/* |
|
* Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved. |
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
* |
|
* This code is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License version 2 only, as |
|
* published by the Free Software Foundation. Oracle designates this |
|
* particular file as subject to the "Classpath" exception as provided |
|
* by Oracle in the LICENSE file that accompanied this code. |
|
* |
|
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
* version 2 for more details (a copy is included in the LICENSE file that |
|
* accompanied this code). |
|
* |
|
* You should have received a copy of the GNU General Public License version |
|
* 2 along with this work; if not, write to the Free Software Foundation, |
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
* |
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
* or visit www.oracle.com if you need additional information or have any |
|
* questions. |
|
*/ |
|
package java.util.stream; |
|
import java.util.AbstractMap; |
|
import java.util.AbstractSet; |
|
import java.util.ArrayList; |
|
import java.util.Arrays; |
|
import java.util.Collection; |
|
import java.util.Collections; |
|
import java.util.Comparator; |
|
import java.util.DoubleSummaryStatistics; |
|
import java.util.EnumSet; |
|
import java.util.HashMap; |
|
import java.util.HashSet; |
|
import java.util.IntSummaryStatistics; |
|
import java.util.Iterator; |
|
import java.util.List; |
|
import java.util.LongSummaryStatistics; |
|
import java.util.Map; |
|
import java.util.Objects; |
|
import java.util.Optional; |
|
import java.util.Set; |
|
import java.util.StringJoiner; |
|
import java.util.concurrent.ConcurrentHashMap; |
|
import java.util.concurrent.ConcurrentMap; |
|
import java.util.function.BiConsumer; |
|
import java.util.function.BiFunction; |
|
import java.util.function.BinaryOperator; |
|
import java.util.function.Consumer; |
|
import java.util.function.Function; |
|
import java.util.function.Predicate; |
|
import java.util.function.Supplier; |
|
import java.util.function.ToDoubleFunction; |
|
import java.util.function.ToIntFunction; |
|
import java.util.function.ToLongFunction; |
|
/** |
|
* Implementations of {@link Collector} that implement various useful reduction |
|
* operations, such as accumulating elements into collections, summarizing |
|
* elements according to various criteria, etc. |
|
* |
|
* <p>The following are examples of using the predefined collectors to perform |
|
* common mutable reduction tasks: |
|
* |
|
* <pre>{@code |
|
* // Accumulate names into a List |
|
* List<String> list = people.stream().map(Person::getName).collect(Collectors.toList()); |
|
* |
|
* // Accumulate names into a TreeSet |
|
* Set<String> set = people.stream().map(Person::getName).collect(Collectors.toCollection(TreeSet::new)); |
|
* |
|
* // Convert elements to strings and concatenate them, separated by commas |
|
* String joined = things.stream() |
|
* .map(Object::toString) |
|
* .collect(Collectors.joining(", ")); |
|
* |
|
* // Compute sum of salaries of employee |
|
* int total = employees.stream() |
|
* .collect(Collectors.summingInt(Employee::getSalary))); |
|
* |
|
* // Group employees by department |
|
* Map<Department, List<Employee>> byDept |
|
* = employees.stream() |
|
* .collect(Collectors.groupingBy(Employee::getDepartment)); |
|
* |
|
* // Compute sum of salaries by department |
|
* Map<Department, Integer> totalByDept |
|
* = employees.stream() |
|
* .collect(Collectors.groupingBy(Employee::getDepartment, |
|
* Collectors.summingInt(Employee::getSalary))); |
|
* |
|
* // Partition students into passing and failing |
|
* Map<Boolean, List<Student>> passingFailing = |
|
* students.stream() |
|
* .collect(Collectors.partitioningBy(s -> s.getGrade() >= PASS_THRESHOLD)); |
|
* |
|
* }</pre> |
|
* |
|
* @since 1.8 |
|
*/ |
|
public final class Collectors { |
|
static final Set<Collector.Characteristics> CH_CONCURRENT_ID |
|
= Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.CONCURRENT, |
|
Collector.Characteristics.UNORDERED, |
|
Collector.Characteristics.IDENTITY_FINISH)); |
|
static final Set<Collector.Characteristics> CH_CONCURRENT_NOID |
|
= Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.CONCURRENT, |
|
Collector.Characteristics.UNORDERED)); |
|
static final Set<Collector.Characteristics> CH_ID |
|
= Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.IDENTITY_FINISH)); |
|
static final Set<Collector.Characteristics> CH_UNORDERED_ID |
|
= Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.UNORDERED, |
|
Collector.Characteristics.IDENTITY_FINISH)); |
|
static final Set<Collector.Characteristics> CH_NOID = Collections.emptySet(); |
|
private Collectors() { } |
|
/** |
|
* Returns a merge function, suitable for use in |
|
* {@link Map#merge(Object, Object, BiFunction) Map.merge()} or |
|
* {@link #toMap(Function, Function, BinaryOperator) toMap()}, which always |
|
* throws {@code IllegalStateException}. This can be used to enforce the |
|
* assumption that the elements being collected are distinct. |
|
* |
|
* @param <T> the type of input arguments to the merge function |
|
* @return a merge function which always throw {@code IllegalStateException} |
|
*/ |
|
private static <T> BinaryOperator<T> throwingMerger() { |
|
return (u,v) -> { throw new IllegalStateException(String.format("Duplicate key %s", u)); }; |
|
} |
|
@SuppressWarnings("unchecked") |
|
private static <I, R> Function<I, R> castingIdentity() { |
|
return i -> (R) i; |
|
} |
|
/** |
|
* Simple implementation class for {@code Collector}. |
|
* |
|
* @param <T> the type of elements to be collected |
|
* @param <R> the type of the result |
|
*/ |
|
static class CollectorImpl<T, A, R> implements Collector<T, A, R> { |
|
private final Supplier<A> supplier; |
|
private final BiConsumer<A, T> accumulator; |
|
private final BinaryOperator<A> combiner; |
|
private final Function<A, R> finisher; |
|
private final Set<Characteristics> characteristics; |
|
CollectorImpl(Supplier<A> supplier, |
|
BiConsumer<A, T> accumulator, |
|
BinaryOperator<A> combiner, |
|
Function<A,R> finisher, |
|
Set<Characteristics> characteristics) { |
|
this.supplier = supplier; |
|
this.accumulator = accumulator; |
|
this.combiner = combiner; |
|
this.finisher = finisher; |
|
this.characteristics = characteristics; |
|
} |
|
CollectorImpl(Supplier<A> supplier, |
|
BiConsumer<A, T> accumulator, |
|
BinaryOperator<A> combiner, |
|
Set<Characteristics> characteristics) { |
|
this(supplier, accumulator, combiner, castingIdentity(), characteristics); |
|
} |
|
@Override |
|
public BiConsumer<A, T> accumulator() { |
|
return accumulator; |
|
} |
|
@Override |
|
public Supplier<A> supplier() { |
|
return supplier; |
|
} |
|
@Override |
|
public BinaryOperator<A> combiner() { |
|
return combiner; |
|
} |
|
@Override |
|
public Function<A, R> finisher() { |
|
return finisher; |
|
} |
|
@Override |
|
public Set<Characteristics> characteristics() { |
|
return characteristics; |
|
} |
|
} |
|
/** |
|
* Returns a {@code Collector} that accumulates the input elements into a |
|
* new {@code Collection}, in encounter order. The {@code Collection} is |
|
* created by the provided factory. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <C> the type of the resulting {@code Collection} |
|
* @param collectionFactory a {@code Supplier} which returns a new, empty |
|
* {@code Collection} of the appropriate type |
|
* @return a {@code Collector} which collects all the input elements into a |
|
* {@code Collection}, in encounter order |
|
*/ |
|
public static <T, C extends Collection<T>> |
|
Collector<T, ?, C> toCollection(Supplier<C> collectionFactory) { |
|
return new CollectorImpl<>(collectionFactory, Collection<T>::add, |
|
(r1, r2) -> { r1.addAll(r2); return r1; }, |
|
CH_ID); |
|
} |
|
/** |
|
* Returns a {@code Collector} that accumulates the input elements into a |
|
* new {@code List}. There are no guarantees on the type, mutability, |
|
* serializability, or thread-safety of the {@code List} returned; if more |
|
* control over the returned {@code List} is required, use {@link #toCollection(Supplier)}. |
|
* |
|
* @param <T> the type of the input elements |
|
* @return a {@code Collector} which collects all the input elements into a |
|
* {@code List}, in encounter order |
|
*/ |
|
public static <T> |
|
Collector<T, ?, List<T>> toList() { |
|
return new CollectorImpl<>((Supplier<List<T>>) ArrayList::new, List::add, |
|
(left, right) -> { left.addAll(right); return left; }, |
|
CH_ID); |
|
} |
|
/** |
|
* Returns a {@code Collector} that accumulates the input elements into a |
|
* new {@code Set}. There are no guarantees on the type, mutability, |
|
* serializability, or thread-safety of the {@code Set} returned; if more |
|
* control over the returned {@code Set} is required, use |
|
* {@link #toCollection(Supplier)}. |
|
* |
|
* <p>This is an {@link Collector.Characteristics#UNORDERED unordered} |
|
* Collector. |
|
* |
|
* @param <T> the type of the input elements |
|
* @return a {@code Collector} which collects all the input elements into a |
|
* {@code Set} |
|
*/ |
|
public static <T> |
|
Collector<T, ?, Set<T>> toSet() { |
|
return new CollectorImpl<>((Supplier<Set<T>>) HashSet::new, Set::add, |
|
(left, right) -> { left.addAll(right); return left; }, |
|
CH_UNORDERED_ID); |
|
} |
|
/** |
|
* Returns a {@code Collector} that concatenates the input elements into a |
|
* {@code String}, in encounter order. |
|
* |
|
* @return a {@code Collector} that concatenates the input elements into a |
|
* {@code String}, in encounter order |
|
*/ |
|
public static Collector<CharSequence, ?, String> joining() { |
|
return new CollectorImpl<CharSequence, StringBuilder, String>( |
|
StringBuilder::new, StringBuilder::append, |
|
(r1, r2) -> { r1.append(r2); return r1; }, |
|
StringBuilder::toString, CH_NOID); |
|
} |
|
/** |
|
* Returns a {@code Collector} that concatenates the input elements, |
|
* separated by the specified delimiter, in encounter order. |
|
* |
|
* @param delimiter the delimiter to be used between each element |
|
* @return A {@code Collector} which concatenates CharSequence elements, |
|
* separated by the specified delimiter, in encounter order |
|
*/ |
|
public static Collector<CharSequence, ?, String> joining(CharSequence delimiter) { |
|
return joining(delimiter, "", ""); |
|
} |
|
/** |
|
* Returns a {@code Collector} that concatenates the input elements, |
|
* separated by the specified delimiter, with the specified prefix and |
|
* suffix, in encounter order. |
|
* |
|
* @param delimiter the delimiter to be used between each element |
|
* @param prefix the sequence of characters to be used at the beginning |
|
* of the joined result |
|
* @param suffix the sequence of characters to be used at the end |
|
* of the joined result |
|
* @return A {@code Collector} which concatenates CharSequence elements, |
|
* separated by the specified delimiter, in encounter order |
|
*/ |
|
public static Collector<CharSequence, ?, String> joining(CharSequence delimiter, |
|
CharSequence prefix, |
|
CharSequence suffix) { |
|
return new CollectorImpl<>( |
|
() -> new StringJoiner(delimiter, prefix, suffix), |
|
StringJoiner::add, StringJoiner::merge, |
|
StringJoiner::toString, CH_NOID); |
|
} |
|
/** |
|
* {@code BinaryOperator<Map>} that merges the contents of its right |
|
* argument into its left argument, using the provided merge function to |
|
* handle duplicate keys. |
|
* |
|
* @param <K> type of the map keys |
|
* @param <V> type of the map values |
|
* @param <M> type of the map |
|
* @param mergeFunction A merge function suitable for |
|
* {@link Map#merge(Object, Object, BiFunction) Map.merge()} |
|
* @return a merge function for two maps |
|
*/ |
|
private static <K, V, M extends Map<K,V>> |
|
BinaryOperator<M> mapMerger(BinaryOperator<V> mergeFunction) { |
|
return (m1, m2) -> { |
|
for (Map.Entry<K,V> e : m2.entrySet()) |
|
m1.merge(e.getKey(), e.getValue(), mergeFunction); |
|
return m1; |
|
}; |
|
} |
|
/** |
|
* Adapts a {@code Collector} accepting elements of type {@code U} to one |
|
* accepting elements of type {@code T} by applying a mapping function to |
|
* each input element before accumulation. |
|
* |
|
* @apiNote |
|
* The {@code mapping()} collectors are most useful when used in a |
|
* multi-level reduction, such as downstream of a {@code groupingBy} or |
|
* {@code partitioningBy}. For example, given a stream of |
|
* {@code Person}, to accumulate the set of last names in each city: |
|
* <pre>{@code |
|
* Map<City, Set<String>> lastNamesByCity |
|
* = people.stream().collect(groupingBy(Person::getCity, |
|
* mapping(Person::getLastName, toSet()))); |
|
* }</pre> |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <U> type of elements accepted by downstream collector |
|
* @param <A> intermediate accumulation type of the downstream collector |
|
* @param <R> result type of collector |
|
* @param mapper a function to be applied to the input elements |
|
* @param downstream a collector which will accept mapped values |
|
* @return a collector which applies the mapping function to the input |
|
* elements and provides the mapped results to the downstream collector |
|
*/ |
|
public static <T, U, A, R> |
|
Collector<T, ?, R> mapping(Function<? super T, ? extends U> mapper, |
|
Collector<? super U, A, R> downstream) { |
|
BiConsumer<A, ? super U> downstreamAccumulator = downstream.accumulator(); |
|
return new CollectorImpl<>(downstream.supplier(), |
|
(r, t) -> downstreamAccumulator.accept(r, mapper.apply(t)), |
|
downstream.combiner(), downstream.finisher(), |
|
downstream.characteristics()); |
|
} |
|
/** |
|
* Adapts a {@code Collector} to perform an additional finishing |
|
* transformation. For example, one could adapt the {@link #toList()} |
|
* collector to always produce an immutable list with: |
|
* <pre>{@code |
|
* List<String> people |
|
* = people.stream().collect(collectingAndThen(toList(), Collections::unmodifiableList)); |
|
* }</pre> |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <A> intermediate accumulation type of the downstream collector |
|
* @param <R> result type of the downstream collector |
|
* @param <RR> result type of the resulting collector |
|
* @param downstream a collector |
|
* @param finisher a function to be applied to the final result of the downstream collector |
|
* @return a collector which performs the action of the downstream collector, |
|
* followed by an additional finishing step |
|
*/ |
|
public static<T,A,R,RR> Collector<T,A,RR> collectingAndThen(Collector<T,A,R> downstream, |
|
Function<R,RR> finisher) { |
|
Set<Collector.Characteristics> characteristics = downstream.characteristics(); |
|
if (characteristics.contains(Collector.Characteristics.IDENTITY_FINISH)) { |
|
if (characteristics.size() == 1) |
|
characteristics = Collectors.CH_NOID; |
|
else { |
|
characteristics = EnumSet.copyOf(characteristics); |
|
characteristics.remove(Collector.Characteristics.IDENTITY_FINISH); |
|
characteristics = Collections.unmodifiableSet(characteristics); |
|
} |
|
} |
|
return new CollectorImpl<>(downstream.supplier(), |
|
downstream.accumulator(), |
|
downstream.combiner(), |
|
downstream.finisher().andThen(finisher), |
|
characteristics); |
|
} |
|
/** |
|
* Returns a {@code Collector} accepting elements of type {@code T} that |
|
* counts the number of input elements. If no elements are present, the |
|
* result is 0. |
|
* |
|
* @implSpec |
|
* This produces a result equivalent to: |
|
* <pre>{@code |
|
* reducing(0L, e -> 1L, Long::sum) |
|
* }</pre> |
|
* |
|
* @param <T> the type of the input elements |
|
* @return a {@code Collector} that counts the input elements |
|
*/ |
|
public static <T> Collector<T, ?, Long> |
|
counting() { |
|
return reducing(0L, e -> 1L, Long::sum); |
|
} |
|
/** |
|
* Returns a {@code Collector} that produces the minimal element according |
|
* to a given {@code Comparator}, described as an {@code Optional<T>}. |
|
* |
|
* @implSpec |
|
* This produces a result equivalent to: |
|
* <pre>{@code |
|
* reducing(BinaryOperator.minBy(comparator)) |
|
* }</pre> |
|
* |
|
* @param <T> the type of the input elements |
|
* @param comparator a {@code Comparator} for comparing elements |
|
* @return a {@code Collector} that produces the minimal value |
|
*/ |
|
public static <T> Collector<T, ?, Optional<T>> |
|
minBy(Comparator<? super T> comparator) { |
|
return reducing(BinaryOperator.minBy(comparator)); |
|
} |
|
/** |
|
* Returns a {@code Collector} that produces the maximal element according |
|
* to a given {@code Comparator}, described as an {@code Optional<T>}. |
|
* |
|
* @implSpec |
|
* This produces a result equivalent to: |
|
* <pre>{@code |
|
* reducing(BinaryOperator.maxBy(comparator)) |
|
* }</pre> |
|
* |
|
* @param <T> the type of the input elements |
|
* @param comparator a {@code Comparator} for comparing elements |
|
* @return a {@code Collector} that produces the maximal value |
|
*/ |
|
public static <T> Collector<T, ?, Optional<T>> |
|
maxBy(Comparator<? super T> comparator) { |
|
return reducing(BinaryOperator.maxBy(comparator)); |
|
} |
|
/** |
|
* Returns a {@code Collector} that produces the sum of a integer-valued |
|
* function applied to the input elements. If no elements are present, |
|
* the result is 0. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param mapper a function extracting the property to be summed |
|
* @return a {@code Collector} that produces the sum of a derived property |
|
*/ |
|
public static <T> Collector<T, ?, Integer> |
|
summingInt(ToIntFunction<? super T> mapper) { |
|
return new CollectorImpl<>( |
|
() -> new int[1], |
|
(a, t) -> { a[0] += mapper.applyAsInt(t); }, |
|
(a, b) -> { a[0] += b[0]; return a; }, |
|
a -> a[0], CH_NOID); |
|
} |
|
/** |
|
* Returns a {@code Collector} that produces the sum of a long-valued |
|
* function applied to the input elements. If no elements are present, |
|
* the result is 0. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param mapper a function extracting the property to be summed |
|
* @return a {@code Collector} that produces the sum of a derived property |
|
*/ |
|
public static <T> Collector<T, ?, Long> |
|
summingLong(ToLongFunction<? super T> mapper) { |
|
return new CollectorImpl<>( |
|
() -> new long[1], |
|
(a, t) -> { a[0] += mapper.applyAsLong(t); }, |
|
(a, b) -> { a[0] += b[0]; return a; }, |
|
a -> a[0], CH_NOID); |
|
} |
|
/** |
|
* Returns a {@code Collector} that produces the sum of a double-valued |
|
* function applied to the input elements. If no elements are present, |
|
* the result is 0. |
|
* |
|
* <p>The sum returned can vary depending upon the order in which |
|
* values are recorded, due to accumulated rounding error in |
|
* addition of values of differing magnitudes. Values sorted by increasing |
|
* absolute magnitude tend to yield more accurate results. If any recorded |
|
* value is a {@code NaN} or the sum is at any point a {@code NaN} then the |
|
* sum will be {@code NaN}. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param mapper a function extracting the property to be summed |
|
* @return a {@code Collector} that produces the sum of a derived property |
|
*/ |
|
public static <T> Collector<T, ?, Double> |
|
summingDouble(ToDoubleFunction<? super T> mapper) { |
|
/* |
|
* In the arrays allocated for the collect operation, index 0 |
|
* holds the high-order bits of the running sum, index 1 holds |
|
* the low-order bits of the sum computed via compensated |
|
* summation, and index 2 holds the simple sum used to compute |
|
* the proper result if the stream contains infinite values of |
|
* the same sign. |
|
*/ |
|
return new CollectorImpl<>( |
|
() -> new double[3], |
|
(a, t) -> { sumWithCompensation(a, mapper.applyAsDouble(t)); |
|
a[2] += mapper.applyAsDouble(t);}, |
|
(a, b) -> { sumWithCompensation(a, b[0]); |
|
a[2] += b[2]; |
|
return sumWithCompensation(a, b[1]); }, |
|
a -> computeFinalSum(a), |
|
CH_NOID); |
|
} |
|
/** |
|
* Incorporate a new double value using Kahan summation / |
|
* compensation summation. |
|
* |
|
* High-order bits of the sum are in intermediateSum[0], low-order |
|
* bits of the sum are in intermediateSum[1], any additional |
|
* elements are application-specific. |
|
* |
|
* @param intermediateSum the high-order and low-order words of the intermediate sum |
|
* @param value the name value to be included in the running sum |
|
*/ |
|
static double[] sumWithCompensation(double[] intermediateSum, double value) { |
|
double tmp = value - intermediateSum[1]; |
|
double sum = intermediateSum[0]; |
|
double velvel = sum + tmp; // Little wolf of rounding error |
|
intermediateSum[1] = (velvel - sum) - tmp; |
|
intermediateSum[0] = velvel; |
|
return intermediateSum; |
|
} |
|
/** |
|
* If the compensated sum is spuriously NaN from accumulating one |
|
* or more same-signed infinite values, return the |
|
* correctly-signed infinity stored in the simple sum. |
|
*/ |
|
static double computeFinalSum(double[] summands) { |
|
// Better error bounds to add both terms as the final sum |
|
double tmp = summands[0] + summands[1]; |
|
double simpleSum = summands[summands.length - 1]; |
|
if (Double.isNaN(tmp) && Double.isInfinite(simpleSum)) |
|
return simpleSum; |
|
else |
|
return tmp; |
|
} |
|
/** |
|
* Returns a {@code Collector} that produces the arithmetic mean of an integer-valued |
|
* function applied to the input elements. If no elements are present, |
|
* the result is 0. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param mapper a function extracting the property to be summed |
|
* @return a {@code Collector} that produces the sum of a derived property |
|
*/ |
|
public static <T> Collector<T, ?, Double> |
|
averagingInt(ToIntFunction<? super T> mapper) { |
|
return new CollectorImpl<>( |
|
() -> new long[2], |
|
(a, t) -> { a[0] += mapper.applyAsInt(t); a[1]++; }, |
|
(a, b) -> { a[0] += b[0]; a[1] += b[1]; return a; }, |
|
a -> (a[1] == 0) ? 0.0d : (double) a[0] / a[1], CH_NOID); |
|
} |
|
/** |
|
* Returns a {@code Collector} that produces the arithmetic mean of a long-valued |
|
* function applied to the input elements. If no elements are present, |
|
* the result is 0. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param mapper a function extracting the property to be summed |
|
* @return a {@code Collector} that produces the sum of a derived property |
|
*/ |
|
public static <T> Collector<T, ?, Double> |
|
averagingLong(ToLongFunction<? super T> mapper) { |
|
return new CollectorImpl<>( |
|
() -> new long[2], |
|
(a, t) -> { a[0] += mapper.applyAsLong(t); a[1]++; }, |
|
(a, b) -> { a[0] += b[0]; a[1] += b[1]; return a; }, |
|
a -> (a[1] == 0) ? 0.0d : (double) a[0] / a[1], CH_NOID); |
|
} |
|
/** |
|
* Returns a {@code Collector} that produces the arithmetic mean of a double-valued |
|
* function applied to the input elements. If no elements are present, |
|
* the result is 0. |
|
* |
|
* <p>The average returned can vary depending upon the order in which |
|
* values are recorded, due to accumulated rounding error in |
|
* addition of values of differing magnitudes. Values sorted by increasing |
|
* absolute magnitude tend to yield more accurate results. If any recorded |
|
* value is a {@code NaN} or the sum is at any point a {@code NaN} then the |
|
* average will be {@code NaN}. |
|
* |
|
* @implNote The {@code double} format can represent all |
|
* consecutive integers in the range -2<sup>53</sup> to |
|
* 2<sup>53</sup>. If the pipeline has more than 2<sup>53</sup> |
|
* values, the divisor in the average computation will saturate at |
|
* 2<sup>53</sup>, leading to additional numerical errors. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param mapper a function extracting the property to be summed |
|
* @return a {@code Collector} that produces the sum of a derived property |
|
*/ |
|
public static <T> Collector<T, ?, Double> |
|
averagingDouble(ToDoubleFunction<? super T> mapper) { |
|
/* |
|
* In the arrays allocated for the collect operation, index 0 |
|
* holds the high-order bits of the running sum, index 1 holds |
|
* the low-order bits of the sum computed via compensated |
|
* summation, and index 2 holds the number of values seen. |
|
*/ |
|
return new CollectorImpl<>( |
|
() -> new double[4], |
|
(a, t) -> { sumWithCompensation(a, mapper.applyAsDouble(t)); a[2]++; a[3]+= mapper.applyAsDouble(t);}, |
|
(a, b) -> { sumWithCompensation(a, b[0]); sumWithCompensation(a, b[1]); a[2] += b[2]; a[3] += b[3]; return a; }, |
|
a -> (a[2] == 0) ? 0.0d : (computeFinalSum(a) / a[2]), |
|
CH_NOID); |
|
} |
|
/** |
|
* Returns a {@code Collector} which performs a reduction of its |
|
* input elements under a specified {@code BinaryOperator} using the |
|
* provided identity. |
|
* |
|
* @apiNote |
|
* The {@code reducing()} collectors are most useful when used in a |
|
* multi-level reduction, downstream of {@code groupingBy} or |
|
* {@code partitioningBy}. To perform a simple reduction on a stream, |
|
* use {@link Stream#reduce(Object, BinaryOperator)}} instead. |
|
* |
|
* @param <T> element type for the input and output of the reduction |
|
* @param identity the identity value for the reduction (also, the value |
|
* that is returned when there are no input elements) |
|
* @param op a {@code BinaryOperator<T>} used to reduce the input elements |
|
* @return a {@code Collector} which implements the reduction operation |
|
* |
|
* @see #reducing(BinaryOperator) |
|
* @see #reducing(Object, Function, BinaryOperator) |
|
*/ |
|
public static <T> Collector<T, ?, T> |
|
reducing(T identity, BinaryOperator<T> op) { |
|
return new CollectorImpl<>( |
|
boxSupplier(identity), |
|
(a, t) -> { a[0] = op.apply(a[0], t); }, |
|
(a, b) -> { a[0] = op.apply(a[0], b[0]); return a; }, |
|
a -> a[0], |
|
CH_NOID); |
|
} |
|
@SuppressWarnings("unchecked") |
|
private static <T> Supplier<T[]> boxSupplier(T identity) { |
|
return () -> (T[]) new Object[] { identity }; |
|
} |
|
/** |
|
* Returns a {@code Collector} which performs a reduction of its |
|
* input elements under a specified {@code BinaryOperator}. The result |
|
* is described as an {@code Optional<T>}. |
|
* |
|
* @apiNote |
|
* The {@code reducing()} collectors are most useful when used in a |
|
* multi-level reduction, downstream of {@code groupingBy} or |
|
* {@code partitioningBy}. To perform a simple reduction on a stream, |
|
* use {@link Stream#reduce(BinaryOperator)} instead. |
|
* |
|
* <p>For example, given a stream of {@code Person}, to calculate tallest |
|
* person in each city: |
|
* <pre>{@code |
|
* Comparator<Person> byHeight = Comparator.comparing(Person::getHeight); |
|
* Map<City, Person> tallestByCity |
|
* = people.stream().collect(groupingBy(Person::getCity, reducing(BinaryOperator.maxBy(byHeight)))); |
|
* }</pre> |
|
* |
|
* @param <T> element type for the input and output of the reduction |
|
* @param op a {@code BinaryOperator<T>} used to reduce the input elements |
|
* @return a {@code Collector} which implements the reduction operation |
|
* |
|
* @see #reducing(Object, BinaryOperator) |
|
* @see #reducing(Object, Function, BinaryOperator) |
|
*/ |
|
public static <T> Collector<T, ?, Optional<T>> |
|
reducing(BinaryOperator<T> op) { |
|
class OptionalBox implements Consumer<T> { |
|
T value = null; |
|
boolean present = false; |
|
@Override |
|
public void accept(T t) { |
|
if (present) { |
|
value = op.apply(value, t); |
|
} |
|
else { |
|
value = t; |
|
present = true; |
|
} |
|
} |
|
} |
|
return new CollectorImpl<T, OptionalBox, Optional<T>>( |
|
OptionalBox::new, OptionalBox::accept, |
|
(a, b) -> { if (b.present) a.accept(b.value); return a; }, |
|
a -> Optional.ofNullable(a.value), CH_NOID); |
|
} |
|
/** |
|
* Returns a {@code Collector} which performs a reduction of its |
|
* input elements under a specified mapping function and |
|
* {@code BinaryOperator}. This is a generalization of |
|
* {@link #reducing(Object, BinaryOperator)} which allows a transformation |
|
* of the elements before reduction. |
|
* |
|
* @apiNote |
|
* The {@code reducing()} collectors are most useful when used in a |
|
* multi-level reduction, downstream of {@code groupingBy} or |
|
* {@code partitioningBy}. To perform a simple map-reduce on a stream, |
|
* use {@link Stream#map(Function)} and {@link Stream#reduce(Object, BinaryOperator)} |
|
* instead. |
|
* |
|
* <p>For example, given a stream of {@code Person}, to calculate the longest |
|
* last name of residents in each city: |
|
* <pre>{@code |
|
* Comparator<String> byLength = Comparator.comparing(String::length); |
|
* Map<City, String> longestLastNameByCity |
|
* = people.stream().collect(groupingBy(Person::getCity, |
|
* reducing(Person::getLastName, BinaryOperator.maxBy(byLength)))); |
|
* }</pre> |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <U> the type of the mapped values |
|
* @param identity the identity value for the reduction (also, the value |
|
* that is returned when there are no input elements) |
|
* @param mapper a mapping function to apply to each input value |
|
* @param op a {@code BinaryOperator<U>} used to reduce the mapped values |
|
* @return a {@code Collector} implementing the map-reduce operation |
|
* |
|
* @see #reducing(Object, BinaryOperator) |
|
* @see #reducing(BinaryOperator) |
|
*/ |
|
public static <T, U> |
|
Collector<T, ?, U> reducing(U identity, |
|
Function<? super T, ? extends U> mapper, |
|
BinaryOperator<U> op) { |
|
return new CollectorImpl<>( |
|
boxSupplier(identity), |
|
(a, t) -> { a[0] = op.apply(a[0], mapper.apply(t)); }, |
|
(a, b) -> { a[0] = op.apply(a[0], b[0]); return a; }, |
|
a -> a[0], CH_NOID); |
|
} |
|
/** |
|
* Returns a {@code Collector} implementing a "group by" operation on |
|
* input elements of type {@code T}, grouping elements according to a |
|
* classification function, and returning the results in a {@code Map}. |
|
* |
|
* <p>The classification function maps elements to some key type {@code K}. |
|
* The collector produces a {@code Map<K, List<T>>} whose keys are the |
|
* values resulting from applying the classification function to the input |
|
* elements, and whose corresponding values are {@code List}s containing the |
|
* input elements which map to the associated key under the classification |
|
* function. |
|
* |
|
* <p>There are no guarantees on the type, mutability, serializability, or |
|
* thread-safety of the {@code Map} or {@code List} objects returned. |
|
* @implSpec |
|
* This produces a result similar to: |
|
* <pre>{@code |
|
* groupingBy(classifier, toList()); |
|
* }</pre> |
|
* |
|
* @implNote |
|
* The returned {@code Collector} is not concurrent. For parallel stream |
|
* pipelines, the {@code combiner} function operates by merging the keys |
|
* from one map into another, which can be an expensive operation. If |
|
* preservation of the order in which elements appear in the resulting {@code Map} |
|
* collector is not required, using {@link #groupingByConcurrent(Function)} |
|
* may offer better parallel performance. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <K> the type of the keys |
|
* @param classifier the classifier function mapping input elements to keys |
|
* @return a {@code Collector} implementing the group-by operation |
|
* |
|
* @see #groupingBy(Function, Collector) |
|
* @see #groupingBy(Function, Supplier, Collector) |
|
* @see #groupingByConcurrent(Function) |
|
*/ |
|
public static <T, K> Collector<T, ?, Map<K, List<T>>> |
|
groupingBy(Function<? super T, ? extends K> classifier) { |
|
return groupingBy(classifier, toList()); |
|
} |
|
/** |
|
* Returns a {@code Collector} implementing a cascaded "group by" operation |
|
* on input elements of type {@code T}, grouping elements according to a |
|
* classification function, and then performing a reduction operation on |
|
* the values associated with a given key using the specified downstream |
|
* {@code Collector}. |
|
* |
|
* <p>The classification function maps elements to some key type {@code K}. |
|
* The downstream collector operates on elements of type {@code T} and |
|
* produces a result of type {@code D}. The resulting collector produces a |
|
* {@code Map<K, D>}. |
|
* |
|
* <p>There are no guarantees on the type, mutability, |
|
* serializability, or thread-safety of the {@code Map} returned. |
|
* |
|
* <p>For example, to compute the set of last names of people in each city: |
|
* <pre>{@code |
|
* Map<City, Set<String>> namesByCity |
|
* = people.stream().collect(groupingBy(Person::getCity, |
|
* mapping(Person::getLastName, toSet()))); |
|
* }</pre> |
|
* |
|
* @implNote |
|
* The returned {@code Collector} is not concurrent. For parallel stream |
|
* pipelines, the {@code combiner} function operates by merging the keys |
|
* from one map into another, which can be an expensive operation. If |
|
* preservation of the order in which elements are presented to the downstream |
|
* collector is not required, using {@link #groupingByConcurrent(Function, Collector)} |
|
* may offer better parallel performance. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <K> the type of the keys |
|
* @param <A> the intermediate accumulation type of the downstream collector |
|
* @param <D> the result type of the downstream reduction |
|
* @param classifier a classifier function mapping input elements to keys |
|
* @param downstream a {@code Collector} implementing the downstream reduction |
|
* @return a {@code Collector} implementing the cascaded group-by operation |
|
* @see #groupingBy(Function) |
|
* |
|
* @see #groupingBy(Function, Supplier, Collector) |
|
* @see #groupingByConcurrent(Function, Collector) |
|
*/ |
|
public static <T, K, A, D> |
|
Collector<T, ?, Map<K, D>> groupingBy(Function<? super T, ? extends K> classifier, |
|
Collector<? super T, A, D> downstream) { |
|
return groupingBy(classifier, HashMap::new, downstream); |
|
} |
|
/** |
|
* Returns a {@code Collector} implementing a cascaded "group by" operation |
|
* on input elements of type {@code T}, grouping elements according to a |
|
* classification function, and then performing a reduction operation on |
|
* the values associated with a given key using the specified downstream |
|
* {@code Collector}. The {@code Map} produced by the Collector is created |
|
* with the supplied factory function. |
|
* |
|
* <p>The classification function maps elements to some key type {@code K}. |
|
* The downstream collector operates on elements of type {@code T} and |
|
* produces a result of type {@code D}. The resulting collector produces a |
|
* {@code Map<K, D>}. |
|
* |
|
* <p>For example, to compute the set of last names of people in each city, |
|
* where the city names are sorted: |
|
* <pre>{@code |
|
* Map<City, Set<String>> namesByCity |
|
* = people.stream().collect(groupingBy(Person::getCity, TreeMap::new, |
|
* mapping(Person::getLastName, toSet()))); |
|
* }</pre> |
|
* |
|
* @implNote |
|
* The returned {@code Collector} is not concurrent. For parallel stream |
|
* pipelines, the {@code combiner} function operates by merging the keys |
|
* from one map into another, which can be an expensive operation. If |
|
* preservation of the order in which elements are presented to the downstream |
|
* collector is not required, using {@link #groupingByConcurrent(Function, Supplier, Collector)} |
|
* may offer better parallel performance. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <K> the type of the keys |
|
* @param <A> the intermediate accumulation type of the downstream collector |
|
* @param <D> the result type of the downstream reduction |
|
* @param <M> the type of the resulting {@code Map} |
|
* @param classifier a classifier function mapping input elements to keys |
|
* @param downstream a {@code Collector} implementing the downstream reduction |
|
* @param mapFactory a function which, when called, produces a new empty |
|
* {@code Map} of the desired type |
|
* @return a {@code Collector} implementing the cascaded group-by operation |
|
* |
|
* @see #groupingBy(Function, Collector) |
|
* @see #groupingBy(Function) |
|
* @see #groupingByConcurrent(Function, Supplier, Collector) |
|
*/ |
|
public static <T, K, D, A, M extends Map<K, D>> |
|
Collector<T, ?, M> groupingBy(Function<? super T, ? extends K> classifier, |
|
Supplier<M> mapFactory, |
|
Collector<? super T, A, D> downstream) { |
|
Supplier<A> downstreamSupplier = downstream.supplier(); |
|
BiConsumer<A, ? super T> downstreamAccumulator = downstream.accumulator(); |
|
BiConsumer<Map<K, A>, T> accumulator = (m, t) -> { |
|
K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key"); |
|
A container = m.computeIfAbsent(key, k -> downstreamSupplier.get()); |
|
downstreamAccumulator.accept(container, t); |
|
}; |
|
BinaryOperator<Map<K, A>> merger = Collectors.<K, A, Map<K, A>>mapMerger(downstream.combiner()); |
|
@SuppressWarnings("unchecked") |
|
Supplier<Map<K, A>> mangledFactory = (Supplier<Map<K, A>>) mapFactory; |
|
if (downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)) { |
|
return new CollectorImpl<>(mangledFactory, accumulator, merger, CH_ID); |
|
} |
|
else { |
|
@SuppressWarnings("unchecked") |
|
Function<A, A> downstreamFinisher = (Function<A, A>) downstream.finisher(); |
|
Function<Map<K, A>, M> finisher = intermediate -> { |
|
intermediate.replaceAll((k, v) -> downstreamFinisher.apply(v)); |
|
@SuppressWarnings("unchecked") |
|
M castResult = (M) intermediate; |
|
return castResult; |
|
}; |
|
return new CollectorImpl<>(mangledFactory, accumulator, merger, finisher, CH_NOID); |
|
} |
|
} |
|
/** |
|
* Returns a concurrent {@code Collector} implementing a "group by" |
|
* operation on input elements of type {@code T}, grouping elements |
|
* according to a classification function. |
|
* |
|
* <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and |
|
* {@link Collector.Characteristics#UNORDERED unordered} Collector. |
|
* |
|
* <p>The classification function maps elements to some key type {@code K}. |
|
* The collector produces a {@code ConcurrentMap<K, List<T>>} whose keys are the |
|
* values resulting from applying the classification function to the input |
|
* elements, and whose corresponding values are {@code List}s containing the |
|
* input elements which map to the associated key under the classification |
|
* function. |
|
* |
|
* <p>There are no guarantees on the type, mutability, or serializability |
|
* of the {@code Map} or {@code List} objects returned, or of the |
|
* thread-safety of the {@code List} objects returned. |
|
* @implSpec |
|
* This produces a result similar to: |
|
* <pre>{@code |
|
* groupingByConcurrent(classifier, toList()); |
|
* }</pre> |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <K> the type of the keys |
|
* @param classifier a classifier function mapping input elements to keys |
|
* @return a concurrent, unordered {@code Collector} implementing the group-by operation |
|
* |
|
* @see #groupingBy(Function) |
|
* @see #groupingByConcurrent(Function, Collector) |
|
* @see #groupingByConcurrent(Function, Supplier, Collector) |
|
*/ |
|
public static <T, K> |
|
Collector<T, ?, ConcurrentMap<K, List<T>>> |
|
groupingByConcurrent(Function<? super T, ? extends K> classifier) { |
|
return groupingByConcurrent(classifier, ConcurrentHashMap::new, toList()); |
|
} |
|
/** |
|
* Returns a concurrent {@code Collector} implementing a cascaded "group by" |
|
* operation on input elements of type {@code T}, grouping elements |
|
* according to a classification function, and then performing a reduction |
|
* operation on the values associated with a given key using the specified |
|
* downstream {@code Collector}. |
|
* |
|
* <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and |
|
* {@link Collector.Characteristics#UNORDERED unordered} Collector. |
|
* |
|
* <p>The classification function maps elements to some key type {@code K}. |
|
* The downstream collector operates on elements of type {@code T} and |
|
* produces a result of type {@code D}. The resulting collector produces a |
|
* {@code Map<K, D>}. |
|
* |
|
* <p>For example, to compute the set of last names of people in each city, |
|
* where the city names are sorted: |
|
* <pre>{@code |
|
* ConcurrentMap<City, Set<String>> namesByCity |
|
* = people.stream().collect(groupingByConcurrent(Person::getCity, |
|
* mapping(Person::getLastName, toSet()))); |
|
* }</pre> |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <K> the type of the keys |
|
* @param <A> the intermediate accumulation type of the downstream collector |
|
* @param <D> the result type of the downstream reduction |
|
* @param classifier a classifier function mapping input elements to keys |
|
* @param downstream a {@code Collector} implementing the downstream reduction |
|
* @return a concurrent, unordered {@code Collector} implementing the cascaded group-by operation |
|
* |
|
* @see #groupingBy(Function, Collector) |
|
* @see #groupingByConcurrent(Function) |
|
* @see #groupingByConcurrent(Function, Supplier, Collector) |
|
*/ |
|
public static <T, K, A, D> |
|
Collector<T, ?, ConcurrentMap<K, D>> groupingByConcurrent(Function<? super T, ? extends K> classifier, |
|
Collector<? super T, A, D> downstream) { |
|
return groupingByConcurrent(classifier, ConcurrentHashMap::new, downstream); |
|
} |
|
/** |
|
* Returns a concurrent {@code Collector} implementing a cascaded "group by" |
|
* operation on input elements of type {@code T}, grouping elements |
|
* according to a classification function, and then performing a reduction |
|
* operation on the values associated with a given key using the specified |
|
* downstream {@code Collector}. The {@code ConcurrentMap} produced by the |
|
* Collector is created with the supplied factory function. |
|
* |
|
* <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and |
|
* {@link Collector.Characteristics#UNORDERED unordered} Collector. |
|
* |
|
* <p>The classification function maps elements to some key type {@code K}. |
|
* The downstream collector operates on elements of type {@code T} and |
|
* produces a result of type {@code D}. The resulting collector produces a |
|
* {@code Map<K, D>}. |
|
* |
|
* <p>For example, to compute the set of last names of people in each city, |
|
* where the city names are sorted: |
|
* <pre>{@code |
|
* ConcurrentMap<City, Set<String>> namesByCity |
|
* = people.stream().collect(groupingBy(Person::getCity, ConcurrentSkipListMap::new, |
|
* mapping(Person::getLastName, toSet()))); |
|
* }</pre> |
|
* |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <K> the type of the keys |
|
* @param <A> the intermediate accumulation type of the downstream collector |
|
* @param <D> the result type of the downstream reduction |
|
* @param <M> the type of the resulting {@code ConcurrentMap} |
|
* @param classifier a classifier function mapping input elements to keys |
|
* @param downstream a {@code Collector} implementing the downstream reduction |
|
* @param mapFactory a function which, when called, produces a new empty |
|
* {@code ConcurrentMap} of the desired type |
|
* @return a concurrent, unordered {@code Collector} implementing the cascaded group-by operation |
|
* |
|
* @see #groupingByConcurrent(Function) |
|
* @see #groupingByConcurrent(Function, Collector) |
|
* @see #groupingBy(Function, Supplier, Collector) |
|
*/ |
|
public static <T, K, A, D, M extends ConcurrentMap<K, D>> |
|
Collector<T, ?, M> groupingByConcurrent(Function<? super T, ? extends K> classifier, |
|
Supplier<M> mapFactory, |
|
Collector<? super T, A, D> downstream) { |
|
Supplier<A> downstreamSupplier = downstream.supplier(); |
|
BiConsumer<A, ? super T> downstreamAccumulator = downstream.accumulator(); |
|
BinaryOperator<ConcurrentMap<K, A>> merger = Collectors.<K, A, ConcurrentMap<K, A>>mapMerger(downstream.combiner()); |
|
@SuppressWarnings("unchecked") |
|
Supplier<ConcurrentMap<K, A>> mangledFactory = (Supplier<ConcurrentMap<K, A>>) mapFactory; |
|
BiConsumer<ConcurrentMap<K, A>, T> accumulator; |
|
if (downstream.characteristics().contains(Collector.Characteristics.CONCURRENT)) { |
|
accumulator = (m, t) -> { |
|
K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key"); |
|
A resultContainer = m.computeIfAbsent(key, k -> downstreamSupplier.get()); |
|
downstreamAccumulator.accept(resultContainer, t); |
|
}; |
|
} |
|
else { |
|
accumulator = (m, t) -> { |
|
K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key"); |
|
A resultContainer = m.computeIfAbsent(key, k -> downstreamSupplier.get()); |
|
synchronized (resultContainer) { |
|
downstreamAccumulator.accept(resultContainer, t); |
|
} |
|
}; |
|
} |
|
if (downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)) { |
|
return new CollectorImpl<>(mangledFactory, accumulator, merger, CH_CONCURRENT_ID); |
|
} |
|
else { |
|
@SuppressWarnings("unchecked") |
|
Function<A, A> downstreamFinisher = (Function<A, A>) downstream.finisher(); |
|
Function<ConcurrentMap<K, A>, M> finisher = intermediate -> { |
|
intermediate.replaceAll((k, v) -> downstreamFinisher.apply(v)); |
|
@SuppressWarnings("unchecked") |
|
M castResult = (M) intermediate; |
|
return castResult; |
|
}; |
|
return new CollectorImpl<>(mangledFactory, accumulator, merger, finisher, CH_CONCURRENT_NOID); |
|
} |
|
} |
|
/** |
|
* Returns a {@code Collector} which partitions the input elements according |
|
* to a {@code Predicate}, and organizes them into a |
|
* {@code Map<Boolean, List<T>>}. |
|
* |
|
* There are no guarantees on the type, mutability, |
|
* serializability, or thread-safety of the {@code Map} returned. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param predicate a predicate used for classifying input elements |
|
* @return a {@code Collector} implementing the partitioning operation |
|
* |
|
* @see #partitioningBy(Predicate, Collector) |
|
*/ |
|
public static <T> |
|
Collector<T, ?, Map<Boolean, List<T>>> partitioningBy(Predicate<? super T> predicate) { |
|
return partitioningBy(predicate, toList()); |
|
} |
|
/** |
|
* Returns a {@code Collector} which partitions the input elements according |
|
* to a {@code Predicate}, reduces the values in each partition according to |
|
* another {@code Collector}, and organizes them into a |
|
* {@code Map<Boolean, D>} whose values are the result of the downstream |
|
* reduction. |
|
* |
|
* <p>There are no guarantees on the type, mutability, |
|
* serializability, or thread-safety of the {@code Map} returned. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <A> the intermediate accumulation type of the downstream collector |
|
* @param <D> the result type of the downstream reduction |
|
* @param predicate a predicate used for classifying input elements |
|
* @param downstream a {@code Collector} implementing the downstream |
|
* reduction |
|
* @return a {@code Collector} implementing the cascaded partitioning |
|
* operation |
|
* |
|
* @see #partitioningBy(Predicate) |
|
*/ |
|
public static <T, D, A> |
|
Collector<T, ?, Map<Boolean, D>> partitioningBy(Predicate<? super T> predicate, |
|
Collector<? super T, A, D> downstream) { |
|
BiConsumer<A, ? super T> downstreamAccumulator = downstream.accumulator(); |
|
BiConsumer<Partition<A>, T> accumulator = (result, t) -> |
|
downstreamAccumulator.accept(predicate.test(t) ? result.forTrue : result.forFalse, t); |
|
BinaryOperator<A> op = downstream.combiner(); |
|
BinaryOperator<Partition<A>> merger = (left, right) -> |
|
new Partition<>(op.apply(left.forTrue, right.forTrue), |
|
op.apply(left.forFalse, right.forFalse)); |
|
Supplier<Partition<A>> supplier = () -> |
|
new Partition<>(downstream.supplier().get(), |
|
downstream.supplier().get()); |
|
if (downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)) { |
|
return new CollectorImpl<>(supplier, accumulator, merger, CH_ID); |
|
} |
|
else { |
|
Function<Partition<A>, Map<Boolean, D>> finisher = par -> |
|
new Partition<>(downstream.finisher().apply(par.forTrue), |
|
downstream.finisher().apply(par.forFalse)); |
|
return new CollectorImpl<>(supplier, accumulator, merger, finisher, CH_NOID); |
|
} |
|
} |
|
/** |
|
* Returns a {@code Collector} that accumulates elements into a |
|
* {@code Map} whose keys and values are the result of applying the provided |
|
* mapping functions to the input elements. |
|
* |
|
* <p>If the mapped keys contains duplicates (according to |
|
* {@link Object#equals(Object)}), an {@code IllegalStateException} is |
|
* thrown when the collection operation is performed. If the mapped keys |
|
* may have duplicates, use {@link #toMap(Function, Function, BinaryOperator)} |
|
* instead. |
|
* |
|
* @apiNote |
|
* It is common for either the key or the value to be the input elements. |
|
* In this case, the utility method |
|
* {@link java.util.function.Function#identity()} may be helpful. |
|
* For example, the following produces a {@code Map} mapping |
|
* students to their grade point average: |
|
* <pre>{@code |
|
* Map<Student, Double> studentToGPA |
|
* students.stream().collect(toMap(Functions.identity(), |
|
* student -> computeGPA(student))); |
|
* }</pre> |
|
* And the following produces a {@code Map} mapping a unique identifier to |
|
* students: |
|
* <pre>{@code |
|
* Map<String, Student> studentIdToStudent |
|
* students.stream().collect(toMap(Student::getId, |
|
* Functions.identity()); |
|
* }</pre> |
|
* |
|
* @implNote |
|
* The returned {@code Collector} is not concurrent. For parallel stream |
|
* pipelines, the {@code combiner} function operates by merging the keys |
|
* from one map into another, which can be an expensive operation. If it is |
|
* not required that results are inserted into the {@code Map} in encounter |
|
* order, using {@link #toConcurrentMap(Function, Function)} |
|
* may offer better parallel performance. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <K> the output type of the key mapping function |
|
* @param <U> the output type of the value mapping function |
|
* @param keyMapper a mapping function to produce keys |
|
* @param valueMapper a mapping function to produce values |
|
* @return a {@code Collector} which collects elements into a {@code Map} |
|
* whose keys and values are the result of applying mapping functions to |
|
* the input elements |
|
* |
|
* @see #toMap(Function, Function, BinaryOperator) |
|
* @see #toMap(Function, Function, BinaryOperator, Supplier) |
|
* @see #toConcurrentMap(Function, Function) |
|
*/ |
|
public static <T, K, U> |
|
Collector<T, ?, Map<K,U>> toMap(Function<? super T, ? extends K> keyMapper, |
|
Function<? super T, ? extends U> valueMapper) { |
|
return toMap(keyMapper, valueMapper, throwingMerger(), HashMap::new); |
|
} |
|
/** |
|
* Returns a {@code Collector} that accumulates elements into a |
|
* {@code Map} whose keys and values are the result of applying the provided |
|
* mapping functions to the input elements. |
|
* |
|
* <p>If the mapped |
|
* keys contains duplicates (according to {@link Object#equals(Object)}), |
|
* the value mapping function is applied to each equal element, and the |
|
* results are merged using the provided merging function. |
|
* |
|
* @apiNote |
|
* There are multiple ways to deal with collisions between multiple elements |
|
* mapping to the same key. The other forms of {@code toMap} simply use |
|
* a merge function that throws unconditionally, but you can easily write |
|
* more flexible merge policies. For example, if you have a stream |
|
* of {@code Person}, and you want to produce a "phone book" mapping name to |
|
* address, but it is possible that two persons have the same name, you can |
|
* do as follows to gracefully deals with these collisions, and produce a |
|
* {@code Map} mapping names to a concatenated list of addresses: |
|
* <pre>{@code |
|
* Map<String, String> phoneBook |
|
* people.stream().collect(toMap(Person::getName, |
|
* Person::getAddress, |
|
* (s, a) -> s + ", " + a)); |
|
* }</pre> |
|
* |
|
* @implNote |
|
* The returned {@code Collector} is not concurrent. For parallel stream |
|
* pipelines, the {@code combiner} function operates by merging the keys |
|
* from one map into another, which can be an expensive operation. If it is |
|
* not required that results are merged into the {@code Map} in encounter |
|
* order, using {@link #toConcurrentMap(Function, Function, BinaryOperator)} |
|
* may offer better parallel performance. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <K> the output type of the key mapping function |
|
* @param <U> the output type of the value mapping function |
|
* @param keyMapper a mapping function to produce keys |
|
* @param valueMapper a mapping function to produce values |
|
* @param mergeFunction a merge function, used to resolve collisions between |
|
* values associated with the same key, as supplied |
|
* to {@link Map#merge(Object, Object, BiFunction)} |
|
* @return a {@code Collector} which collects elements into a {@code Map} |
|
* whose keys are the result of applying a key mapping function to the input |
|
* elements, and whose values are the result of applying a value mapping |
|
* function to all input elements equal to the key and combining them |
|
* using the merge function |
|
* |
|
* @see #toMap(Function, Function) |
|
* @see #toMap(Function, Function, BinaryOperator, Supplier) |
|
* @see #toConcurrentMap(Function, Function, BinaryOperator) |
|
*/ |
|
public static <T, K, U> |
|
Collector<T, ?, Map<K,U>> toMap(Function<? super T, ? extends K> keyMapper, |
|
Function<? super T, ? extends U> valueMapper, |
|
BinaryOperator<U> mergeFunction) { |
|
return toMap(keyMapper, valueMapper, mergeFunction, HashMap::new); |
|
} |
|
/** |
|
* Returns a {@code Collector} that accumulates elements into a |
|
* {@code Map} whose keys and values are the result of applying the provided |
|
* mapping functions to the input elements. |
|
* |
|
* <p>If the mapped |
|
* keys contains duplicates (according to {@link Object#equals(Object)}), |
|
* the value mapping function is applied to each equal element, and the |
|
* results are merged using the provided merging function. The {@code Map} |
|
* is created by a provided supplier function. |
|
* |
|
* @implNote |
|
* The returned {@code Collector} is not concurrent. For parallel stream |
|
* pipelines, the {@code combiner} function operates by merging the keys |
|
* from one map into another, which can be an expensive operation. If it is |
|
* not required that results are merged into the {@code Map} in encounter |
|
* order, using {@link #toConcurrentMap(Function, Function, BinaryOperator, Supplier)} |
|
* may offer better parallel performance. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <K> the output type of the key mapping function |
|
* @param <U> the output type of the value mapping function |
|
* @param <M> the type of the resulting {@code Map} |
|
* @param keyMapper a mapping function to produce keys |
|
* @param valueMapper a mapping function to produce values |
|
* @param mergeFunction a merge function, used to resolve collisions between |
|
* values associated with the same key, as supplied |
|
* to {@link Map#merge(Object, Object, BiFunction)} |
|
* @param mapSupplier a function which returns a new, empty {@code Map} into |
|
* which the results will be inserted |
|
* @return a {@code Collector} which collects elements into a {@code Map} |
|
* whose keys are the result of applying a key mapping function to the input |
|
* elements, and whose values are the result of applying a value mapping |
|
* function to all input elements equal to the key and combining them |
|
* using the merge function |
|
* |
|
* @see #toMap(Function, Function) |
|
* @see #toMap(Function, Function, BinaryOperator) |
|
* @see #toConcurrentMap(Function, Function, BinaryOperator, Supplier) |
|
*/ |
|
public static <T, K, U, M extends Map<K, U>> |
|
Collector<T, ?, M> toMap(Function<? super T, ? extends K> keyMapper, |
|
Function<? super T, ? extends U> valueMapper, |
|
BinaryOperator<U> mergeFunction, |
|
Supplier<M> mapSupplier) { |
|
BiConsumer<M, T> accumulator |
|
= (map, element) -> map.merge(keyMapper.apply(element), |
|
valueMapper.apply(element), mergeFunction); |
|
return new CollectorImpl<>(mapSupplier, accumulator, mapMerger(mergeFunction), CH_ID); |
|
} |
|
/** |
|
* Returns a concurrent {@code Collector} that accumulates elements into a |
|
* {@code ConcurrentMap} whose keys and values are the result of applying |
|
* the provided mapping functions to the input elements. |
|
* |
|
* <p>If the mapped keys contains duplicates (according to |
|
* {@link Object#equals(Object)}), an {@code IllegalStateException} is |
|
* thrown when the collection operation is performed. If the mapped keys |
|
* may have duplicates, use |
|
* {@link #toConcurrentMap(Function, Function, BinaryOperator)} instead. |
|
* |
|
* @apiNote |
|
* It is common for either the key or the value to be the input elements. |
|
* In this case, the utility method |
|
* {@link java.util.function.Function#identity()} may be helpful. |
|
* For example, the following produces a {@code Map} mapping |
|
* students to their grade point average: |
|
* <pre>{@code |
|
* Map<Student, Double> studentToGPA |
|
* students.stream().collect(toMap(Functions.identity(), |
|
* student -> computeGPA(student))); |
|
* }</pre> |
|
* And the following produces a {@code Map} mapping a unique identifier to |
|
* students: |
|
* <pre>{@code |
|
* Map<String, Student> studentIdToStudent |
|
* students.stream().collect(toConcurrentMap(Student::getId, |
|
* Functions.identity()); |
|
* }</pre> |
|
* |
|
* <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and |
|
* {@link Collector.Characteristics#UNORDERED unordered} Collector. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <K> the output type of the key mapping function |
|
* @param <U> the output type of the value mapping function |
|
* @param keyMapper the mapping function to produce keys |
|
* @param valueMapper the mapping function to produce values |
|
* @return a concurrent, unordered {@code Collector} which collects elements into a |
|
* {@code ConcurrentMap} whose keys are the result of applying a key mapping |
|
* function to the input elements, and whose values are the result of |
|
* applying a value mapping function to the input elements |
|
* |
|
* @see #toMap(Function, Function) |
|
* @see #toConcurrentMap(Function, Function, BinaryOperator) |
|
* @see #toConcurrentMap(Function, Function, BinaryOperator, Supplier) |
|
*/ |
|
public static <T, K, U> |
|
Collector<T, ?, ConcurrentMap<K,U>> toConcurrentMap(Function<? super T, ? extends K> keyMapper, |
|
Function<? super T, ? extends U> valueMapper) { |
|
return toConcurrentMap(keyMapper, valueMapper, throwingMerger(), ConcurrentHashMap::new); |
|
} |
|
/** |
|
* Returns a concurrent {@code Collector} that accumulates elements into a |
|
* {@code ConcurrentMap} whose keys and values are the result of applying |
|
* the provided mapping functions to the input elements. |
|
* |
|
* <p>If the mapped keys contains duplicates (according to {@link Object#equals(Object)}), |
|
* the value mapping function is applied to each equal element, and the |
|
* results are merged using the provided merging function. |
|
* |
|
* @apiNote |
|
* There are multiple ways to deal with collisions between multiple elements |
|
* mapping to the same key. The other forms of {@code toConcurrentMap} simply use |
|
* a merge function that throws unconditionally, but you can easily write |
|
* more flexible merge policies. For example, if you have a stream |
|
* of {@code Person}, and you want to produce a "phone book" mapping name to |
|
* address, but it is possible that two persons have the same name, you can |
|
* do as follows to gracefully deals with these collisions, and produce a |
|
* {@code Map} mapping names to a concatenated list of addresses: |
|
* <pre>{@code |
|
* Map<String, String> phoneBook |
|
* people.stream().collect(toConcurrentMap(Person::getName, |
|
* Person::getAddress, |
|
* (s, a) -> s + ", " + a)); |
|
* }</pre> |
|
* |
|
* <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and |
|
* {@link Collector.Characteristics#UNORDERED unordered} Collector. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <K> the output type of the key mapping function |
|
* @param <U> the output type of the value mapping function |
|
* @param keyMapper a mapping function to produce keys |
|
* @param valueMapper a mapping function to produce values |
|
* @param mergeFunction a merge function, used to resolve collisions between |
|
* values associated with the same key, as supplied |
|
* to {@link Map#merge(Object, Object, BiFunction)} |
|
* @return a concurrent, unordered {@code Collector} which collects elements into a |
|
* {@code ConcurrentMap} whose keys are the result of applying a key mapping |
|
* function to the input elements, and whose values are the result of |
|
* applying a value mapping function to all input elements equal to the key |
|
* and combining them using the merge function |
|
* |
|
* @see #toConcurrentMap(Function, Function) |
|
* @see #toConcurrentMap(Function, Function, BinaryOperator, Supplier) |
|
* @see #toMap(Function, Function, BinaryOperator) |
|
*/ |
|
public static <T, K, U> |
|
Collector<T, ?, ConcurrentMap<K,U>> |
|
toConcurrentMap(Function<? super T, ? extends K> keyMapper, |
|
Function<? super T, ? extends U> valueMapper, |
|
BinaryOperator<U> mergeFunction) { |
|
return toConcurrentMap(keyMapper, valueMapper, mergeFunction, ConcurrentHashMap::new); |
|
} |
|
/** |
|
* Returns a concurrent {@code Collector} that accumulates elements into a |
|
* {@code ConcurrentMap} whose keys and values are the result of applying |
|
* the provided mapping functions to the input elements. |
|
* |
|
* <p>If the mapped keys contains duplicates (according to {@link Object#equals(Object)}), |
|
* the value mapping function is applied to each equal element, and the |
|
* results are merged using the provided merging function. The |
|
* {@code ConcurrentMap} is created by a provided supplier function. |
|
* |
|
* <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and |
|
* {@link Collector.Characteristics#UNORDERED unordered} Collector. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param <K> the output type of the key mapping function |
|
* @param <U> the output type of the value mapping function |
|
* @param <M> the type of the resulting {@code ConcurrentMap} |
|
* @param keyMapper a mapping function to produce keys |
|
* @param valueMapper a mapping function to produce values |
|
* @param mergeFunction a merge function, used to resolve collisions between |
|
* values associated with the same key, as supplied |
|
* to {@link Map#merge(Object, Object, BiFunction)} |
|
* @param mapSupplier a function which returns a new, empty {@code Map} into |
|
* which the results will be inserted |
|
* @return a concurrent, unordered {@code Collector} which collects elements into a |
|
* {@code ConcurrentMap} whose keys are the result of applying a key mapping |
|
* function to the input elements, and whose values are the result of |
|
* applying a value mapping function to all input elements equal to the key |
|
* and combining them using the merge function |
|
* |
|
* @see #toConcurrentMap(Function, Function) |
|
* @see #toConcurrentMap(Function, Function, BinaryOperator) |
|
* @see #toMap(Function, Function, BinaryOperator, Supplier) |
|
*/ |
|
public static <T, K, U, M extends ConcurrentMap<K, U>> |
|
Collector<T, ?, M> toConcurrentMap(Function<? super T, ? extends K> keyMapper, |
|
Function<? super T, ? extends U> valueMapper, |
|
BinaryOperator<U> mergeFunction, |
|
Supplier<M> mapSupplier) { |
|
BiConsumer<M, T> accumulator |
|
= (map, element) -> map.merge(keyMapper.apply(element), |
|
valueMapper.apply(element), mergeFunction); |
|
return new CollectorImpl<>(mapSupplier, accumulator, mapMerger(mergeFunction), CH_CONCURRENT_ID); |
|
} |
|
/** |
|
* Returns a {@code Collector} which applies an {@code int}-producing |
|
* mapping function to each input element, and returns summary statistics |
|
* for the resulting values. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param mapper a mapping function to apply to each element |
|
* @return a {@code Collector} implementing the summary-statistics reduction |
|
* |
|
* @see #summarizingDouble(ToDoubleFunction) |
|
* @see #summarizingLong(ToLongFunction) |
|
*/ |
|
public static <T> |
|
Collector<T, ?, IntSummaryStatistics> summarizingInt(ToIntFunction<? super T> mapper) { |
|
return new CollectorImpl<T, IntSummaryStatistics, IntSummaryStatistics>( |
|
IntSummaryStatistics::new, |
|
(r, t) -> r.accept(mapper.applyAsInt(t)), |
|
(l, r) -> { l.combine(r); return l; }, CH_ID); |
|
} |
|
/** |
|
* Returns a {@code Collector} which applies an {@code long}-producing |
|
* mapping function to each input element, and returns summary statistics |
|
* for the resulting values. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param mapper the mapping function to apply to each element |
|
* @return a {@code Collector} implementing the summary-statistics reduction |
|
* |
|
* @see #summarizingDouble(ToDoubleFunction) |
|
* @see #summarizingInt(ToIntFunction) |
|
*/ |
|
public static <T> |
|
Collector<T, ?, LongSummaryStatistics> summarizingLong(ToLongFunction<? super T> mapper) { |
|
return new CollectorImpl<T, LongSummaryStatistics, LongSummaryStatistics>( |
|
LongSummaryStatistics::new, |
|
(r, t) -> r.accept(mapper.applyAsLong(t)), |
|
(l, r) -> { l.combine(r); return l; }, CH_ID); |
|
} |
|
/** |
|
* Returns a {@code Collector} which applies an {@code double}-producing |
|
* mapping function to each input element, and returns summary statistics |
|
* for the resulting values. |
|
* |
|
* @param <T> the type of the input elements |
|
* @param mapper a mapping function to apply to each element |
|
* @return a {@code Collector} implementing the summary-statistics reduction |
|
* |
|
* @see #summarizingLong(ToLongFunction) |
|
* @see #summarizingInt(ToIntFunction) |
|
*/ |
|
public static <T> |
|
Collector<T, ?, DoubleSummaryStatistics> summarizingDouble(ToDoubleFunction<? super T> mapper) { |
|
return new CollectorImpl<T, DoubleSummaryStatistics, DoubleSummaryStatistics>( |
|
DoubleSummaryStatistics::new, |
|
(r, t) -> r.accept(mapper.applyAsDouble(t)), |
|
(l, r) -> { l.combine(r); return l; }, CH_ID); |
|
} |
|
/** |
|
* Implementation class used by partitioningBy. |
|
*/ |
|
private static final class Partition<T> |
|
extends AbstractMap<Boolean, T> |
|
implements Map<Boolean, T> { |
|
final T forTrue; |
|
final T forFalse; |
|
Partition(T forTrue, T forFalse) { |
|
this.forTrue = forTrue; |
|
this.forFalse = forFalse; |
|
} |
|
@Override |
|
public Set<Map.Entry<Boolean, T>> entrySet() { |
|
return new AbstractSet<Map.Entry<Boolean, T>>() { |
|
@Override |
|
public Iterator<Map.Entry<Boolean, T>> iterator() { |
|
Map.Entry<Boolean, T> falseEntry = new SimpleImmutableEntry<>(false, forFalse); |
|
Map.Entry<Boolean, T> trueEntry = new SimpleImmutableEntry<>(true, forTrue); |
|
return Arrays.asList(falseEntry, trueEntry).iterator(); |
|
} |
|
@Override |
|
public int size() { |
|
return 2; |
|
} |
|
}; |
|
} |
|
} |
|
} |