
    }  | 
 | 
 | 
 | 
    private void emitLineToRev(final float x1, final float y1) { | 
 | 
        reverse.pushLine(x1, y1);  | 
 | 
    }  | 
 | 
 | 
 | 
    private void emitLineTo(final float x1, final float y1,  | 
 | 
                            final boolean rev)  | 
 | 
    { | 
 | 
        if (rev) { | 
 | 
            emitLineToRev(x1, y1);  | 
 | 
        } else { | 
 | 
            emitLineTo(x1, y1);  | 
 | 
        }  | 
 | 
    }  | 
 | 
 | 
 | 
    private void emitQuadTo(final float x1, final float y1,  | 
 | 
                            final float x2, final float y2)  | 
 | 
    { | 
 | 
        out.quadTo(x1, y1, x2, y2);  | 
 | 
    }  | 
 | 
 | 
 | 
    private void emitQuadToRev(final float x0, final float y0,  | 
 | 
                               final float x1, final float y1)  | 
 | 
    { | 
 | 
        reverse.pushQuad(x0, y0, x1, y1);  | 
 | 
    }  | 
 | 
 | 
 | 
    private void emitCurveTo(final float x1, final float y1,  | 
 | 
                             final float x2, final float y2,  | 
 | 
                             final float x3, final float y3)  | 
 | 
    { | 
 | 
        out.curveTo(x1, y1, x2, y2, x3, y3);  | 
 | 
    }  | 
 | 
 | 
 | 
    private void emitCurveToRev(final float x0, final float y0,  | 
 | 
                                final float x1, final float y1,  | 
 | 
                                final float x2, final float y2)  | 
 | 
    { | 
 | 
        reverse.pushCubic(x0, y0, x1, y1, x2, y2);  | 
 | 
    }  | 
 | 
 | 
 | 
    private void emitCurveTo(final float x0, final float y0,  | 
 | 
                             final float x1, final float y1,  | 
 | 
                             final float x2, final float y2,  | 
 | 
                             final float x3, final float y3, final boolean rev)  | 
 | 
    { | 
 | 
        if (rev) { | 
 | 
            reverse.pushCubic(x0, y0, x1, y1, x2, y2);  | 
 | 
        } else { | 
 | 
            out.curveTo(x1, y1, x2, y2, x3, y3);  | 
 | 
        }  | 
 | 
    }  | 
 | 
 | 
 | 
    private void emitClose() { | 
 | 
        out.closePath();  | 
 | 
    }  | 
 | 
 | 
 | 
    private void drawJoin(float pdx, float pdy,  | 
 | 
                          float x0, float y0,  | 
 | 
                          float dx, float dy,  | 
 | 
                          float omx, float omy,  | 
 | 
                          float mx, float my)  | 
 | 
    { | 
 | 
        if (prev != DRAWING_OP_TO) { | 
 | 
            emitMoveTo(x0 + mx, y0 + my);  | 
 | 
            this.sdx = dx;  | 
 | 
            this.sdy = dy;  | 
 | 
            this.smx = mx;  | 
 | 
            this.smy = my;  | 
 | 
        } else { | 
 | 
            boolean cw = isCW(pdx, pdy, dx, dy);  | 
 | 
            if (joinStyle == JOIN_MITER) { | 
 | 
                drawMiter(pdx, pdy, x0, y0, dx, dy, omx, omy, mx, my, cw);  | 
 | 
            } else if (joinStyle == JOIN_ROUND) { | 
 | 
                drawRoundJoin(x0, y0,  | 
 | 
                              omx, omy,  | 
 | 
                              mx, my, cw,  | 
 | 
                              ROUND_JOIN_THRESHOLD);  | 
 | 
            }  | 
 | 
            emitLineTo(x0, y0, !cw);  | 
 | 
        }  | 
 | 
        prev = DRAWING_OP_TO;  | 
 | 
    }  | 
 | 
 | 
 | 
    private static boolean within(final float x1, final float y1,  | 
 | 
                                  final float x2, final float y2,  | 
 | 
                                  final float ERR)  | 
 | 
    { | 
 | 
        assert ERR > 0 : "";  | 
 | 
        // compare taxicab distance. ERR will always be small, so using  | 
 | 
          | 
 | 
        return (Helpers.within(x1, x2, ERR) &&    | 
 | 
                Helpers.within(y1, y2, ERR));   | 
 | 
    }  | 
 | 
 | 
 | 
    private void getLineOffsets(float x1, float y1,  | 
 | 
                                float x2, float y2,  | 
 | 
                                float[] left, float[] right) { | 
 | 
        computeOffset(x2 - x1, y2 - y1, lineWidth2, offset0);  | 
 | 
        final float mx = offset0[0];  | 
 | 
        final float my = offset0[1];  | 
 | 
        left[0] = x1 + mx;  | 
 | 
        left[1] = y1 + my;  | 
 | 
        left[2] = x2 + mx;  | 
 | 
        left[3] = y2 + my;  | 
 | 
        right[0] = x1 - mx;  | 
 | 
        right[1] = y1 - my;  | 
 | 
        right[2] = x2 - mx;  | 
 | 
        right[3] = y2 - my;  | 
 | 
    }  | 
 | 
 | 
 | 
    private int computeOffsetCubic(float[] pts, final int off,  | 
 | 
                                   float[] leftOff, float[] rightOff)  | 
 | 
    { | 
 | 
        // if p1=p2 or p3=p4 it means that the derivative at the endpoint  | 
 | 
        // vanishes, which creates problems with computeOffset. Usually  | 
 | 
        // this happens when this stroker object is trying to winden  | 
 | 
        // a curve with a cusp. What happens is that curveTo splits  | 
 | 
        // the input curve at the cusp, and passes it to this function.  | 
 | 
        // because of inaccuracies in the splitting, we consider points  | 
 | 
          | 
 | 
        final float x1 = pts[off + 0], y1 = pts[off + 1];  | 
 | 
        final float x2 = pts[off + 2], y2 = pts[off + 3];  | 
 | 
        final float x3 = pts[off + 4], y3 = pts[off + 5];  | 
 | 
        final float x4 = pts[off + 6], y4 = pts[off + 7];  | 
 | 
 | 
 | 
        float dx4 = x4 - x3;  | 
 | 
        float dy4 = y4 - y3;  | 
 | 
        float dx1 = x2 - x1;  | 
 | 
        float dy1 = y2 - y1;  | 
 | 
 | 
 | 
        // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,  | 
 | 
          | 
 | 
        final boolean p1eqp2 = within(x1,y1,x2,y2, 6f * ulp(y2));  | 
 | 
        final boolean p3eqp4 = within(x3,y3,x4,y4, 6f * ulp(y4));  | 
 | 
        if (p1eqp2 && p3eqp4) { | 
 | 
            getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);  | 
 | 
            return 4;  | 
 | 
        } else if (p1eqp2) { | 
 | 
            dx1 = x3 - x1;  | 
 | 
            dy1 = y3 - y1;  | 
 | 
        } else if (p3eqp4) { | 
 | 
            dx4 = x4 - x2;  | 
 | 
            dy4 = y4 - y2;  | 
 | 
        }  | 
 | 
 | 
 | 
          | 
 | 
        float dotsq = (dx1 * dx4 + dy1 * dy4);  | 
 | 
        dotsq *= dotsq;  | 
 | 
        float l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4;  | 
 | 
        if (Helpers.within(dotsq, l1sq * l4sq, 4f * ulp(dotsq))) { | 
 | 
            getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);  | 
 | 
            return 4;  | 
 | 
        }  | 
 | 
 | 
 | 
//      What we're trying to do in this function is to approximate an ideal  | 
 | 
//      offset curve (call it I) of the input curve B using a bezier curve Bp.  | 
 | 
//      The constraints I use to get the equations are:  | 
 | 
//  | 
 | 
//      1. The computed curve Bp should go through I(0) and I(1). These are  | 
 | 
//      x1p, y1p, x4p, y4p, which are p1p and p4p. We still need to find  | 
 | 
//      4 variables: the x and y components of p2p and p3p (i.e. x2p, y2p, x3p, y3p).  | 
 | 
//  | 
 | 
//      2. Bp should have slope equal in absolute value to I at the endpoints. So,  | 
 | 
//      (by the way, the operator || in the comments below means "aligned with".  | 
 | 
//      It is defined on vectors, so when we say I'(0) || Bp'(0) we mean that  | 
 | 
//      vectors I'(0) and Bp'(0) are aligned, which is the same as saying  | 
 | 
//      that the tangent lines of I and Bp at 0 are parallel. Mathematically  | 
 | 
//      this means (I'(t) || Bp'(t)) <==> (I'(t) = c * Bp'(t)) where c is some  | 
 | 
//      nonzero constant.)  | 
 | 
//      I'(0) || Bp'(0) and I'(1) || Bp'(1). Obviously, I'(0) || B'(0) and  | 
 | 
//      I'(1) || B'(1); therefore, Bp'(0) || B'(0) and Bp'(1) || B'(1).  | 
 | 
//      We know that Bp'(0) || (p2p-p1p) and Bp'(1) || (p4p-p3p) and the same  | 
 | 
//      is true for any bezier curve; therefore, we get the equations  | 
 | 
//          (1) p2p = c1 * (p2-p1) + p1p  | 
 | 
//          (2) p3p = c2 * (p4-p3) + p4p  | 
 | 
//      We know p1p, p4p, p2, p1, p3, and p4; therefore, this reduces the number  | 
 | 
//      of unknowns from 4 to 2 (i.e. just c1 and c2).  | 
 | 
//      To eliminate these 2 unknowns we use the following constraint:  | 
 | 
//  | 
 | 
//      3. Bp(0.5) == I(0.5). Bp(0.5)=(x,y) and I(0.5)=(xi,yi), and I should note  | 
 | 
//      that I(0.5) is *the only* reason for computing dxm,dym. This gives us  | 
 | 
//          (3) Bp(0.5) = (p1p + 3 * (p2p + p3p) + p4p)/8, which is equivalent to  | 
 | 
//          (4) p2p + p3p = (Bp(0.5)*8 - p1p - p4p) / 3  | 
 | 
//      We can substitute (1) and (2) from above into (4) and we get:  | 
 | 
//          (5) c1*(p2-p1) + c2*(p4-p3) = (Bp(0.5)*8 - p1p - p4p)/3 - p1p - p4p  | 
 | 
//      which is equivalent to  | 
 | 
//          (6) c1*(p2-p1) + c2*(p4-p3) = (4/3) * (Bp(0.5) * 2 - p1p - p4p)  | 
 | 
//  | 
 | 
//      The right side of this is a 2D vector, and we know I(0.5), which gives us  | 
 | 
//      Bp(0.5), which gives us the value of the right side.  | 
 | 
//      The left side is just a matrix vector multiplication in disguise. It is  | 
 | 
//  | 
 | 
//      [x2-x1, x4-x3][c1]  | 
 | 
//      [y2-y1, y4-y3][c2]  | 
 | 
//      which, is equal to  | 
 | 
//      [dx1, dx4][c1]  | 
 | 
//      [dy1, dy4][c2]  | 
 | 
//      At this point we are left with a simple linear system and we solve it by  | 
 | 
//      getting the inverse of the matrix above. Then we use [c1,c2] to compute  | 
 | 
//      p2p and p3p.  | 
 | 
 | 
 | 
        float x = (x1 + 3f * (x2 + x3) + x4) / 8f;  | 
 | 
        float y = (y1 + 3f * (y2 + y3) + y4) / 8f;  | 
 | 
        // (dxm,dym) is some tangent of B at t=0.5. This means it's equal to  | 
 | 
          | 
 | 
        float dxm = x3 + x4 - x1 - x2, dym = y3 + y4 - y1 - y2;  | 
 | 
 | 
 | 
        // this computes the offsets at t=0, 0.5, 1, using the property that  | 
 | 
        // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to  | 
 | 
          | 
 | 
        computeOffset(dx1, dy1, lineWidth2, offset0);  | 
 | 
        computeOffset(dxm, dym, lineWidth2, offset1);  | 
 | 
        computeOffset(dx4, dy4, lineWidth2, offset2);  | 
 | 
        float x1p = x1 + offset0[0];   | 
 | 
        float y1p = y1 + offset0[1];   | 
 | 
        float xi  = x  + offset1[0];   | 
 | 
        float yi  = y  + offset1[1];   | 
 | 
        float x4p = x4 + offset2[0];   | 
 | 
        float y4p = y4 + offset2[1];   | 
 | 
 | 
 | 
        float invdet43 = 4f / (3f * (dx1 * dy4 - dy1 * dx4));  | 
 | 
 | 
 | 
        float two_pi_m_p1_m_p4x = 2f * xi - x1p - x4p;  | 
 | 
        float two_pi_m_p1_m_p4y = 2f * yi - y1p - y4p;  | 
 | 
        float c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);  | 
 | 
        float c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);  | 
 | 
 | 
 | 
        float x2p, y2p, x3p, y3p;  | 
 | 
        x2p = x1p + c1*dx1;  | 
 | 
        y2p = y1p + c1*dy1;  | 
 | 
        x3p = x4p + c2*dx4;  | 
 | 
        y3p = y4p + c2*dy4;  | 
 | 
 | 
 | 
        leftOff[0] = x1p; leftOff[1] = y1p;  | 
 | 
        leftOff[2] = x2p; leftOff[3] = y2p;  | 
 | 
        leftOff[4] = x3p; leftOff[5] = y3p;  | 
 | 
        leftOff[6] = x4p; leftOff[7] = y4p;  | 
 | 
 | 
 | 
        x1p = x1 - offset0[0]; y1p = y1 - offset0[1];  | 
 | 
        xi = xi - 2f * offset1[0]; yi = yi - 2f * offset1[1];  | 
 | 
        x4p = x4 - offset2[0]; y4p = y4 - offset2[1];  | 
 | 
 | 
 | 
        two_pi_m_p1_m_p4x = 2f * xi - x1p - x4p;  | 
 | 
        two_pi_m_p1_m_p4y = 2f * yi - y1p - y4p;  | 
 | 
        c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);  | 
 | 
        c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);  | 
 | 
 | 
 | 
        x2p = x1p + c1*dx1;  | 
 | 
        y2p = y1p + c1*dy1;  | 
 | 
        x3p = x4p + c2*dx4;  | 
 | 
        y3p = y4p + c2*dy4;  | 
 | 
 | 
 | 
        rightOff[0] = x1p; rightOff[1] = y1p;  | 
 | 
        rightOff[2] = x2p; rightOff[3] = y2p;  | 
 | 
        rightOff[4] = x3p; rightOff[5] = y3p;  | 
 | 
        rightOff[6] = x4p; rightOff[7] = y4p;  | 
 | 
        return 8;  | 
 | 
    }  | 
 | 
 | 
 | 
      | 
 | 
    private int computeOffsetQuad(float[] pts, final int off,  | 
 | 
                                  float[] leftOff, float[] rightOff)  | 
 | 
    { | 
 | 
        final float x1 = pts[off + 0], y1 = pts[off + 1];  | 
 | 
        final float x2 = pts[off + 2], y2 = pts[off + 3];  | 
 | 
        final float x3 = pts[off + 4], y3 = pts[off + 5];  | 
 | 
 | 
 | 
        final float dx3 = x3 - x2;  | 
 | 
        final float dy3 = y3 - y2;  | 
 | 
        final float dx1 = x2 - x1;  | 
 | 
        final float dy1 = y2 - y1;  | 
 | 
 | 
 | 
          | 
 | 
        computeOffset(dx1, dy1, lineWidth2, offset0);  | 
 | 
        computeOffset(dx3, dy3, lineWidth2, offset1);  | 
 | 
 | 
 | 
        leftOff[0]  = x1 + offset0[0]; leftOff[1]  = y1 + offset0[1];  | 
 | 
        leftOff[4]  = x3 + offset1[0]; leftOff[5]  = y3 + offset1[1];  | 
 | 
        rightOff[0] = x1 - offset0[0]; rightOff[1] = y1 - offset0[1];  | 
 | 
        rightOff[4] = x3 - offset1[0]; rightOff[5] = y3 - offset1[1];  | 
 | 
 | 
 | 
        float x1p = leftOff[0];   | 
 | 
        float y1p = leftOff[1];   | 
 | 
        float x3p = leftOff[4];   | 
 | 
        float y3p = leftOff[5];   | 
 | 
 | 
 | 
        // Corner cases:  | 
 | 
        // 1. If the two control vectors are parallel, we'll end up with NaN's  | 
 | 
        //    in leftOff (and rightOff in the body of the if below), so we'll  | 
 | 
        //    do getLineOffsets, which is right.  | 
 | 
        // 2. If the first or second two points are equal, then (dx1,dy1)==(0,0)  | 
 | 
        //    or (dx3,dy3)==(0,0), so (x1p, y1p)==(x1p+dx1, y1p+dy1)  | 
 | 
        //    or (x3p, y3p)==(x3p-dx3, y3p-dy3), which means that  | 
 | 
        //    computeIntersection will put NaN's in leftOff and right off, and  | 
 | 
          | 
 | 
        computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2);  | 
 | 
        float cx = leftOff[2];  | 
 | 
        float cy = leftOff[3];  | 
 | 
 | 
 | 
        if (!(isFinite(cx) && isFinite(cy))) { | 
 | 
              | 
 | 
            x1p = rightOff[0];  | 
 | 
            y1p = rightOff[1];  | 
 | 
            x3p = rightOff[4];  | 
 | 
            y3p = rightOff[5];  | 
 | 
            computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2);  | 
 | 
            cx = rightOff[2];  | 
 | 
            cy = rightOff[3];  | 
 | 
            if (!(isFinite(cx) && isFinite(cy))) { | 
 | 
                  | 
 | 
                getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);  | 
 | 
                return 4;  | 
 | 
            }  | 
 | 
              | 
 | 
            leftOff[2] = 2f * x2 - cx;  | 
 | 
            leftOff[3] = 2f * y2 - cy;  | 
 | 
            return 6;  | 
 | 
        }  | 
 | 
 | 
 | 
        // rightOff[2,3] = (x2,y2) - ((left_x2, left_y2) - (x2, y2))  | 
 | 
          | 
 | 
        rightOff[2] = 2f * x2 - cx;  | 
 | 
        rightOff[3] = 2f * y2 - cy;  | 
 | 
        return 6;  | 
 | 
    }  | 
 | 
 | 
 | 
    private static boolean isFinite(float x) { | 
 | 
        return (Float.NEGATIVE_INFINITY < x && x < Float.POSITIVE_INFINITY);  | 
 | 
    }  | 
 | 
 | 
 | 
    // If this class is compiled with ecj, then Hotspot crashes when OSR  | 
 | 
    // compiling this function. See bugs 7004570 and 6675699  | 
 | 
    // TODO: until those are fixed, we should work around that by  | 
 | 
    // manually inlining this into curveTo and quadTo.  | 
 | 
/******************************* WORKAROUND **********************************  | 
 | 
    private void somethingTo(final int type) { | 
 | 
        // need these so we can update the state at the end of this method  | 
 | 
        final float xf = middle[type-2], yf = middle[type-1];  | 
 | 
        float dxs = middle[2] - middle[0];  | 
 | 
        float dys = middle[3] - middle[1];  | 
 | 
        float dxf = middle[type - 2] - middle[type - 4];  | 
 | 
        float dyf = middle[type - 1] - middle[type - 3];  | 
 | 
        switch(type) { | 
 | 
        case 6:  | 
 | 
            if ((dxs == 0f && dys == 0f) ||  | 
 | 
                (dxf == 0f && dyf == 0f)) { | 
 | 
               dxs = dxf = middle[4] - middle[0];  | 
 | 
               dys = dyf = middle[5] - middle[1];  | 
 | 
            }  | 
 | 
            break;  | 
 | 
        case 8:  | 
 | 
            boolean p1eqp2 = (dxs == 0f && dys == 0f);  | 
 | 
            boolean p3eqp4 = (dxf == 0f && dyf == 0f);  | 
 | 
            if (p1eqp2) { | 
 | 
                dxs = middle[4] - middle[0];  | 
 | 
                dys = middle[5] - middle[1];  | 
 | 
                if (dxs == 0f && dys == 0f) { | 
 | 
                    dxs = middle[6] - middle[0];  | 
 | 
                    dys = middle[7] - middle[1];  | 
 | 
                }  | 
 | 
            }  | 
 | 
            if (p3eqp4) { | 
 | 
                dxf = middle[6] - middle[2];  | 
 | 
                dyf = middle[7] - middle[3];  | 
 | 
                if (dxf == 0f && dyf == 0f) { | 
 | 
                    dxf = middle[6] - middle[0];  | 
 | 
                    dyf = middle[7] - middle[1];  | 
 | 
                }  | 
 | 
            }  | 
 | 
        }  | 
 | 
        if (dxs == 0f && dys == 0f) { | 
 | 
            // this happens iff the "curve" is just a point  | 
 | 
            lineTo(middle[0], middle[1]);  | 
 | 
            return;  | 
 | 
        }  | 
 | 
        // if these vectors are too small, normalize them, to avoid future  | 
 | 
        // precision problems.  | 
 | 
        if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { | 
 | 
            float len = (float) sqrt(dxs*dxs + dys*dys);  | 
 | 
            dxs /= len;  | 
 | 
            dys /= len;  | 
 | 
        }  | 
 | 
        if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { | 
 | 
            float len = (float) sqrt(dxf*dxf + dyf*dyf);  | 
 | 
            dxf /= len;  | 
 | 
            dyf /= len;  | 
 | 
        }  | 
 | 
 | 
 | 
        computeOffset(dxs, dys, lineWidth2, offset0);  | 
 | 
        final float mx = offset0[0];  | 
 | 
        final float my = offset0[1];  | 
 | 
        drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, mx, my);  | 
 | 
 | 
 | 
        int nSplits = findSubdivPoints(curve, middle, subdivTs, type, lineWidth2);  | 
 | 
 | 
 | 
        int kind = 0;  | 
 | 
        BreakPtrIterator it = curve.breakPtsAtTs(middle, type, subdivTs, nSplits);  | 
 | 
        while(it.hasNext()) { | 
 | 
            int curCurveOff = it.next();  | 
 | 
 | 
 | 
            switch (type) { | 
 | 
            case 8:  | 
 | 
                kind = computeOffsetCubic(middle, curCurveOff, lp, rp);  | 
 | 
                break;  | 
 | 
            case 6:  | 
 | 
                kind = computeOffsetQuad(middle, curCurveOff, lp, rp);  | 
 | 
                break;  | 
 | 
            }  | 
 | 
            emitLineTo(lp[0], lp[1]);  | 
 | 
            switch(kind) { | 
 | 
            case 8:  | 
 | 
                emitCurveTo(lp[2], lp[3], lp[4], lp[5], lp[6], lp[7]);  | 
 | 
                emitCurveToRev(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5]);  | 
 | 
                break;  | 
 | 
            case 6:  | 
 | 
                emitQuadTo(lp[2], lp[3], lp[4], lp[5]);  | 
 | 
                emitQuadToRev(rp[0], rp[1], rp[2], rp[3]);  | 
 | 
                break;  | 
 | 
            case 4:  | 
 | 
                emitLineTo(lp[2], lp[3]);  | 
 | 
                emitLineTo(rp[0], rp[1], true);  | 
 | 
                break;  | 
 | 
            }  | 
 | 
            emitLineTo(rp[kind - 2], rp[kind - 1], true);  | 
 | 
        }  | 
 | 
 | 
 | 
        this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2;  | 
 | 
        this.cmy = (lp[kind - 1] - rp[kind - 1]) / 2;  | 
 | 
        this.cdx = dxf;  | 
 | 
        this.cdy = dyf;  | 
 | 
        this.cx0 = xf;  | 
 | 
        this.cy0 = yf;  | 
 | 
        this.prev = DRAWING_OP_TO;  | 
 | 
    }  | 
 | 
****************************** END WORKAROUND *******************************/  | 
 | 
 | 
 | 
    // finds values of t where the curve in pts should be subdivided in order  | 
 | 
    // to get good offset curves a distance of w away from the middle curve.  | 
 | 
      | 
 | 
    private static int findSubdivPoints(final Curve c, float[] pts, float[] ts,  | 
 | 
                                        final int type, final float w)  | 
 | 
    { | 
 | 
        final float x12 = pts[2] - pts[0];  | 
 | 
        final float y12 = pts[3] - pts[1];  | 
 | 
        // if the curve is already parallel to either axis we gain nothing  | 
 | 
          | 
 | 
        if (y12 != 0f && x12 != 0f) { | 
 | 
            // we rotate it so that the first vector in the control polygon is  | 
 | 
            // parallel to the x-axis. This will ensure that rotated quarter  | 
 | 
              | 
 | 
            final float hypot = (float) sqrt(x12 * x12 + y12 * y12);  | 
 | 
            final float cos = x12 / hypot;  | 
 | 
            final float sin = y12 / hypot;  | 
 | 
            final float x1 = cos * pts[0] + sin * pts[1];  | 
 | 
            final float y1 = cos * pts[1] - sin * pts[0];  | 
 | 
            final float x2 = cos * pts[2] + sin * pts[3];  | 
 | 
            final float y2 = cos * pts[3] - sin * pts[2];  | 
 | 
            final float x3 = cos * pts[4] + sin * pts[5];  | 
 | 
            final float y3 = cos * pts[5] - sin * pts[4];  | 
 | 
 | 
 | 
            switch(type) { | 
 | 
            case 8:  | 
 | 
                final float x4 = cos * pts[6] + sin * pts[7];  | 
 | 
                final float y4 = cos * pts[7] - sin * pts[6];  | 
 | 
                c.set(x1, y1, x2, y2, x3, y3, x4, y4);  | 
 | 
                break;  | 
 | 
            case 6:  | 
 | 
                c.set(x1, y1, x2, y2, x3, y3);  | 
 | 
                break;  | 
 | 
            default:  | 
 | 
            }  | 
 | 
        } else { | 
 | 
            c.set(pts, type);  | 
 | 
        }  | 
 | 
 | 
 | 
        int ret = 0;  | 
 | 
        // we subdivide at values of t such that the remaining rotated  | 
 | 
          | 
 | 
        ret += c.dxRoots(ts, ret);  | 
 | 
        ret += c.dyRoots(ts, ret);  | 
 | 
          | 
 | 
        if (type == 8) { | 
 | 
              | 
 | 
            ret += c.infPoints(ts, ret);  | 
 | 
        }  | 
 | 
 | 
 | 
        // now we must subdivide at points where one of the offset curves will have  | 
 | 
          | 
 | 
        ret += c.rootsOfROCMinusW(ts, ret, w, 0.0001f);  | 
 | 
 | 
 | 
        ret = Helpers.filterOutNotInAB(ts, 0, ret, 0.0001f, 0.9999f);  | 
 | 
        Helpers.isort(ts, 0, ret);  | 
 | 
        return ret;  | 
 | 
    }  | 
 | 
 | 
 | 
    @Override public void curveTo(float x1, float y1,  | 
 | 
                                  float x2, float y2,  | 
 | 
                                  float x3, float y3)  | 
 | 
    { | 
 | 
        final float[] mid = middle;  | 
 | 
 | 
 | 
        mid[0] = cx0; mid[1] = cy0;  | 
 | 
        mid[2] = x1;  mid[3] = y1;  | 
 | 
        mid[4] = x2;  mid[5] = y2;  | 
 | 
        mid[6] = x3;  mid[7] = y3;  | 
 | 
 | 
 | 
        // inlined version of somethingTo(8);  | 
 | 
        // See the TODO on somethingTo  | 
 | 
 | 
 | 
          | 
 | 
        final float xf = mid[6], yf = mid[7];  | 
 | 
        float dxs = mid[2] - mid[0];  | 
 | 
        float dys = mid[3] - mid[1];  | 
 | 
        float dxf = mid[6] - mid[4];  | 
 | 
        float dyf = mid[7] - mid[5];  | 
 | 
 | 
 | 
        boolean p1eqp2 = (dxs == 0f && dys == 0f);  | 
 | 
        boolean p3eqp4 = (dxf == 0f && dyf == 0f);  | 
 | 
        if (p1eqp2) { | 
 | 
            dxs = mid[4] - mid[0];  | 
 | 
            dys = mid[5] - mid[1];  | 
 | 
            if (dxs == 0f && dys == 0f) { | 
 | 
                dxs = mid[6] - mid[0];  | 
 | 
                dys = mid[7] - mid[1];  | 
 | 
            }  | 
 | 
        }  | 
 | 
        if (p3eqp4) { | 
 | 
            dxf = mid[6] - mid[2];  | 
 | 
            dyf = mid[7] - mid[3];  | 
 | 
            if (dxf == 0f && dyf == 0f) { | 
 | 
                dxf = mid[6] - mid[0];  | 
 | 
                dyf = mid[7] - mid[1];  | 
 | 
            }  | 
 | 
        }  | 
 | 
        if (dxs == 0f && dys == 0f) { | 
 | 
              | 
 | 
            lineTo(mid[0], mid[1]);  | 
 | 
            return;  | 
 | 
        }  | 
 | 
 | 
 | 
        // if these vectors are too small, normalize them, to avoid future  | 
 | 
          | 
 | 
        if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { | 
 | 
            float len = (float) sqrt(dxs*dxs + dys*dys);  | 
 | 
            dxs /= len;  | 
 | 
            dys /= len;  | 
 | 
        }  | 
 | 
        if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { | 
 | 
            float len = (float) sqrt(dxf*dxf + dyf*dyf);  | 
 | 
            dxf /= len;  | 
 | 
            dyf /= len;  | 
 | 
        }  | 
 | 
 | 
 | 
        computeOffset(dxs, dys, lineWidth2, offset0);  | 
 | 
        drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]);  | 
 | 
 | 
 | 
        int nSplits = findSubdivPoints(curve, mid, subdivTs, 8, lineWidth2);  | 
 | 
 | 
 | 
        final float[] l = lp;  | 
 | 
        final float[] r = rp;  | 
 | 
 | 
 | 
        int kind = 0;  | 
 | 
        BreakPtrIterator it = curve.breakPtsAtTs(mid, 8, subdivTs, nSplits);  | 
 | 
        while(it.hasNext()) { | 
 | 
            int curCurveOff = it.next();  | 
 | 
 | 
 | 
            kind = computeOffsetCubic(mid, curCurveOff, l, r);  | 
 | 
            emitLineTo(l[0], l[1]);  | 
 | 
 | 
 | 
            switch(kind) { | 
 | 
            case 8:  | 
 | 
                emitCurveTo(l[2], l[3], l[4], l[5], l[6], l[7]);  | 
 | 
                emitCurveToRev(r[0], r[1], r[2], r[3], r[4], r[5]);  | 
 | 
                break;  | 
 | 
            case 4:  | 
 | 
                emitLineTo(l[2], l[3]);  | 
 | 
                emitLineToRev(r[0], r[1]);  | 
 | 
                break;  | 
 | 
            default:  | 
 | 
            }  | 
 | 
            emitLineToRev(r[kind - 2], r[kind - 1]);  | 
 | 
        }  | 
 | 
 | 
 | 
        this.cmx = (l[kind - 2] - r[kind - 2]) / 2f;  | 
 | 
        this.cmy = (l[kind - 1] - r[kind - 1]) / 2f;  | 
 | 
        this.cdx = dxf;  | 
 | 
        this.cdy = dyf;  | 
 | 
        this.cx0 = xf;  | 
 | 
        this.cy0 = yf;  | 
 | 
        this.prev = DRAWING_OP_TO;  | 
 | 
    }  | 
 | 
 | 
 | 
    @Override public void quadTo(float x1, float y1, float x2, float y2) { | 
 | 
        final float[] mid = middle;  | 
 | 
 | 
 | 
        mid[0] = cx0; mid[1] = cy0;  | 
 | 
        mid[2] = x1;  mid[3] = y1;  | 
 | 
        mid[4] = x2;  mid[5] = y2;  | 
 | 
 | 
 | 
        // inlined version of somethingTo(8);  | 
 | 
        // See the TODO on somethingTo  | 
 | 
 | 
 | 
          | 
 | 
        final float xf = mid[4], yf = mid[5];  | 
 | 
        float dxs = mid[2] - mid[0];  | 
 | 
        float dys = mid[3] - mid[1];  | 
 | 
        float dxf = mid[4] - mid[2];  | 
 | 
        float dyf = mid[5] - mid[3];  | 
 | 
        if ((dxs == 0f && dys == 0f) || (dxf == 0f && dyf == 0f)) { | 
 | 
            dxs = dxf = mid[4] - mid[0];  | 
 | 
            dys = dyf = mid[5] - mid[1];  | 
 | 
        }  | 
 | 
        if (dxs == 0f && dys == 0f) { | 
 | 
              | 
 | 
            lineTo(mid[0], mid[1]);  | 
 | 
            return;  | 
 | 
        }  | 
 | 
        // if these vectors are too small, normalize them, to avoid future  | 
 | 
          | 
 | 
        if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { | 
 | 
            float len = (float) sqrt(dxs*dxs + dys*dys);  | 
 | 
            dxs /= len;  | 
 | 
            dys /= len;  | 
 | 
        }  | 
 | 
        if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { | 
 | 
            float len = (float) sqrt(dxf*dxf + dyf*dyf);  | 
 | 
            dxf /= len;  | 
 | 
            dyf /= len;  | 
 | 
        }  | 
 | 
 | 
 | 
        computeOffset(dxs, dys, lineWidth2, offset0);  | 
 | 
        drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]);  | 
 | 
 | 
 | 
        int nSplits = findSubdivPoints(curve, mid, subdivTs, 6, lineWidth2);  | 
 | 
 | 
 | 
        final float[] l = lp;  | 
 | 
        final float[] r = rp;  | 
 | 
 | 
 | 
        int kind = 0;  | 
 | 
        BreakPtrIterator it = curve.breakPtsAtTs(mid, 6, subdivTs, nSplits);  | 
 | 
        while(it.hasNext()) { | 
 | 
            int curCurveOff = it.next();  | 
 | 
 | 
 | 
            kind = computeOffsetQuad(mid, curCurveOff, l, r);  | 
 | 
            emitLineTo(l[0], l[1]);  | 
 | 
 | 
 | 
            switch(kind) { | 
 | 
            case 6:  | 
 | 
                emitQuadTo(l[2], l[3], l[4], l[5]);  | 
 | 
                emitQuadToRev(r[0], r[1], r[2], r[3]);  | 
 | 
                break;  | 
 | 
            case 4:  | 
 | 
                emitLineTo(l[2], l[3]);  | 
 | 
                emitLineToRev(r[0], r[1]);  | 
 | 
                break;  | 
 | 
            default:  | 
 | 
            }  | 
 | 
            emitLineToRev(r[kind - 2], r[kind - 1]);  | 
 | 
        }  | 
 | 
 | 
 | 
        this.cmx = (l[kind - 2] - r[kind - 2]) / 2f;  | 
 | 
        this.cmy = (l[kind - 1] - r[kind - 1]) / 2f;  | 
 | 
        this.cdx = dxf;  | 
 | 
        this.cdy = dyf;  | 
 | 
        this.cx0 = xf;  | 
 | 
        this.cy0 = yf;  | 
 | 
        this.prev = DRAWING_OP_TO;  | 
 | 
    }  | 
 | 
 | 
 | 
    @Override public long getNativeConsumer() { | 
 | 
        throw new InternalError("Stroker doesn't use a native consumer"); | 
 | 
    }  | 
 | 
 | 
 | 
    // a stack of polynomial curves where each curve shares endpoints with  | 
 | 
      | 
 | 
    static final class PolyStack { | 
 | 
        private static final byte TYPE_LINETO  = (byte) 0;  | 
 | 
        private static final byte TYPE_QUADTO  = (byte) 1;  | 
 | 
        private static final byte TYPE_CUBICTO = (byte) 2;  | 
 | 
 | 
 | 
        float[] curves;  | 
 | 
        int end;  | 
 | 
        byte[] curveTypes;  | 
 | 
        int numCurves;  | 
 | 
 | 
 | 
          | 
 | 
        final RendererContext rdrCtx;  | 
 | 
 | 
 | 
        // per-thread initial arrays (large enough to satisfy most usages: 8192)  | 
 | 
        // +1 to avoid recycling in Helpers.widenArray()  | 
 | 
        private final float[] curves_initial = new float[INITIAL_LARGE_ARRAY + 1];   | 
 | 
        private final byte[] curveTypes_initial = new byte[INITIAL_LARGE_ARRAY + 1];   | 
 | 
 | 
 | 
          | 
 | 
        int curveTypesUseMark;  | 
 | 
        int curvesUseMark;  | 
 | 
 | 
 | 
          | 
 | 
 | 
 | 
 | 
 | 
         */  | 
 | 
        PolyStack(final RendererContext rdrCtx) { | 
 | 
            this.rdrCtx = rdrCtx;  | 
 | 
 | 
 | 
            curves = curves_initial;  | 
 | 
            curveTypes = curveTypes_initial;  | 
 | 
            end = 0;  | 
 | 
            numCurves = 0;  | 
 | 
 | 
 | 
            if (doStats) { | 
 | 
                curveTypesUseMark = 0;  | 
 | 
                curvesUseMark = 0;  | 
 | 
            }  | 
 | 
        }  | 
 | 
 | 
 | 
          | 
 | 
 | 
 | 
 | 
 | 
         */  | 
 | 
        void dispose() { | 
 | 
            end = 0;  | 
 | 
            numCurves = 0;  | 
 | 
 | 
 | 
            if (doStats) { | 
 | 
                RendererContext.stats.stat_rdr_poly_stack_types  | 
 | 
                    .add(curveTypesUseMark);  | 
 | 
                RendererContext.stats.stat_rdr_poly_stack_curves  | 
 | 
                    .add(curvesUseMark);  | 
 | 
                  | 
 | 
                curveTypesUseMark = 0;  | 
 | 
                curvesUseMark = 0;  | 
 | 
            }  | 
 | 
 | 
 | 
            // Return arrays:  | 
 | 
              | 
 | 
            if (curves != curves_initial) { | 
 | 
                rdrCtx.putDirtyFloatArray(curves);  | 
 | 
                curves = curves_initial;  | 
 | 
            }  | 
 | 
 | 
 | 
            if (curveTypes != curveTypes_initial) { | 
 | 
                rdrCtx.putDirtyByteArray(curveTypes);  | 
 | 
                curveTypes = curveTypes_initial;  | 
 | 
            }  | 
 | 
        }  | 
 | 
 | 
 | 
        private void ensureSpace(final int n) { | 
 | 
              | 
 | 
            if (curves.length - end < n) { | 
 | 
                if (doStats) { | 
 | 
                    RendererContext.stats.stat_array_stroker_polystack_curves  | 
 | 
                        .add(end + n);  | 
 | 
                }  | 
 | 
                curves = rdrCtx.widenDirtyFloatArray(curves, end, end + n);  | 
 | 
            }  | 
 | 
            if (curveTypes.length <= numCurves) { | 
 | 
                if (doStats) { | 
 | 
                    RendererContext.stats.stat_array_stroker_polystack_curveTypes  | 
 | 
                        .add(numCurves + 1);  | 
 | 
                }  | 
 | 
                curveTypes = rdrCtx.widenDirtyByteArray(curveTypes,  | 
 | 
                                                        numCurves,  | 
 | 
                                                        numCurves + 1);  | 
 | 
            }  | 
 | 
        }  | 
 | 
 | 
 | 
        void pushCubic(float x0, float y0,  | 
 | 
                       float x1, float y1,  | 
 | 
                       float x2, float y2)  | 
 | 
        { | 
 | 
            ensureSpace(6);  | 
 | 
            curveTypes[numCurves++] = TYPE_CUBICTO;  | 
 | 
              | 
 | 
            final float[] _curves = curves;  | 
 | 
            int e = end;  | 
 | 
            _curves[e++] = x2;    _curves[e++] = y2;  | 
 | 
            _curves[e++] = x1;    _curves[e++] = y1;  | 
 | 
            _curves[e++] = x0;    _curves[e++] = y0;  | 
 | 
            end = e;  | 
 | 
        }  | 
 | 
 | 
 | 
        void pushQuad(float x0, float y0,  | 
 | 
                      float x1, float y1)  | 
 | 
        { | 
 | 
            ensureSpace(4);  | 
 | 
            curveTypes[numCurves++] = TYPE_QUADTO;  | 
 | 
            final float[] _curves = curves;  | 
 | 
            int e = end;  | 
 | 
            _curves[e++] = x1;    _curves[e++] = y1;  | 
 | 
            _curves[e++] = x0;    _curves[e++] = y0;  | 
 | 
            end = e;  | 
 | 
        }  | 
 | 
 | 
 | 
        void pushLine(float x, float y) { | 
 | 
            ensureSpace(2);  | 
 | 
            curveTypes[numCurves++] = TYPE_LINETO;  | 
 | 
            curves[end++] = x;    curves[end++] = y;  | 
 | 
        }  | 
 | 
 | 
 | 
        void popAll(PathConsumer2D io) { | 
 | 
            if (doStats) { | 
 | 
                  | 
 | 
                if (numCurves > curveTypesUseMark) { | 
 | 
                    curveTypesUseMark = numCurves;  | 
 | 
                }  | 
 | 
                if (end > curvesUseMark) { | 
 | 
                    curvesUseMark = end;  | 
 | 
                }  | 
 | 
            }  | 
 | 
            final byte[]  _curveTypes = curveTypes;  | 
 | 
            final float[] _curves = curves;  | 
 | 
            int nc = numCurves;  | 
 | 
            int e  = end;  | 
 | 
 | 
 | 
            while (nc != 0) { | 
 | 
                switch(_curveTypes[--nc]) { | 
 | 
                case TYPE_LINETO:  | 
 | 
                    e -= 2;  | 
 | 
                    io.lineTo(_curves[e], _curves[e+1]);  | 
 | 
                    continue;  | 
 | 
                case TYPE_QUADTO:  | 
 | 
                    e -= 4;  | 
 | 
                    io.quadTo(_curves[e+0], _curves[e+1],  | 
 | 
                              _curves[e+2], _curves[e+3]);  | 
 | 
                    continue;  | 
 | 
                case TYPE_CUBICTO:  | 
 | 
                    e -= 6;  | 
 | 
                    io.curveTo(_curves[e+0], _curves[e+1],  | 
 | 
                               _curves[e+2], _curves[e+3],  | 
 | 
                               _curves[e+4], _curves[e+5]);  | 
 | 
                    continue;  | 
 | 
                default:  | 
 | 
                }  | 
 | 
            }  | 
 | 
            numCurves = 0;  | 
 | 
            end = 0;  | 
 | 
        }  | 
 | 
 | 
 | 
        @Override  | 
 | 
        public String toString() { | 
 | 
            String ret = "";  | 
 | 
            int nc = numCurves;  | 
 | 
            int e  = end;  | 
 | 
            int len;  | 
 | 
            while (nc != 0) { | 
 | 
                switch(curveTypes[--nc]) { | 
 | 
                case TYPE_LINETO:  | 
 | 
                    len = 2;  | 
 | 
                    ret += "line: ";  | 
 | 
                    break;  | 
 | 
                case TYPE_QUADTO:  | 
 | 
                    len = 4;  | 
 | 
                    ret += "quad: ";  | 
 | 
                    break;  | 
 | 
                case TYPE_CUBICTO:  | 
 | 
                    len = 6;  | 
 | 
                    ret += "cubic: ";  | 
 | 
                    break;  | 
 | 
                default:  | 
 | 
                    len = 0;  | 
 | 
                }  | 
 | 
                e -= len;  | 
 | 
                ret += Arrays.toString(Arrays.copyOfRange(curves, e, e+len))  | 
 | 
                                       + "\n";  | 
 | 
            }  | 
 | 
            return ret;  | 
 | 
        }  | 
 | 
    }  | 
 | 
}  |